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ABSTRACT 

 
The insulation condition monitoring of a power transformer has an important role for insulating materials 
which are subjected to extensive breakdown stress. In this study, a test setup has been constructed in order 
to simulate real world breakdown characteristics of transformerboards which are widely used as the 
insulating material. During the service life transformerboards may display undesired surface discharge 
damage due to increased rated voltages, which reduces the lifetime of transformerboards. The probabilistic 
neural network is used to detect the surface degradation of a transformerboard by analyzing electrical and 
ultrasound discharge data obtained from the test setup. The principle component analysis is employed to 
eliminate the messy matrix and vector calculations of the probabilistic neural network operations. Results 
of the classification procedure are given. 
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1. INTRODUCTION  

 
The transformers together with generators are the 

major electrical system components and switchgear 
[1]. The operational reliability of a transformer 
mostly depends on the insulation system. The trend 
in the transformer insulation technology has been 
characterized by a continuous increase in the rated 
powers and voltages of power systems [2].  

The damage observed on the transformerboards 
in service may cause malfunction or paralysis of an 
entire power system. In order to eliminate 
unexpected discharge patterns on the 
transformerboard an early failure detection method 
is proposed. There are a variety of traditional 
statistical classification algorithms in literature.  
Probabilistic neural networks (PNN) have similar 
beneficial properties compared to the other 
classification methods, such as simple structure, fast 
convergence and training and also rapid converge to 
Bayes optimal solution. However, PNN has some 
advantages in the sense of computational power and 
hence can tolerate outlier measurement values. 
There is neither iteration nor computation of 
weights in the PNN structure. In this study, PNN is 
used as the failure detection method of the 
monitoring system. 

In general, PNN based algorithms have been used 
for many aspects of a variety of problems such as 
pattern classification, speaker identification 
purpose, and medical diagnosis systems [4-7].  In 
addition to PNN, PCA technique is also effectively 
employed to remove redundant information from 
the representative training set and the test set and 
get over the expensive higher dimension matrix 
computations. 

The purpose of the test rig, used during the 
experiments, is to reproduce surface and sub-
surface discharges discovered in transformerboards 
in active service. It is expected that such discharges 
may occur over time but may not be visible to the 
naked eye. So an effective detection method for 
discharges is required. Discharges within liquids 
can be detected as current pulses in a resistor placed 
in series with a discharging gap using oscilloscope. 
Also as an alternative a piezo-electric acoustic 
detector has been used to gather ultrasonic sounds 
during discharge on the transformerboard.  

This paper is organized as follows. In section 
two, the test setup of the transformerboard 
degradation process is described. The next section 
provides the probabilistic neural network structure 
for the method and principle component analysis 
technique. Section four presents the test and 
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classification results, and finally the conclusion is 
provided in section five. 

2. TEST SETUP 

 
Transformerboards may display unexpected 

internal and surface damage in their service life. A 
test rig has been constructed to reproduce these 
damages on a short time scale in the laboratory. 
The monitoring system analyses the discharge 
signal data in order to define the degradation level 
and early failure elimination [8]. All the boards 
used during the tests were cut into pieces with a 
dimension of 300*300*4mm and they are initially 
dried out and then soaked with oil under vacuum 
[3].  

 

 
Fig.1. The test setup for transformerboard 

 
A small and symmetrical model was used to 

simulate discharges observed in real transformers. 
In the model (Figure 1) a transformerboard was 
placed in a gap (5-400mm) between earthed plane 
and high-voltage electrode. In order to increase 
symmetry and electrode stresses, spherical 
electrode (representing coil) was used.  

Applying 50kV voltage to the test cell produces 
stresses similar to those encountered full-scale 
380kV transformer. Unexpected discharges and 
degradations on the boards are increased by raising 
the output voltage of the transformer up to %160. 
To simulate the degradation on the 
transformerboard 50kV, 60kV, 70kV and 80kV 
electrical stresses were applied to the test cell 
respectively. 

The test cell was designed to withstand 100kV 
rms. applied voltage and contains transformer oil. 
The 100kV single phase H.V. transformer feeds the 
test cell spherical electrode via a 5MΩ high voltage 
(HV) resistor in order to limit the excessive current 
flow during the breakdown. 

Surface and subsurface damage marks observed 
on the transformerboards are usually indicated by 
black spots. The most effective detection method of 

degradation on the boards seems continuous 
monitoring of discharge signal. In the test setup 
current pulse signal data (occurring on the 100Ω 
resistor) and also acoustic noise signal data 
(detected by using a piezo-electric transducer) were 
analyzed via a high speed oscilloscope.  

3. PROBABILISTIC NEURAL NETWORK 

 

In an electrical voltage monitoring systems, the 
imposed voltage levels can be determined and 
monitored by inspecting the distinctive features of 
breakdown patterns of the power system 
components, and also employing some efficient 
techniques such as the PNN.  Donald Specht 
presented PNN as a kind of radial basis network in 
1988 and since that time PNNs has been widely 
used for classification problems adequately [9]. 
PNN is based on Bayes decision rule and it uses 
Gaussian Parzen windows to yield outputs with 
Bayes posterior probabilities. Basically, three layers 
of PNN are given in Figure 2. The first layer 
determines the distances from the input vector to 
the training vectors. The second layer which is 
connected to the input layer sums all contributions 
for each class of inputs to find the vector of 
probabilities. The sum is scaled in this layer. The 
probability volume under the sum function is unity 
so that the sum forms a probability density function 
(pdf). The third layer is the last layer which is the 
competitive layer and chooses the maximum of the 
probabilities which are produced on the output of 
the second layer. Finally, the third layer produces a 
zero value for each class except for the winning 
class which has the maximum probability and at 
last has one value.  

 
Fig. 2. Probabilistic neural network model 



       Journal of Theoretical and Applied Information Technology
15  August 2012. Vol. 42 No.1

                                                             2005 - 2012 JATIT & LLS. All rights reserved.                                                                                                                                      
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
3 
 

The training data and the test data have been 
obtained by conducting the laboratory experiments 
for the proposed method. Electrical discharge 
signals and ultrasound discharge signals which 
cause of the degradation of the power system 
components have been recorded. Since for the 
selected gap 50kV did not cause considerable 
discharges, there are three voltage value classes of 
60, 70 and 80 kV to be distinguished. The feature 
extraction step is applied to the raw data which 
have been provided by virtue of having some 
experiments. The electrical discharge signals 
transformed into feature vectors considering nine 
types of especially statistical characteristics. The 
feature extraction stage is followed by the PCA 
procedure to eliminate the redundant data and also 
to transform the possibly correlated variables into 
the uncorrelated variables namely principal 
components. PCA is a versatile tool for analyzing 
the obtained data, hence data be compressed by 
reducing the number of vector dimensions, without 
the expense of much loss of information. The 
decrease in dimension provides less computational 
load for matrix and vector calculations for the PNN. 
PCA technique has some advantageous properties 
based on the underlying mathematical foundation 
for the PNN procedure and pre-processing the 
feature vectors of the PNN. 

Before Calculations the input feature vectors are 
first normalized so that they have zero mean and 
unity variance.  The eigenvectors and eigenvalues 
of the covariance matrix are calculated after having 
the covariance matrix. The eigenvector with the 
highest eigenvalue is the principle component of 
the feature matrix. The eigenvalues are ordered in a 
decreasing order so, the first p components can be 
chosen from the whole covariance matrix. 

If the observed signal matrix is defined by 
s=[s1,s2,….,sk]T where  K is the number of classes, 
s1=[s(0), s(1),….,s(t)] and t=0,….,T. After having 
the feature extraction process, the obtained feature 
matrix is given by x ϵ RKPxM, where P is the 
dimension of the training set for each class 
individually and M is the number of distinctive 
features and we have nine different features set. 
The total number of the feature vectors obtained 
from experimental setup is given by N=KP. The 
mean values of the data vectors have been 
subtracted from the feature vectors. Actually, PCA 
is defined as an orthogonal linear transformation 
that transforms the data to a new coordinate system. 
PCA procedure can be maintained by eigenvalue 
decomposition of a data covariance matrix or 

singular value decomposition of a data matrix. In 
our problem the data matrix is given by    x ϵ RKPxM. 

The singular value decomposition of x is given 
by 

Tx UYV                                                              (1) 

where U ϵ R
MxM

  is the orthogonal matrix of 
eigenvectors of xx

T. The matrix Y ϵ R
MxKP

 is 
rectangular diagonal matrix with nonnegative real 
numbers on the diagonal, and the matrix V ϵ RKPxKP

 is the matrix of eigenvectors of x
T
x. The PCA 

procedure preserves the same number of principal 
components as in the original data set. Then 
transformation is given as follows, 

T Ty x U VY                                                       (2)  

y is the new representation of the data.  

Obtained transformed matrix is fed into the 
PNN stage. The representation of the PNN is given 
in the Figure 2. There are three classes (K=3) of 
attributes to be distinguished. The input layer 
includes M number of nodes due to each node 
involves with one of the attributes of the feature 
vector. Input layer nodes connected to the each of 
the second (hidden) layer nodes so that all the 
hidden nodes receives the transformed feature 
vector y. The distance is computed from the input 
data to the other points, and a radial basis function 
(RBF) is applied to the distance to compute the 
weight for each point. The most common used RBF 
is the Gaussian function.  The second layer nodes 
which correspond to a Gaussian function centered 
on its related feature vector are collected into 
clusters for each of the three classes [10].  

The outputs of the hidden layer nodes are 
connected to the corresponding clusters therefore 
there are three output nodes at the output layer.  All 
the Gaussian values are summed and the sum is 
scaled at the output layer. The k-th output node 
sums all the resultant values received from the 
second layer which is called Parzen windows in the 
k-th cluster. The PNNs are derived from Bayes' 
theory Parzen window estimation. 

The Gaussian equation corresponding to the n-th 
feature vector of the k-th class of the input data y is 
given as,  

 

http://en.wikipedia.org/wiki/Orthogonal_transformation
http://en.wikipedia.org/wiki/Linear_transformation
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http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Data_matrix_(multivariate_statistics)
http://en.wikipedia.org/wiki/Singular_value_decomposition
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http://en.wikipedia.org/wiki/Rectangular_diagonal_matrix
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where σ is the smoothing parameter. The smoothing 
parameter of the function determines the spread of 
the radial bases function and it determines the 
decline speed of the function as the distance 
increased from the input data. The maximum point 
of the radial basis function is centered on the point 
it is weighting. The larger σ values create more 
spread and therefore the distant input points can 
have greater influence on the output.  

       Although a variety of approaches are proposed 
for determining the σ parameter [11-12] the 
smoothing parameter is chosen empirically when it 
is common for all the classes. The smoothing 
parameter σ, values can be set as the one half of the 
average distance between the feature vectors. The 
k-th output node sums the values received from the 
hidden nodes in the k-th class, and the sum is given 
by, 
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where y is one of the input feature vector. II . II 
denotes the Euclidean distance (square root of the 
sum of squared differences) between input feature 
vectors.  

The maximum a posteriori (MAP) value of the sum 
functions Sk(y), k=1,…, K in the output layer nodes 
determines the class of the any given input feature 
vector. The output nodes take the zero or one 
values in accordance with the following inequality, 

     
2 22 2/ 2 / 2p p

k lp l
e y y e y y          (5) 

One of the output nodes have value one due to the 
probability of being a member of p-th class is 
greater than other classes.  

4. TEST AND CLASSIFICATION RESULTS 

 
The test setup was constructed to obtain 

discharge signal data measured on the 
transformerboards. Tests were performed for 
different voltage levels (50kV, 60kV, 70kV and 
80kV) which simulates different amount of 
degradation. For improved noise immunity all 

system has connected together to the same earth 
point. The test procedure is given in Figure 3. 

 
 Fig.3. Proposed transformerboard degradation 

detection procedure  

 
According to the test procedure electrical and 

ultrasound discharge signals are recorded and 
classified for training and test. There are 100 data 
sets for both test and training used. The electrical 
discharge signal training and test set samples are 
given in Figure 4 and 5. 
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Fig.4. Electrical discharge signals training set for 60kV, 

70kV and 80kV respectively 

 

During the tests the discharge time is set to zero 
seconds. The valid discharge signal duration is 
measured as 2x10-7 seconds. The signal 
classification is fulfilled in this limited range.  
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Fig.5. Electrical discharge signals test set for 60kV, 70kV 

and 80kV respectively 

 
Also the ultrasound discharge noise signal 

training and test set samples are given in Figure 6 
and 7. 
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Fig.6. Ultrasound discharge signals training set for 

60kV, 70kV and 80kV respectively 
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Fig. 7. Ultrasound discharge signals test set for 60kV, 

70kV and 80kV respectively 

During tests PNN performance was monitored 
for acoustic and electrical discharge with and 
without using PCA. For the feature extraction step 
the chosen feature vector contains mean, variance, 
median, interquartile range, skewness, kurtosis, 
discrete cosine transform and range features. The 
vector length is nine for feature set. In order to 
obtain satisfactory results algorithm was subjected 
to a number of tests and all the results are given in 
Table 1 and Table 2.  

The electrical discharge classification 
performance alters depending on the smoothing 
parameter (σ) and test voltage. Empirically the best 
results were obtained by taking the smoothing 
parameter σ=0.40 and 80 kV. PCA reduces the 
dimensions and convergence time by eliminating 
redundant data hence it was preferred for the 
classification process. 

Table 1. PNN performances for electrical discharge 

signals with and without PCA 

Electrical 
Discharge  

Classification 
Performance 
 (for σ=0.40) 

Classification 
Performance 
 (for σ=0.55) 

Classification 
Performance 
 (for σ=0.90) 

PNN(60kV) %95 %93 %79 

PNN with 
PCA(60kV) %96 %94 %85 

PNN(70kV) %95 %95 %81 

PNN with 
PCA(70kV) %97 %96 %89 

PNN(80kV) %98 %97 %84 

PNN with 
PCA(80kV) %99 %97 %90 

 
The ultrasound discharge classification 

performance is given in Table 2. 
 
Table 2. PNN performances for ultrasound discharge 

signals with and without PCA 

Ultrasound 
Discharge  

Classification 
Performance 
 (for σ=0.40) 

Classification 
Performance 
 (for σ=0.55) 

Classification 
Performance 
 (for σ=0.85) 

PNN(60kV) %80 %81 %94 
PNN with 

PCA(60kV) %84 %85 %95 

PNN(70kV) %84 %85 %95 
PNN with 

PCA(70kV) %88 %89 %95 

PNN(80kV) %88 %90 %96 
PNN with 

PCA(80kV) %93 %91 %97 
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It is clear from the results that PNN 
performance is quite satisfactory under suitable 
conditions for the detection of degradation 
observed on transformerboards. In order to improve 
the performance of the system smoothing parameter 
should be chosen correctly. Although there are 
some algorithms to choose smoothing parameter, it 
can be defined empirically. The amplitudes of the 
discharge signals are quite small; hence there are 
little differences between feature sets of the signals. 
Therefore to fulfill satisfactory classification, 
optimum smoothing parameter may distinguish 
correct feature set. Increasing smoothing parameter 
may cause missing little details between feature 
sets. So defining smoothing parameter is vital for 
the classification performance of the algorithm. 
Also increasing voltage level improves the 
classification performance for both ultrasound and 
electrical signals by increasing amplitudes of the 
discharge signals.  
 

5. CONLUSION 

 

In this study the breakdown phenomena 
observed on a transformerboard under high stresses 
was investigated. Since the development of 
discharge tracks takes a long time in real life a 
simple test setup was built to produce discharge 
tracks and simulate the breakdown process. It was 
envisaged that a discharge detection algorithm for 
transformerboard might give a useful early warning 
and protection for the power system. To simulate 
discharge tracking phenomenon on a 
transformerboard HVAC current was applied and 
corresponding degradation data were obtained. For 
the comparison purpose electrical discharge and 
ultrasound discharge signals were monitored and 
classified. Inherited features of PNN are very 
compatible with the random discharge patterns of 
the transformerboard and hence it provides 
satisfying performance. The selection of the proper 
features in the feature extraction step defines the 
performance of the classification significantly. In 
order to, improve classification performance of the 
PNN, different feature vectors are employed in the 
training process. The smoothing parameter is a 
considerably vital factor for the performance of the 
network. PCA was also used to improve the 
performance and eliminate messy calculations and 
matrix computations. The satisfactory results for 
both electrical and ultrasound discharge signals 
were obtained by choosing optimum smoothing 
parameter and employing PCA. The proposed PNN 
algorithm with PCA is suitable for real time 

classification and detection of degradation of 
transformerboards where early warning may 
eliminate malfunction of a power system. 
Moreover, detecting electrical and ultrasound 
discharge signal at the same time may increase the 
performance and reduce the classification error rate.   
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