
Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

A NEW GENERIC TAXONOMY OF MALWARE
BEHAVIOURAL DETECTION AND REMOVAL

TECHNIQUES

1LEE LING CHUAN, 2MAHAMOD ISMAIL, 3CHAN LEE YEE, 4KASMIRAN JUMARI
1,3PhD Student, Department of Electrical, Electronic and System Engineering, National University of

Malaysia, Malaysia
2,4Professor, Department of Electrical, Electronic and System Engineering, National University of

Malaysia, Malaysia

E-mail: 1lclee_vx@f13-labs.net , 2mahamod@eng.ukm.my , 3chanleeyee@f13-labs.net , 4kbj@eng.ukm.my

ABSTRACT

Modern malware has become a major threat to today’s Internet communications. The threat can infiltrate
hosts using a variety of methods, such as attacks against known software vulnerabilities, hidden
functionality in regular programs, drive-by download from unsafe web sites, and so forth. Matching a file
stream against a known virus pattern is a fundamental technique for detecting viruses. With the popularity
and variety of malware attack over the Internet, computer virus protection companies need to constantly
update new virus signatures in their virus definition databases. However, the increasing size of the signature
database can only detect known virus but cannot defend against new variants of malware. In this paper, we
present an overview of the detection of modern malware focuses on suspect behavioural patterns. Contrary
to classical heuristic engines which focus on the detection of encrypted malware samples, we integrate a
known packer detector as well as unpacking routines to circumvent the protection techniques used by most
of the modern malware. We believe that many obfuscated techniques used by malware authors are available
on the Internet. More precisely, the use of known packer removals would strip out the packer protection
with our dedicated decryption routines. Our apprehensive program is based on the integration of both static
heuristic and emulator approaches; however, they do not necessarily have to serve as a complement for
each other. Static heuristic scanner involves static extraction, which is relying on byte signature to identify
a dedicated viral signature. Emulator can execute the arbitrary code from the instance and would trace the
instance’s body code in a virtual environment. It can be used to combat any protection code, regardless of
the complexity of the protection algorithm. Fragments of virus body could be detected while the execution
is in a decrypted virus body. Lastly, we present experimental results that indicate our proposed technique
can provide good performance against obfuscated malware. Through this study, we hope to help security
researchers understand our defence approach and give some directions for future research.

Keywords: Static Analysis, Dynamic Analysis, Heuristic, Emulator, Malware

1. INTRODUCTION

Malicious software is a generic term to denote
any unwanted software designed to perform an
unauthorized process that will have adverse impact
on the availability, integrity or confidentiality of a
system. Over the past decades, the battle between
defensive and offensive in the world of virology has
never ceased. Many avenues of research has been
done with regards to the manner of detecting
computer virus, yet the use of signature is still the
most common detection method today. Modern
malware detection uses different data extraction

method from the malware body including patterns
with or without wildcards, checksums, behaviour
patterns, file geometry, and statistic distribution of
code instructions [1]. In an attempt to defeat
detection engines, malware authors have evolved
the infection, replication and spreading of
mechanism codes. The malicious program is
devised over every possible way to evade the
detection engine. Such techniques include
encryption, obfuscation, packing, entry point
obscuring and more [9]. In the early days,
encryption scheme is a common key to protect the
innards of an instance’s malicious executable.

http://www.jatit.org/
mailto:1lclee_vx@f13-labs.net
mailto:2mahamod@eng.ukm.my
mailto:3chanleeyee@f13-labs.net
mailto:4kbj@eng.ukm.my

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

261

Later, encrypted virus evolved from simple
encryption to more sophisticated self-defence
mechanisms to give all the creations a better
survival rate. A virus has the ability to modify its
viral code and alter its appearance at each infection.
Among all the techniques, polymorphism [11] and
metamorphism [10] are certainly the most advanced
defence mechanisms for malware.

Polymorphic viruses are designed to conceal their
potential signatures by obfuscating the entire code.
It mutates or changes their appearance by
generating multiple unique encryption methods to
encrypt the virus body. A number of distinct
decryptors are generated which allow the viruses to
change their decryptor code from generation to
generation. As opposed to polymorphism,
metamorphic viruses change their internal structure
but all are functionally equivalent in each
generation. Both techniques help in changing the
virus signatures to avoid signature based detection.
Consequently, form-based detection relies on
signature which is no longer reliable in detecting
the well-design of both polymorphic and
metamorphic malware. In spite of the fact that
different obfuscation techniques have been used to
protect the malware instance’s innards, most packer
algorithms are available from the Internet; for
instance, Ultimate Packer for eXecutables (UPX)
[12], ASPack [13], WWWPACK [14] and so forth.
Paradoxically, many malware that appear today are
repacked version with common packers but
effectively evades from the detection of Antivirus
software [25].

The current trend in the anti-malware community
is to devise the next generation of viral code
detectors over semantic aspects [24]. The
motivation of this work is to develop a standalone
heuristic engine for detection of obfuscated and
new variants of malware. In fact, the peculiarity of
the majority of virus that appears today is the
repacked version of old malware. Our approach is
to subvert the protection mechanisms and bypass
the defences of malware. We propose a
combination of known packer removal and heuristic
malware scanning engine, both statically and
dynamically for analysing the creation’s structure,
its behaviour and other attributes. The approach of
this known packer removal module is based on a
pre-defined packer signature. The idea is to
acquaint the packer of a malicious program; an
automatic component will then extract the
obfuscated part and invoke the scanning engine
against the real malware body. The identification
and extraction of packer feature would accelerate

the scanning process though it requires a human
expert and time to forge a reliable signature and
extract the program. Our scanning engine can fall
into two categories: static and dynamic. The
primary difference between the two categories is
that the static heuristic technique does not execute
the code being analysed. The scanner will study the
suspicious program in a hexadecimal format and
compare it to the code of known viruses and virus-
like activities. If the code matches the code of
known viruses or virus-like activities, the file is
flagged and the user alerted. However, on the
condition that no viral-like activity is detected, an
emulator technique will copy parts of an
application’s program code into a safe emulation
buffer and emulate the execution. If any suspicious
actions are detected during the “execution”, the
object will flag as malicious.

In summary, this paper is to demonstrate the
ability to develop competitive heuristic scanning for
malicious codes at a much lower cost. Towards this
end, we make several contributions. We proposed a
design of malware signature database that
accelerates the process of malware detection. The
database uses multiple parts of malware pattern to
be matched in sequence for virus detection. The
proposed method can reduce the overall size of
database and accelerate the pattern matching
process. Instead of using the full text signature,
malware patterns are partially selected for the
matching process. We then proposed a combination
of a known packer detector and removal module
with both static heuristic and emulator module. The
packer detector is devised based on a signature
approach to automate the process of identifying and
extracting the hidden code of packed executable
files. The proposed method can accelerate the
implementation of malware detection process and
reduce the size of malware signature database. In
fact, a single malware signature is capable in
detecting a whole variant set of a virus family.
Finally, we propose a design of the next generation
of malware detector over static heuristic and
emulator engine corresponding to a future threat
that most malware detection software must deal
with. The primary goal of the proposed method is to
deal with obfuscated and new variants of malware.
The design of automatically executing arbitrary
program is in a safe and isolated environment. A
region of malicious code is identified by tracing an
instance’s executable program dynamically based
on a basic block approach. Our design relies on
disassembling the analysis code dynamically and
performing just-in-time compilation [26] targeted
for the host CPU.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

262

This article is articulated according to the
following structure. Section 2 describes related
work. A brief overview of scanning engine is
presented in section 3. Then, section 4 introduces
the design of malware signature database where the
design and implementation detail of our proposed
system will be discussed. Both static and dynamic
system architecture will be discussed in this section.
Section 5 provides an experimental evaluation of its
effectiveness. Finally, section 6 briefly concludes
and outlines future work.

2. RELATED WORK

This section briefly reviews the background and
related work to this project. Although virus and
malware detection has been studied for years, many
modern malware programs are still able to evade
the existing malware detectors [27].

Obfuscation is a common method that transforms
the true purpose of original program code into a
misleading or unreadable form, in hopes of hiding
the program’s true intentions. According to a report,
more than 92% of malware files are runtime packed
[2]. In particular, the obfuscation malware is the
very first problem that a malware analysis should be
addressed. If an obfuscated malware instance
cannot be unpacked, the analysis of the program
will only view the obfuscated block as non-
instruction data. There are systems which perform
automated unpacking processes for program
executable files using different tactics. Renovo [3]
uses a dynamic approach to monitor the execution
of given program in an emulated environment. The
run-time execution and memory writes are tracked
in such a manner as to determine that the execution
in the memory region is newly generated; it will
then extract the executable program in the memory
region. The approach of PolyUnpack software [4] to
automatically extract the original hidden code is
based on the observation of sequence instructions of
packed executable. It disassemblies the binary
instructions and executes the instructions until a
code section is reached.

Malware detection can occur before, or after the
malicious code is loaded into the memory. Thus, the
detection approach can be categorized into static
and dynamic strategies. Sung presents a robust
malware detection technique using API. The
method is called Static Analyzer of Vicious
Executables (SAVE) [5], with emphasizes on
detecting metamorphic and polymorphic malware.
The approach of SAVE in detecting malware is
based on the sequence of API calls. The detection
decision is made based on the comparison of this

sequence to a known malware sequence. Clam
AntiVirus [6] also known as ClamAV, is an open
source and cross-platform antivirus software
designed for detecting malicious threats. It provides
file format detection, packer unpacking support, and
multiple signatures for detecting viral code. The
signature can be divided into three types: basic
patterns, regular expression and MD5 checksums
[7]. The virus signature is updated very frequently
and as of October 11, 2011, contained 1,044,387
virus signatures.

3. HEURISTIC ENGINE DESCRIPTION

The modern scourge of malicious program is
greatly exacerbated by the implementation of
effective protections. These protections frequently
use obfuscation techniques, such as packing
malware programs with software armouring or
packers to generate several variants of malware
programs. Due to this tendency, the number of virus
signatures will increase very fast, thus requiring
higher computational resource consumption. The
idea of identifying known packer signature at the
entry point of every scanning target file can
accelerate the scanning process and reduce the size
of virus signature database.

Figure 1. Malware Scanner Architecture

Our approach of malware and virus scanner
architecture, shown in Figure 1, is based on the
observation of a code analyser. It is divided into
known packer detector, packer unpacking module
and heuristic scanning engine. Obfuscated code or
packer [8] is a technique commonly used to hinder
malware code analysis via reverse engineering. As
more and more new malwares are packed or
encrypted, they mutate themselves as they spread
around so that no two copies will share the same
virus signature. To prevent any obfuscated code
from posing obstacles to the scanning and detection
module, an automated process for identifying and

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

263

extracting the hidden-code bodies is proposed. We
devised an algorithm to identify if a program
applies any obfuscation mechanism. Packer detector
function is built on top of scanning core
components and it is developed to analyse a
malware instance file, and determines if any packer
has been applied. Our approach begins by detecting
any packer applied for the instance malware files
based on the packer signature detection at entry
point. The entry point is the first instruction that the
pointer is pointed to, which is intended as a
destination of a long jump. A module for
automating the process of extracting the hidden-
code by using the known decryption algorithm and
obtaining the original-code bodies of the program is
executed if any known packer is detected.

The idea of our malware scanner is to ensure the
engine locates any viral code statically and
dynamically. The static heuristic technique is
devised to analyse a program’s code statically
without actually executing it. This method typically
relies on our virus database which scans for viral
codes by searching of predetermined malware
patterns. The process begins at the program’s entry
point. Unfortunately, the analysis process will
become difficult if any binary is intentionally
designed to thwart the code analysis of static
analysis approach. Thus, the ability of the emulator
to execute a program code has the significant
advantage to combat with this malware’s
protection.

As mentioned earlier, it is common for malware
writers to use code obfuscation techniques to hinder
the actual viral code. The problem can be solved by
using our known packer remover function. In some
cases, our dedicated decryption routines are unable
to find the known decryption algorithm to decrypt
the program; thus, the design of emulation solves
the problem. In contrast to static technique,
emulator analyses an executable’s inner code during
run-time in a controlled environment. Every
protected malware code should eventually be
decrypted and executed in memory, regardless of
the sophistication of the obfuscated algorithm or
multiple encryption layers that have been
implemented. Emulator works by attempting to
execute the binary in our emulated environment and
eventually virus could be detected after the virus
body has been decrypted.

4. THE DESIGN OF MALWARE
SIGNATURE DATABASE

Heuristic scanning is a malware analysis process

that looks for “viral-like” activity. Such activities

include overwriting or moving benign program’s
entry point in memory, attempts to infect and evade
detections by writing viral code to system files,
modifying interrupts vectors, and so forth. Unlike
traditional signature detection, the verification of
either benign or malicious of an executable is based
on behavioural signature but not simple byte
patterns. Behavioural signature is a program with
distinct syntaxes that have identical malware
behaviour capture signature. With the design of
malware behaviour signature, the ability of
detection is no longer a single piece of malware
program but a whole class of malware coming from
a common strain.

There are two methods for recognizing various
program behaviours. One is by maintaining a large
database of byte sequences of signatures. Figure 2
shows the pattern signature that we have defined.
Here, the signature is compared to full and the
malware instance is flagged as infection if the entire
text of “viral-like” pattern is exactly matched.

Figure 2. Full Pattern of Malware Signature

The second method is capable of optimizing the
computer performance by comparing malware
instance’s code with arbitrary fragments of the
“viral-like” patterns; thus each fragment is
separated by an arbitrary wildcard (‘*’). Wildcard
strings make it possible to skip bytes and to employ
regular expressions.

Figure 3. Fragmented Pattern of Malware Signature

The signature shown in Figure 3 represents the
same virus sample as the earlier pattern signature in
Figure 2. The difference between both of them is
the pattern signature of Figure 3 which uses wild
card regular expression to divide the signature
resulting in two segments. The intention is to
reduce the amount of states needed to be tracked.
As shown in the example, upon a hit of 0B4h,
03Ch, 0BBh, 000h for a malware instance reported;
the appearance of 026h, 0FFh, 01Eh, 084h, 000h is
only possible after the skipping of 8 bytes distance
from the first segment. The value of byte after (*)
wild card is arbitrary; it indicates distance in bytes
between two segments.

Our approach of malware and virus scanner
detection engine comprises the scanning engine

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

264

module and the malware signature database. Both
of the modules work together and are inseparable.
Generally, the design of our signature database is
very volatile. The main goal of this volatility is to
ensure that new signatures can be updated in the
future.

Figure 4. Virus Signature in Malware Signature Database

Figure 4 depicts a sample of virus signatures in
our malware signature database. The database used
seven entities to store the virus_no, ftype, fname,
sig_len, reserved, sig_data, and cure_offset. As
shown in Figure 4, besides virus_no, the rest of the
entity will be defined with a series of prefix
numbering identification. virus_no is the entity that
displays the total number of virus signatures inside
the database. Currently, only 6 malware signatures
have been generated and more signatures will be
added in the future. Consider the fourth group of
virus signature, @004_ftype and @004_fname,
both represent the type of executables file and name
of the malware instance, respectively. eftype_pe
represents PE file format. @004_sig_len specifies
the total length of malware signature. In addition,
malware signatures were stored in the most efficient
Opcode data type (@004_sig_data) rather than
human readable format (for example assembly
language). Our approach of @004_cure_offset will
trigger the scanner to PariteB_388K cure function if
the infection of Virus.Win32.Parite.B was detected.
@004_reserved takes no action and is reserved for
future usage.

5. SYSTEM ARCHITECTURE

System architecture, described with more details
in Figure 5, uses the combination of known packer
removal, static heuristic and emulator for detecting

malware. The scanner is initialized by reading the
information about scanning path directory and
determining the total number of executable files
that needs to be scanned. The Information
Collective observes the intended actions of a
program including file type, file system, file size
and most importantly is determining the entry point
of each executable file. The information will then
be inherent to the static heuristic and emulator
scanner function.

Figure 5. Flowchart describing the overall system

architecture

Both static heuristic and emulator are devised to
analyse any given executable file in a finite time,
during which it must conclude that the program is
benign or not. The maximum time limit for the
scanning engine is important, a particular malware
might not be detected if the allowed time is too
short, which is diametrically opposed to the longer
finite time that will deteriorate the average speed of
the emulator. The idea of maximum allowed
scanning time is to prevent our scanning resources
from exhaustion, and also to avoid the scan to
remain in an infinite loop while analysing a file.

As mentioned earlier, most obfuscated techniques
used by malware authors are from known packers.
Emulator scanner is capable of unpacking
obfuscated executables in memory by executing the
instance code in the virtual buffer. One drawback to
the manner is that code simulation might be too
slow if the decryption loop is complex. Particularly,
when the malware instance uses common packer to

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

265

obscure the malicious portion, code emulation may
be too slow to decrypt the decryption loop to its
core instruction set. The approach of known packer
removal can accelerate the scanning process by
detecting and removing any known packer which
begins at the common entry-point and reveals the
real intention of malicious code instead of
consuming computer time and performance to
emulate and decrypt garbage instructions. Static
heuristic scanner is devised based on an analysis of
file format and instance code fragment by
comparing to virus “pattern”. The word “pattern”
refers to the hexadecimal string in a virus signature.

5.1 SYSTEM ARCHITECTURE

 Known packer unpacking works by attempting
to detect and simulate the decryptor to decrypt
known obfuscation packer used by malware authors
within our pre-defined virtual buffer. A fragment of
obfuscation code is used to be part of the signature
to detect if a binary contains packed-code. When
the obfuscation code is detected, the known
decryption algorithm is executed to deobfuscate the
decryption code from the executable itself within
our virtual environment.These dedicated decryption
routine approaches provide better performance
compared to the classical emulator technique that
execute every instruction in memory.
Unfortunately, our signature database that detects
packer is very limited and needs to be updated in
the future for it to detect packed binary instances.

Figure 6. On the left, example opcode signature of UPX
packer. On the right, a subsequence of order instruction

im comprises partially of the unpacking function of UPX
packer.

The idea of an approach to automate the
unpacking process is to identify a composition of
sets of ordered sequences of instructions that is able
to extract the hidden-code bodies of an instance
malware. Figure 6 shows the overall process of a
known packer unpacking function. Let the tuple I=

{i1, i2, i3, . . . , im} be a set of ordered sequences to
unpack a dedicated pack. As the executable instance
is paused at an instance’s entry point, our scanner
uses a signature database to determine if an
executable file contains packed-code. If a match is
detected, a set of order sequences of unpack
instructions, im is executed in our virtual
environment to clarify the context of an executable
file.

5.2 STATIC HEURISTIC SCANNING

The right side of Figure 7 shows the overall flow
of static heuristic scanning architecture. As
illustrated in the figure, the first component
performs information collective where the intended
actions of Windows binary file can be observed by
the implementation of PE parse. The PE parse
transforms the Portable Executable (PE) [15] binary
file and collects the scanning instruction and
required information including target file
permission, path information and file extension.
The information collective flow consists of 5 steps
as shown on the left side of Figure 7. The
initialization function begins by displaying the virus
detection toolkit information and its scanning file
option. The command line arguments function will
call GetCommandLine Win32 API function [16] to
collect and receive the instruction of scanning
option and determine the instruction action. The
prepare drive path and search for file modules call
GetCurrentDirectory [17], FindFirstFile [18], and
FindNextFile [19] Win32 API functions to collect
information about the scanning target. This includes
scanning path, filename and total number of files.
Lastly, process file will identify the target’s file
size, file permissions and file type or file extension.
The next heuristic scanning component embeds the
matching algorithm used to compare the executable
file to the malicious behaviour signatures. The
executable file either labelled as benign or
malicious is dependent on the result.

Figure 7. Flowchart describing the overall process of

static heuristic scanning

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

266

Heuristic scanning methodology performs in a
manner that uses search and discover operation to
look for certain instructions or commands within a
program that is not found in typical application
programs. To reduce memory consuming due to a
large number of states, a simple displacement gap
pattern is supported in our heuristic scanning
module. It is a full pattern or rule which consists of
a sequence of one or more segments separated by a
gap with arbitrary bytes of length. Like common
class of string matching methods, the scanning
method tracks a finite automaton constructed from
the set of patterns. The tracking reads only one
character in the text per iteration. As shown in
Figure 7, the operation of heuristic scanning will
jump into a scanning loop until scanning process is
completed. The operation proceeds according to the
following steps:

Step 1, Data Signature=’*’x. The process begins
by detection of character asterisk (*) wild cards.
Symbol (x) represents a gap which contains
arbitrary byte values between two segments that
was predefined by antivirus analysts. On the
condition that the scanning pattern’s character is not
equal to character asterisk (*), it will jump to Step 3
to perform the signature matching with the database
signature. On the contrary, if the scanning process
matches the character asterisk (*) wild card, it will
proceed to step 2.

Step 2, Malware Code Offset address+ x bytes.
The scan pointer will move to the next pattern
segment with a predefined length of gap. The
process will proceed to step 3.

Step 3, Signature match. This stage performs
string pattern matching process with database
signature. Upon a hit of signature match reported,
the process will jump to step 4 to prepare for the
next scanning loop. However, if no match is
reported, the heuristic scanning process will stop
and the remaining incomplete scanning target file
will be passed to the emulator module. The
emulator is a safe virtual environment used to
monitor the running code. Details of the emulator
will be explained in the next section.

Step 4, Signature Detection Loop. The scan
pointer will shift to the next character and the
scanning approach will continue by returning to
step 1.

5.3 EMULATION EXECUTION FLOW

Emulation is a dynamic malware analysis
process. It identifies common malicious activities
via emulating the instructions of malware

executable program. With the design of a safe and
isolated architecture set on a host platform, a just-
in-time binary execution could be performed. Our
approach of emulation is to ensure no damage is
done to the host machine; thus, a specific target
platform to simulate the application level
instruction and system call Interface is proposed. To
emulate every instance’s instructions and observe
its execution, the CPU emulation is devised to be
the core of our emulator. The CPU (Control
Processor Unit) [20] is designed as the central part
of machinery. It controls a computer by performing
most of the calculations and the hard work of a
system. Figure 8 illustrates the structural
relationship among the emulator’s components.

Figure 8: The overall Emulation Execution Flow

The emulator engine always begins with the
Disassembler component [21]. The component is
used to parse an instance’s CPU instruction into its
corresponding assembly code and use it to emulate
the instance’s execution inside a safe virtual buffer
environment. Each instruction will be decoded to
fetch the needed instruction type, length and
operands. In order to transform a byte stream of
opcode from a test case into assembly instructions,
raw instructions phase is devised to determine total
bytes of opcode that could be broken down for a
single instruction. As shown in Figure 9, a stream
of opcode is transformed into a list of much smaller,
yet raw and groups of bytes at raw instructions
phase. Each raw instruction is then parsed into a
line of command and numbers of assembly
program.

Figure 9: Phases of Disassembler Process

After the disassembly process, the translated
program should be executed in a safe virtual

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

267

environment. However, emulating a contiguous
bunch of instruction assembly code is
computationally expensive and not efficient in
detecting malware signature. Our approach of
solving the problem is by determining a contiguous
block of code which has a single entry point and a
single exit point at both the beginning and the end
of the block, participate the code into blocks of
instructions and store the entry point of each block
in a table. More precisely, each instruction is
converted into a basic block approach. This way,
execution and signature matching will need to be
performed within each block.

Typically, the task of allocating a virtual
environment requires translating any arbitrary code
of a given program into a design code sequence
which has functionalities equivalent to the original.
This is to ensure that the code could correctly run
on our designed environment without damaging the
host machines. The platform-independent’s
translating code is devised by using an intermediate
language manner; thus, the possible CPU registers
including operators, operand types and
combinations of these would have to support the
inside of the component for basic execution
environment. As far as the CPU registers are
concerned, there are eight general purpose registers
(EAX, EBX, ECX, EDX, EBP, ESP, ESI and EDI)
on a regular basis [22]. Each register also has a
specific purpose, depending on the type of
instruction currently being executed. The EAX
register is commonly used as a default for addition
and multiplication instructions. The ECX register is
commonly used as a counter for looping, the ESP
register is used to point to the last item on the stack
and so forth. There are also special use registers,
which have a particular purpose. The segment
registers (CS, DS, ES, FS, GS, and SS) [22] are
used to describe different segments of memory. The
bits in the EFLAGS registers [22] are used for two
purposes: to represent the outcome of computations
and to control the operation of the CPU.

As mentioned earlier, a virtual environment is
essentially a list of virtual CPU register that can be
called. Thus, all possible operators and operand
types should be ready to be translated using
intermediate language. This can be done by creating
a list of virtual CPU register to perform the
corresponding instructions. To allocate virtual
registers, the current original CPU registers
including original general purpose register and the
EFLAGS registers will be saved at a temporary
allocated memory. This is to ensure that the original

operators and operands are able to transfer back to
the original once the execution is complete.

As soon as the original register is saved, the
defined virtual CPU will transfer to the real CPU
register. The execution of the target sequence will
call the defined virtual CPU without access to the
original register. Every execution is done in this
virtual register instead of the real one; therefore, no
damage will be caused by the execution. In Figure
10, the parameter of the virtual CPU registers,
namely, [regs+000], [regs+004], [regs+008],
[regs+012], [regs+020], [regs+024], and [regs+008]
are stored into the EAX, ECX, EDX, EBX, EBP,
ESI and EDI respectively. The function eventually
calls emulate_buffer function to execute arbitrary
code once the virtual environment is ready.

Figure 10: Translation of CPU register in Virtual

Environment

The stack is typically used to store local
variables, as well as parameters passed in to the
function. Our problem is that the value in the ESP
register may change during the function’s
execution. Referencing values on the stack becomes
rather difficult and complex; therefore, no
alterations will be done for the ESP register in this
function but alterations will be done for the later
executed instruction function. Figure 11 illustrates
the execution of every translated code that is
manipulated by the ESP register. Prior to executing
the arbitrary code instructions in the virtual system,
the current ESP register must be saved onto a
temporary address. This is to ensure the pointer of
the function’s execution can point back to the
original after the execution. The activity that occurs
in this function is to copy the defined virtual ESP
register, which is the virtual address of [regs+016]
to the current value of the stack pointer (ESP).
While the preparation of virtual buffer environment
is ready, the execution of translated of malware
block code can be performed.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

268

Table 1: Feature Analysis for detecting obfuscated virus and malware

Virus / Malware Detection
(√ or X)

Emulation
Detection

Time
(Milliseconds)

Emulation
Detection and Cure

Time
(Milliseconds)

File Size
(KB)

Virus.Win9x.Marburg.b √ 47 63 28
Virus.Win32.Kriz.4029 √ 125 140 470
Virus.Win32.Funlove.40

70 √ 16 18 61

Worm.Win32.QAZ √ 16 17 118
Virus.Win32.Parite.b √ 31 32 338

At the beginning of the execution, the current
address would be at the entry point of an instance
execution. While the scanning and detecting
malware process is finished within the block of
code, the current address will be updated to the
destination pointer’s instruction at the end of the
block. This emulator process will only be
considered to have completed if either a malware
signature is detected or maximum allowed scanning
time for a file has elapsed.

Figure 11: Fragment code of the execution of an arbitrary

code in virtual environment

During execution, the translated code has to
check whether an existing block consists of
malicious code. The virtual buffer of emulator
would be destroyed if any malware signature has
been detected or the maximum allowed time for
analysis time has elapsed. All original register
saved on the stack must be restored before handling
a pointer to conclusion.

6. EXPERIMENTAL ANALYSIS

In this section, we present the experimental
analysis of the malware detection engine. The
heuristic scanner is installed on a fresh VMware
virtual machine of Windows operating system and a
snapshot is taken. After each execution of an

instance executable (either benign or malicious), the
original snapshot will be reverted back to the parent
image. The VMware software is chosen as the test
platform mainly for two reasons: the first is the
capability to revert the Operating System back to a
clean state in case of any malware infection, and the
second is to prevent any infection infecting the real
machine.

6.1 HEURISTIC-BASED DETECTION
RESULTS

The heuristic-based detection software detects
malware based on malicious code behaviour. This is
useful particularly when it is confronted with
sophisticated obfuscating malware. To validate this,
five different species of obfuscation virus and
malware from VX Heaven [23] have been collected.
We tested our approach on the following malware:
Virus.Win9x.Marburg, Virus.Win32.Kriz,
Virus.Win32.Funlove, Worm.Win32.QAZ and
Virus.Win32.Parite.b. The detailed results are
presented in Table 1 (√ indicates detection, X
indicates failure to detect).

6.2 TESTING ON NEW VARIANTS

Figure 12: Execution Time Analysis

In this section, the performance result of our
malware detection engine is reported. The required
time to classify an instance as benign or malicious
is tested. Figure 12 shows the execution time

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

269

analysis graph where the x-axis represents the
binary file size and the y-axis represents the
execution time in milliseconds. As illustrated in the
figure, for file sizes smaller than 1M, the execution
time is almost constant. For file sizes bigger than
1M, the scanner took more time to finish its
operation.

To test the effectiveness of the malware detector,
we gathered 100 Windows binary programs from
our fresh installation of Windows operating system
and each file with the average size of 5KB. The
experiment was conducted by incrementally
choosing higher number of executable sample such
as 10, 20, 30 and so on up to 100. The evaluation
results are presented in Figure 13. The scanner took
more time to finish its operation as the number of
files increased.

Figure 13: Execution Time Analysis

7. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an approach of a
generic malware detection engine based on the
integration of known packer removal and both static
heuristic and emulator techniques. The proposed
scheme provides implicit robustness against most
protection technique implemented by malware
authors especially repacked virus in the purpose of
evading the detection of antivirus. The important
feature of our detection engine is that it can be both
statically and dynamically detection based. We
performed experiments to test our scanning engine
on an extensive executable dataset. The results of
our experiment show that the scanning is able to
perform well and the detection accuracy is different
depending on malware type. However, the
limitation of this system is the lack of malware
signature in our database. This can be overcome by
creating signatures in our engine. However, this
will require human expertise, is time consuming
and most importantly, it is a continuous task.

REFRENCES:

[1] E.S.Adrian, “Defeating Polymorphism Beyond
Emulation”, Virus Bulletin Conference 2005,
Dublin, Ireland, October 5-7, 2005, pp.40-48.

[2] M. Morgenstern, and T. Brosch, “Runtime
Packer: The Hidden Problem”, Black Hat USA
2006, Las Vegas, USA, July 29 – August 3,
2006, pp.40-48,
http://www.blackhat.com/presentations/bh-usa-
06 BH-US-o6-Morgenstern.pdf.

[3] M.G. Kang, P. Poosankam, and H. Yin,
“Renovo: A Hidden Code Extractor for Packed
Executables”, Proceeding of the 2007 ACM
Workshop on Recurring Malcode, NY, USA,
October 29-November 02, 2007, pp.46-53.

[4] P. Royal, M. Halpin, D. Dagon, R. Edmonds and
W. Lee, “PolyUnpack: Automating the Hidden-
Code Exteaction of Unpack-Executing
Malware”, Proceeding of the 22nd Annual
Computer Security Applications Conference,
DC, USA, 2006, pp.269-278.

[5] A.H. Sung, “Static Analyzer of Vicious
Executables (SAVE)”, Computer Security
Applications Conference, Socorro, NM, USA,
December 6-10, 2004, pp.326-334.

[6] Clam AntiVirus Website [online]. Available:
http://www.clamav.net/lang/en/

 [7] J Ho., and G. Lemieux “PERG: A Scalable
Pattern-Matching Accelerator”. CMC
Microsystems and Nanoelectronics Research
Conference, Ottawa 2008, pp. 29-32.

[8] J. M. Aquilina, E. Casey, and C H. Malin.
Malware Forensics: Investigating and
Analyzing Malicious Code. Syngress, USA,
2008. pp. 283-378

[9] W. Wong, and M. S.tamp, “Hunting for
Metamorphic Engines”, Journal in Computer
Virology 2(3), 2006, pp. 211-229

[10] J. Borello, and L. Mé, “Code Obfuscation
Techniques for Metamorphic Viruses”, Journal
in Computer Virology, 4(3), 2008, pp. 211-220

[11] B. Bayoglu, and I. Sogukpinar, “Polymorphic
Worm Detection Using Token-Pair Signatures”,
Proceedings of the 4th International Workshop
on Security, Privacy and Trust in Pervasive and
Ubiquitous Computing, 2008. pp. 7-12

[12] Ultimate Packer for eXecutables,
http://upx.sourceforge.net/

[13] ASPACT, http://www.aspack.com/
[14] WWWPACK,

http://www.wwpack32.venti.pl/wwpack.html

http://www.jatit.org/
http://www.blackhat.com/presentations/bh-usa-06%20BH-US-o6-Morgenstern.pdf
http://www.blackhat.com/presentations/bh-usa-06%20BH-US-o6-Morgenstern.pdf
http://www.springerlink.com/content/?Author=Ludovic+M%c3%a9

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

270

[15] M. Pietrek, “An In-Depth Look Into the
Win32 Portable Executable File Format”,
MSDN Magazine, February 2002

[16] Microsoft MSDN,
http://msdn.microsoft.com/en-
us/library/windows/desktop/ms683156(v=vs.85)
.aspx

[17] Windows, Dev Center – Desktop,
http://msdn.microsoft.com/en-
us/library/windows/desktop/aa364934(v=vs.85).
aspx

[18] Windows, Dev Center – Desktop,
http://msdn.microsoft.com/en-
us/library/windows/desktop/aa364418(v=vs.85).
aspx

[19] Windows, Dev Center – Desktop,
http://msdn.microsoft.com/en-
us/library/windows/desktop/aa364428(v=vs.85).
aspx

[20] J. L. Hennessy, and D. A.Patterson,
“Computer Architecture: A Quantitative
Approach, Third Edition”, Morgan Kaufmann
Publishers, San Francisco, USA, 2003. pp. 678-
778

[21] B. Schwarz, S. Debray, and G. Andrews,
“Disassembly of Executable Code Revisited”.
Proceeding of 9th Working Conference on
Reverse Engineering (WCRE), 2002. pp. 45–54.

[22] R. B. Blunden, “The Rootkit Arsenal: Escape
and Evasion in the Dark Corners of the
System”, Wordware, USA, 2009. pp 54-56.

[23] VX heavens, http:vx.netlux.org
[24] M. D. Preda, M. Christodorescu, S. Jha, and S.

Debray, “A Semantics-Based Approach to
Malware Detection”, 34th ACM SIGPLAN-
SIGACT Symposium on Principles of
Programming Languages (POPL 2007), Nice,
France, January, 2007. pp.377-388.

[25] F. Guo, P. Ferrie, and T. Chiueh, “A Study of
the Packer Problem and its Solutions”, 11th
Symposium on Recent Advances in Intrusion
Detection (RAID), Boston, MA, September
2008. pp. 98-115.

[26] M. O. Myreen, “Verified Just-In-Time
Compiler on x86”, Proceedings of the 37th
annual ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, 45(1),
2010. pp. 107-118

[27] J. Canto, M. Dacier, and E. Kirda, and C. Leita,
“Large Scale Malware Collection: Lessons
Learned”. IEEE SRDS Workshop on Sharing
Field Data and Experiment Measurements on
Resilience of Distributed Computing Systems,
Naples, Italy, October 2008.

http://www.jatit.org/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683156(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683156(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683156(v=vs.85).aspx

	1LEE LING CHUAN, 2MAHAMOD ISMAIL, 3CHAN LEE YEE, 4KASMIRAN JUMARI

