
Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

237

COMMUNICATION AMONG HARDWARE AND SOFTWARE
ENGINEERS BY TECHNICAL NOTATIONS

1ALI MOHAMMADALIZADEH GHAZIJAHANI, 2RODZIAH ATAN, 3NOR FAZLIDA M. SANI

1Faculty of computer science and IT, University Putra Malaysia, Kuala Lumpur, Malaysia
2 Assoc. Prof., Faculty of computer science and IT, University Putra Malaysia, Kuala Lumpur, Malaysia

3Senior Lecturer, Faculty of computer science and IT, University Putra Malaysia, Kuala Lumpur, Malaysia

E-mail: 1a.alizadehgh@gmail.com, 2 rodziah@fsktm.upm.edu.my, 3 fazlida@fsktm.upm.edu.my

ABSTRACT

Hardware and software engineers need to cooperate with each other in developing and building
hardware/software systems. Any cooperation among engineers requires a convenient and efficient
communication. There is a gap between hardware and software engineers that makes the communication
difficult among them. They have difficulty in understanding each other’s language because they are
different in the field of study and profession. If good communication is not established between these two
groups, then hardware/software systems will encounter tremendous number of serious problems and defects
which may increase the expenses of system in terms of time and resources. Hardware and software
engineers need communication mostly for developing hardware-software interfaces and for clarification of
type and format of the data that will be transferred among hardware and software components. In this
paper, three different notations are proposed to help software and hardware engineers communicate with
each other. By using these notations which are understandable by hardware and software engineers, the
requirements relating to the data types and data formats will be depicted in uniform, detailed and accurate
forms of documents.

Keywords: Engineers Communication, Communication Notation, Requirements, HW/SW Systems,
Hardware/Software Engineers

1. INTRODUCTION

Communication among software and hardware
engineers has consistently been one of the main
challenges in development of HW/SW
(Hardware/Software) systems. If engineers cannot
communicate with each other efficiently then the
HW/SW systems will experience serious problems
after development that may force HW/SW systems
to be changed. In addition, the defects rate of them
will be increased and the system’s reliability,
consistency and even functionality will be
breached. In this situation our software may
experience failure during its operational period [2].
Any changes of software or hardware components
very often entail changes in the hardware-software
interface. Such a modification may be a redesign of
a component, changing its implementation from
software to hardware or vice versa [12]. In all these
conditions, the expenses of system development
will increase in terms of time and resources. It is
widely recognized that communication problems
are a major factor in the delay and failure of

software projects [6]. Considering this situation,
using some unified and standard common notations
that could be understood by both software and
hardware engineers will help them to overcome
some of these difficulties.

HW/SW systems are those systems that contain
some software and some application specific
hardware components. These components work
together to fulfill a specific responsibility [12]. In
these systems, information (data or control
information) are continuously exchanged between
hardware and software components. Determination
of type, format and specification of the exchanged
data comprises an important part of the technical
communication between hardware and software
engineers.

Hardware and software engineers communicate
each other mostly during the requirements phase of
developing HW/SW systems. This phase is
considered the most important phase for the
communication between software and hardware
engineers because concerns and challenges of these

http://www.jatit.org/
mailto:1a.alizadehgh@gmail.com
mailto:rodziah@fsktm.upm.edu.my
mailto:fazlida@fsktm.upm.edu.my

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

238

two groups are shared during this phase.
Furthermore, the data types, data formats,
input/outputs, constraints, Read/Write commands
and even control commands are argued and
specified in detail during the requirements phase.

Software engineers have access to a great
number of methods and methodologies (like UML)
to model their development process and to
understand each other’s language [1]. Hardware
engineers also use models and diagrams to
communicate each other in their projects, but much
less formal. A big question now arises that if
hardware engineers want to communicate software
engineers or vice versa, what are the methods and
methodologies that they can use them to make their
communication formal and efficient?

This research has been initialized by observing the
actual communication weaknesses and problems in
a specific workplace. These problems are rarely
considered to be researched and is proved by little
literature discussions regarding the notations.

To be more specific, the problem statements are
divided as follows:
 There is an absence of notations by which

hardware and software engineers communicate
and share their constraints and concerns in
developing SW/HW systems in a uniform
manner.

 Sometimes miscommunications happen
between hardware and software engineers
during requirements phase of HW/SW systems.

 Understanding and clarification of some parts
of the requirements like common interfaces,
interaction data types and data formats by
hardware and software engineers take
considerable time of system development.

Therefore, three objectives are set for this research:

• To propose and define notations that will help
hardware and software engineers to
communicate each other in order to clarify and
specify their interaction data types and data
formats.

• To develop a tool that applies the proposed
notations on a communication platform.

• To analyze the acceptance attributes (easiness
and accuracy) of the proposed notations and
the implemented tool using experts’ validation.

2. RELATED WORK

There are plenty of works in requirements
notations in different areas and the use of them in
capturing more accurate information in
requirements phase. International
Telecommunication Union (ICU) proposed User
Requirements Notation (URN) as a standard for the
representation of requirements in
telecommunication systems and services and in
software systems in general [4]. It is the first and
currently only standardization effort that combines
goal and scenario models in one language [7]. The
URN consists of two components, GRL and UCM.
The Goal-oriented Requirement Language (GRL) is
used to describe business goals, non-functional
requirements, alternatives, and rationales, whereas
Use Case Map (UCM) enables the description of
functional requirements as causal scenarios [5]. The
point with this approach is that it does not cover
HW/SW common concerns and the ways that they
technically communicate each other, rather,
connects requirements to the business objectives.

There are also many studies and works
concentrated on the co-design of HW/SW systems.
These studies which have been accomplished
mostly by non-software engineers, have
concentrated on how hardware and software
components communicate each other in embedded
systems. Co-design is a concurrent and cooperative
design approach that considers both hardware and
software options and includes as a fundamental
component the capability to explore
hardware/software trade-offs. This capability leads
to more efficient implementations and improves
overall system performance, reliability and cost
effectiveness. In this approach problems can be
detected and changes can be applied earlier in the
design process [8].

Since co-design concept has been presented,
many methodologies have been proposed for
different systems especially for embedded systems.
Lecomte, etc. (2010) proposed a co-design
methodology based on model driven architecture
for real time embedded systems [9]. Also, Grabbe,
etc. (2005) introduced an interface and
communication based design of embedded systems
and showed how the communication between
hardware and software components should be
established to make the design and implementation
better [12]. Hardware-software co-design is a recent
research area growing mostly from hardware
synthesis and mainly focused to facilitate the design
of small embedded systems. Co-design

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

239

methodologies are intended to give relief to
designers struggling with provisional divisions of
hardware and software components, and the
attendant integration problems.

None of these studies are concentrated on
communication among hardware and software
engineers and also no attempt is taken in this regard
to cover the communication among humans in
building HW/SW systems so far.

Currently used methods for communication

Each HW/SW development environment has its
own specific method for communication among
hardware and software engineers. Among these
methods the most reasonable and practical method
is the use of PRDs (Project Requirements
Document). PRD document is prepared by
cooperation of both software and hardware
engineers and, as its name suggests, includes the
detailed requirements of project. In this document
all software and hardware engineer’s detailed
requirements including interfaces and interaction
data types and formats can be found. This
document can be updated at any stage of the project
life cycle and any change to it, is done in presence
of both hardware and software engineers. Here is a
sample part of a PRD document:
“Format of last row of data in memory to be exchanged between hardware and
software:

Byte 15-14 Byte
13-12

Byte
11

Byte 10-9 Byte
8-4

Byte 3-0

Signal In
Frequency

Flags Extra
Flags

Encountered
Error

Start
Time

Duration

Extra Flags (Byte 11):
 Bit4-0: Current State
 Bit7-5: start time
Flags (Byte 13-12):
 Bit0 = 0
 Bit1 = 1: this means this is last row of Idle Sequence
 Bit2: Idle Direction
 0: HW to SW
 1: SW to HW
 Bit4-3: Don’t care
 Bit5: Symbols Format

0: Decimal format
1: Hex format

 Bit7-6: Device speed
 00: 8.5 Gbps
 01: 10.0 Gbps
 10: 12.0 Gbps
 11: Reserved
 Bit8: Reserved
 Bit9: Removed/Inserted Number (bit 3)
 Bit10: Connection Closed
 Bit13-11: Removed
 Bit14: Speed negotiation flag.
 Bit15: ‘1’ means the Idle Sequence belongs to a multiplexed link”

3. PROPOSED NOTATIONS

Specifying the format, order, length and type of
the data which are exchanged between hardware
and software components comprises the most
important and time consuming part of the
communication between hardware and software

engineers. This is mostly done for hardware
programming where a specific kind of data is
expected to be written into a segment or memory of
the hardware. This clarification is also needed in
reading the data from hardware and it is essential to
know where and how the data should be read from
the hardware. The exchanged data can be a part of
sampling memory, raw data, control bits, frames or
settings. To clarify these kinds of data, three
important notations have been proposed to be used
by software and hardware engineers. The first
notation is Small Data Format (less than a
DWORD); the second one is Big Data Format
(bigger than a DWORD) and the third one is
Memory Format notation. Below is the description
and attributes of these notations:

3.1 Notation 1(Small Data Format)

This notation is used to show the data which is
equal or less than a DWORD (4 Bytes). Here is the
attributes of this notation: (Figure 1)

Name: Small Data Format

Shape: Generally looks like Figure 1, however it
depends on the number of columns (maximum
number of columns is 4 and minimum 1). The
details and descriptions of each column (BYTE or
WORD) will be showed by the use of arrows and
braces.

Figure 1. Small Data Format

Number of columns: This attribute shows how
many columns will be in the notation. The
maximum number of columns is 4 because we are
able to show only 4 bytes or less by this notation.
Note that, a column size could be 1, 2, 3 or 4 bytes.

Column attributes:

Column Length: Columns length is between 8
and 32 bits. (1 and 4 bytes)

Bits range: This attribute specifies the range of
bits for a specific description.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

240

Bits Description: Bits description will be
showed by left braces. They describe what the
exact use of specified bits is.

3.2 Notation 2 (Big Data Format)

This notation is used to describe the data which
are bigger than DWORD size (4 bytes). Here is the
list of its attributes (Figure 2):

Figure 2. Big Data Format

Name: Big Data Format

Shape: The shape of Big Data Format notation
looks like the shape in Fig. 3. It is too similar to an
ordinary table whose rows are DWORDS and
columns are the parts of that specific DWORD.

Number of DWORDS (Rows): This attribute
specifies the number of DWORDS that makes the
data and it can be from 1 to any number (depending
on the size of data). In fact rows number could be
calculated by dividing the size of data to DWORD
size (4).

Row attributes:
Number of columns: This attribute specifies the
number of columns for each row. Each row can
have maximum 4 and minimum 1 column(s).

Row Name: Row names have DWORD string
plus the number of the Row by default. But it
could be changed when software or hardware
engineer draw this notation.

Column attributes:
Column Size: Specify the number of bytes
for each column

Column Name: This attribute specifies the
name of each column.

Byte Order: This attribute determines the
order of data for the notation. (Left and
Right)

Notation 2 (Big Data Format) is capable of
describing any kind of data at any size. This
notation is not able to show the columns
information in bits and even unable to show the bits
descriptions. However, engineers can use the
benefits of notation 1 (Small data format) in
depicting their detailed information. This is
possible by using notation 1 to show one, two or
even more columns of notation 2. In this way, the
columns that need more clarification and
specification in notation 2 will be separately
described by the use of notation 1.

3.3 Notation 3 (Memory Format)

This notation is used to show the format and the
contents of the hardware memory. The length of
memory column is DWORD. (4 Bytes)

Name: Memory Format

Shape: Generally it looks like Figure 3 in next
page. But the memory addresses and memory data
names will be different.

Memory Address line: shows the real addresses of
the memory that should be filled by
Hardware/Software engineers.

Memory Size: The most important attribute of this
notation is considered memory size. By specifying
memory size, memory address ranges and its
minimum and maximum values will be considered.
Row attributes:

Row Ranges: This attribute specifies the memory
range for a specific memory data. Based on this
attribute the memory address line will be updated
and will be showed. (For example 0000H-FFFH)

Row name: This attribute is the name that should
be specified for a memory data. This attribute is
the identifier for each row of memory column.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

241

Figure 3: Memory Format

4. THE EXPERIMENTAL STUDY

To validate the proposed notations and to find
out whether they are understandable by hardware
and software engineers, an experimental study was
conducted. A chain of related tasks were taken to
conduct the experimental study. First of all, a
framework was designed and implemented to
prepare the proposed notations and to make them
accessible to draw in models. This framework is
called Communication Notation Designer (CND).
Second, a set of case studies were prepared by
defining a sample system and describing all
available ways of communication (including the
new proposed notations) between hardware and
software engineers. Third, a questionnaire was
designed and prepared to cover all questions
regarding the new way of communication and also
the CND software. And finally, the questionnaires
were filled by experts. Here is a description of all
these tasks:

4.1 Tool development (CND Software)

To develop CND (Communication Notation
Designer) software, different frameworks and
environments were studied and finally Eclipse
environment and Java language were selected. GEF
(Graphical Editing Framework) framework was

also used to design and make the notations
accessible by users.

CND is developed to give hardware and
software engineers the ability of drawing their
desired notations and changing the notation’s
attributes. Drawing of notations is simply possible
by choosing the desired notation icon from left side
bar and putting it in the main page. Figure 4 shows
the left side bar of the CND software. By putting
the icon in the main page, the notation will be
drawn by its default values.

Figure 4: The notations selection bar

Changing of attributes is possible via property

dialogs which are specific for each notation. In
these dialogs all necessary tables, buttons and edit
boxes are considered to satisfy the user the best.
Figure 5 shows the property dialog of a sample Big
Data Format notation. The other two notation’s
property dialogs are almost similar to this dialog
with some different tables and arrangements.

Figure 5: The property dialog of Big Data Format notation

The CND software also gives the user the

ability of saving the notations by loading them into
a binary file or printing them on the paper. In
addition, it has lots of different facilities to help
engineers have a better view to the drawn notations,
retrieve saved notations and edit them. These entire
things have been accessible through the menus and
toolbars of the CND software.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

242

4.2 Preparing case studies and the questionnaire

This research needs case studies to show how
the proposed notations are prepared in real world,
how they are used for communication in developing
real HW/SW systems and how they are different
from the other (available) ways which are used in
communication between hardware and software
engineers. These case studies attempt to understand
the validity of data format notations and CND
software through the participants’ interpretation of
their context. There are three case studies (each for
one notation) which have been defined on a sample
HW/SW system. Each case study shows and
describes two ways of communication
(communication by PRD and notation based
communication) between hardware and software
engineers. These case studies are prepared in the
context and level that are easily understood by the
participants. The nature of this research dictates
that the experiment should be conducted in the
environment that software and hardware engineers
are involved in common projects and they
communicate each other continuously during their
daily jobs. Therefore, these engineers were
completely familiar with the nature of the sample
HW/SW system in the case studies.

Apart from case studies, questionnaires are
required to measure the understadability of the
proposed notations and the acceptance of the tool
from the viewpoint of the people who are dealing
with HW/SW systems. In these questionnaires all
questions regarding the notations and CND
software are covered and the participants are
allowed to give their extra opinions and
recommendations.

4.3 Do The Experiment

To do the experiment, there were two groups of
respondents, software engineers and hardware
engineers. As mentioned earlier, they worked in
HW/SW systems development domain and
communicated their software/hardware counterparts
daily. For this experiment 10 persons from each
group were asked to participate in the survey.
Among these 20 engineers, there were 4 system
analysts and 9 designers and the rest were
developers. All hardware engineers and 4 of
software engineers had completed their masters in
science and the rest had their bachelors’ degree. 5
and 11 engineers had at least 10 years and 5-10
years of experience respectively and the rest had 5
years of experience or less.

All participants were given enough time to get
familiar with CND software as well as the notations

and their definitions. Then any of case studies were
described to all participants and the old and new
ways of communication were depicted to them.
Then they were asked to draw the mentioned
notations in case studies in CND software and
make them ready as had been described in case
studies. This was done to make sure that they had
learned how to work with CND software and they
had gained enough information about the
differences between the old way of communication
and the notation based technical communication.
After this small session of teaching the
questionnaires were given to them and they were
asked to fill the questionnaires.

5. RESULTS AND ANALYSIS

The experiment was conducted to validate the
proposed notations and to see whether the CND is
applicable to the communication between hardware
and software engineers or not. The results generally
showed that participants are happy using notation-
based technical communication and they are
satisfied using the CND software and its facilities.
There were two groups of questions. The questions
which should be answered by choosing a number
between 1 and 10 and the questions which should
be answered by stating agree, strongly agree,
disagree, strongly disagree or neutral.

Results showed that about 70% of participants
(14 engineers) strongly agreed or agreed that the
proposed notations are easier and faster than PRD
documents to specify system interaction data
formats and data types. 8 of them were software
and the rest were hardware engineers. Only 5% of
participants disagreed with the statement and the
rest were neutral.

Almost all participants agreed that doing
changes on CND diagrams is more suitable and
easier than changing the PRD documents. Only one
engineer was neutral. They also agreed that CND
diagrams need less reworking than PRD
documents.

40% and 20% of participants agreed and
strongly agreed that the number of
misunderstandings happen in communication with
the proposed notations is less than PRD documents.
30% of participants were neutral and 10% of them
disagreed with the statement.

Almost all participants strongly agreed or
agreed that the proposed notations are more
accurate than PRD documents in specifying
interaction data formats and data types. Only two

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

243

software engineers were neutral about this
statement.

Figure 6 shows the level of understandability of
the proposed notations for hardware and software
engineers. As you can see in the chart all engineers
have understandability equal or higher than 5. The
average level of understandability for our
respondents is 7.2 (from 10). This average shows
that engineers have acceptable and reasonable level
of understanding of the proposed notations.

0

2

4

6

1 3 5 7 9

N
um

be
r o

f e
ng

in
ee

rs

Level of understandability

HW Eng.

SW Eng.

Figure 6. Level of understandability of the proposed notations

The respondents were also asked about the
easiness of preparing desired notations by CND,
changing/editing previously saved notation’s
properties and saving/loading the diagrams (by
giving a number between 1 and 10). The average
rates of responses for these questions were 7.5, 8
and 6.9 respectively.

6. CONCLUSION AND FUTURE WORK

In this study we proposed and presented three
different notations which can be understood by both
hardware and software engineers. These notations
will help both engineer groups to communicate
each other in order to clarify and specify their
interaction data constraints including data types and
data formats. In addition, the interaction data
constraints will be able to be presented in written
way in PRDs by the use of these notations rather
than being mentioned oral or by different formats.
Furthermore, by using these notations the
clarification of interaction data will be specified in
detail, during requirements stage rather than
postponing them to the implementation stage of
building software and hardware.

Since the notations have been designed and
presented for HW/SW systems domains, these
results and conclusions are only applicable to the
HW/SW systems environments and to the software
and hardware engineers who are communicating
each other in developing these kinds of systems.

However, the nature of the proposed notations
allows the engineers to use them at any
environment to model and depict any kind of data
at any size.

For future work we would like to suggest other
perspectives of the communication among
hardware and software engineers to be studied and
researched. In this research we only focused on
interaction data formats and data types notations.
These notations can be increased in number and
type by looking at other communication parameters
and items in or order to ease it as much as possible.

REFRENCES:

[1] M. Bjorkander and C. Kobryn, “Architecting
system with UML 2.0”, IEEE Computer
Society, Vol. 20, No. 4, pp. 57-61, 2003

[2] K. Saleh and A. Al-Zarouni, “Capturing non
functional software requirements using the
user requirements notation”, In proceedings of
2004 international research conference on
innovation in information technology, pp.222-
230, 2004

[3] B.D. Theelen, O. Florescu, M.C.W. Geilen,
J.Huang, P.H.A van der Putten and J.P.M
Voeten, “Software/Hardware engineering with
the parallel object-oriented specification
language”, In proceedings of the 5th
IEEE/ACM International Conference on
Formal Methods and Models for Codesign.
Washington DC. USA, pp. 139-148, 2007

[4] International Telecommunication Union, “User
requirements notation (URN) – Language
requirements and framework”, Geneva,
Switzerland, 2003.

[5] D. Amyot, “Introduction to the user
requirements notation: learning by example”,
Computer networks: The International Journal
of Computer and Telecommunications
Networking, Vol. 42, No. 3, pp. 285-301,
Ottawa, Canada, 2003

[6] A. Al-Rawas and S. Easterbrook,
“Communication problems in requirements
engineering: A field study”, In proceedings of
First Westminster Conference on Professional
Awareness in Software Engineering, Royal
Society, London, Feb. 1996

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31 August 2012. Vol. 42 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

[7] G. Mussbacher, “Aspect-Oriented user
requirements notation: aspect in goal and
scenario models”, Lecture Notes in Computer
Science, Vol. 5002/2008, Berlin Heidelberg,
pp.305-316, 2008

[8] S. Kumar, J. H. Aylor, B.W. Johnson and W. A.
Wulf, “A framework for hardware/software
co-design”, IEEE computer Society, Vol. 26,
No. 12, pp. 39-45, Dec 1993

[9] S. Lecomte, S. Guillouard, C. Moy, P. Leray
and P. Soulard, “A co-design methodology
based on model driven architecture for real
time embedded systems”, Mathematical and
Computer Modelling, Vol. 53, No. 3-4, pp.
471-484, Feb 2011

[10] P.H. Chou, R.B. Ortega and G. Borriello,”The
Chinook hardware/software co-synthesis
System”, In proceeding of the 8th international
symposium on system synthesis. New York,
USA, 1995

[11] A. D. Andrade, “Interpretive research aiming at
teory building: adopting and adopting the case
study desing”, The Qualitative Report, Vol.
14, No. 1, pp. 42-60, Auckland, New Zealand,
March 2009

[12] C. Grabbe, F. Appenheimer and T. Schubert,
“Requirements on hardware /software
communication design based on abstract
communication models”, unpublished

http://www.jatit.org/

	P1PALI MOHAMMADALIZADEH GHAZIJAHANI, P2PRODZIAH ATAN, P3PNOR FAZLIDA M. SANI
	1. INTRODUCTION
	2. RELATED WORK
	Currently used methods for communication

	3. PROPOSED NOTATIONS
	3.1 Notation 1(Small Data Format)
	3.2 Notation 2 (Big Data Format)
	3.3 Notation 3 (Memory Format)

	4. THE EXPERIMENTAL STUDY
	4.1 Tool development (CND Software)
	4.2 Preparing case studies and the questionnaire
	4.3 Do The Experiment

	5. RESULTS AND ANALYSIS
	6. CONCLUSION AND FUTURE WORK

