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ABSTRACT 
 

In this paper, we deal with the problem related to the prediction of a residual quadratic form of a super-
population model in the case of a finite population. We propose a new optimal quadratic predictor of this 
quadratic form for a linear Gaussian model Y = Xβ + e . The main result of this paper is used to derive an 
optimal quadratic predictor of the residual sum of squares of a linear Gaussian model. 
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1. INTRODUCTION  
 

Linear models play a key role in improving the 
precision of parameter estimators of a finite 
population since they allow to take into account the 
auxiliary information available on population units. 
Indeed, using the predictive approach in the 
sampling theory has enabled to construct the Best 
Linear Unbiased Predictor (BLUP) of the total of 
an interest variable (Royall, 1971; Cassel et al., 
1993; Valliant et al., 2000). However, the 
optimality of this predictor cannot be guaranteed 
unless the linear model adopted is valid. Therefore, 
analysis of the quality of the linear model plays a 
role in the construction of the predictor BLUP. This 
analysis is carried out through the residues of the 
linear model, especially the residual sum of 
squares. This is why it is very important to predict 
the residual sum of squares of a linear model or any 
other quadratic form of these residues.   

Under the predictive approach by assuming the 
linear model Y = Xβ + e  with ( )2,σ= Νe 0 V , Liu 

and Rong (2007) were mainly interested in 
predicting a positive quadratic form ′Y QY  where 
Q  is a symmetric and nonnegative definite matrix 
satisfying =QX 0 . Thus, considering the class of 
invariant predictors (see definition below), Liu and 
Rong propose an optimal quadratic predictor 
following the minimization criterion of the Mean 
Squared Error under the model. 

In this paper, we focus on cases in which the 
function to predict is a quadratic residue, of a 
multiple linear model, ′e Qe  where Q  is a 
symmetric matrix. We propose a new optimal 
predictor of this quadratic form whose expression is 
much simpler than that of the predictor of Liu and 
Rong. Therefore, Section 2 is devoted to notations 
and definitions used in this work. In Section 3, we 
put forward an optimal quadratic predictor of ′e Qe  
following the minimization of the Mean Squared 
Error under the model. Finally, in Section 4, the 
main results of this paper are applied to the problem 
of predicting the residual sum of squares of a linear 
Gaussian model. 
2. NOTATIONS AND DEFINITIONS 
 

Given a finite population { }1,..., ,...,U k N=  
composed of N units, focus will laid on a variable 

of interest ( )1,..., Ny y ′=y . For this reason, a 
sample s of n units is selected from the population 
U and the values of y are observed for these units. 
We note the set of units U unselected by r. We have 
values of p auxiliary variables 1,..., pX X  which can 

be represented by matrix ( )1,..., ,...,k N
′=X x x x  

where kx  is the vector of values of p variables 

1,..., pX X  for a unit k U∈ .  

To simplify the notations in this paper, for any 
matrix A , we note ,m n∈A   if A  is a real matrix; 
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sy
n∈A   if ,n n∈A   and it is symmetric; n

≥∈A   

if sy
n∈A   and is nonnegative definite. 

Note also ′A , −A , ( )−′ ′=AP A A A A  and 

( )rk A  respectively the transpose, the generalized 
inverse, the orthogonal projector, and the rank of 
A , ( )C A  the subspace spanned by the columns of 

A  and ( )tr A  the trace of A .  

Under the approach based on a model, we 
assume that the values 1,..., Ny y  of the interest 
variable y  are the achievements of a random vector 

( )1,..., NY Y ′=Y  whose joint probability 
distribution ξ  is given by a super-population 
model. In this work, we consider the following 
linear model: 

           ( )2with ,σ= ΝY = Xβ + e e 0 V        (2.1) 

where ( )Eξ =Y Xβ  and ( ) 2Covξ σ=Y V . The 

covariance matrix N∈V   is assumed to be known 
and β , 2σ  are unknown parameters. To estimate 

β , we can use the best linear unbiased estimator β̂  
given by 

                  ( )1 1ˆ
s s s s s s

−− −′ ′=β X V X X V Y               (2.2) 

where for a given sample s of n units selected from 
U, vector sY  and matrices sX  and sV  are defined 
through the following decomposition of Y , X  and 
V : 

, ,s s s

r r r

     
= = =     
     

Y X e
Y X e

Y X e
 

and 

1

2

s sr

rs r

′   
= =   ′  

V V V
V

V V V
 

where ( )1,...,s nY Y ′=Y , ( )1,...,s n
′=X x x , 

s n
≥∈V   and ( )1 ,s sr

′=V V V . 

It is also noted by T  the matrix defined by 

s s s′= +T V X UX  

with p
≥∈U   defined so that ( ) ( ),s sC C=T X V .  

 

 

3. THE OPTIMAL QUADRATIC 
PREDICTOR  

 
Given ′e Qe  where sy

N∈Q   a residual quadratic 
form of the multiple linear model (2.1). To predict 
this quadratic form, we can use the quadratic 
predictor ˆ ˆs s s′e A e  where sy

s n∈A   and 
ˆˆ s s s= −e Y Xβ  with β̂  is given by (2.2). In general, 

the matrix sA  is chosen in such a way that the 
predictor ˆ ˆs s s′e A e  satisfies an optimality criterion. A 
choice criterion of the matrix sA  may minimize 
the Mean Squared Error (MSE) under the model 
(2.1). This criterion was used by Liu and Rong 
(2007) to determine an invariant optimal quadratic 
predictor of a quadratic form ′Y QY  where matrix 
Q  satisfies =QX 0 . Note that a quadratic 
predictor s s s′Y A Y  is said to be invariant if matrix 

sA  satisfies s s =A X 0 . Thus, to predict a 
quadratic form ′Y QY , Liu and Rong (2007) 
demonstrated that the optimal quadratic predictor in 
the class of invariants and unbiased quadratic 
predictors is given by *

s s s′Y A Y  where 

* *
1 1s s ss λ ′= +X X XA N N V QV N  

with 

( )
( ) ( )

1 1* s

s

tr

rk rk
λ

′−
=

−
XQV QV N V

T X
 

and ( )s s s s s
+ + + +′ ′= −XN T T X X T X X T . 

The predictor proposed by Liu and Rong can be 
used to predict a quadratic form of residues ′e Qe  
of the multiple linear model (2.1) as the invariance 
condition implies that ˆ ˆs s s s s s′ ′=Y A Y e A e  but not 
the best to use in the case of predicting ′e Qe . 
Indeed, by considering the class of quadratic 
predictors ˆ ˆs s s′e A e  (without imposing the invariance 
condition), we propose a quadratic predictor of 
′e Qe  whose expression is much simpler than that 

of the predictor of Liu and Rong while also being 
optimal in the class of quadratic predictors. Note 
that the prediction Mean Squared Error (MSE) of 
ˆ ˆs s s′e A e  cannot be calculated exactly but can be 
approximated by that of the quadratic form s s s′e A e  
with s s s= −e Y Xβ  where β  is the coefficients 
vector of the multiple linear model (2.1). In fact, an 
approximation of the prediction mean squared error 
under the model (2.1) is given by 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 15 August 2012. Vol. 42 No.1 

© 2005 - 2012 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
72 
 

( ) ( )
( )

( )
( )
( )

2

4

4
1 1

4

ˆ ˆ

                        E

                        2

                            4

                             +2

                

s s s s s s

s s s

s s s s

s

MSE MSE

tr

tr

tr

ξ ξ

ξ

σ

σ

σ

′ ′≈

′ ′≈ −

≈

′−

e A e e A e

e A e e Qe

A V A V

A V QV

QVQV

( ) ( ) 24     s str trσ  + − A V QV

 

This expression of ( )s s sMSEξ ′e A e  is obtained 
by using the fact that for any variable 

( ),= ΝZμ Ω , we have 

( ) ( ), 2 4Cov trξ ′ ′ ′= +Z AZ Z BZ AWBWμ AWBμ  

for all symmetric matrices A  and B  (see for 
example, Schott, 2005, p.418). In addition, we have 

( ) ( ) ( )E s s s s str trξ ′ ′− = −e A e e Qe A V QV  

Hence, a quadratic form ˆ ˆs s s′e A e   is an optimal 
predictor of ′e Qe  in the class of quadratic 
predictors if the matrix sA  minimizes 

( ) ( )

( ) ( )

1 1

2

2
1                       
2

s s s s s

s s

tr tr

tr tr

′−

 + − 

A V A V A V QV

A V QV
 

In what follows, we will adopt the approach used 
by Liu and Rong (2007) so as to get an optimal 
quadratic predictor of the quadratic form ′e Qe . 
However, to look for matrix sA  minimizing 

( )ˆ ˆs s sMSEξ ′e A e  in the class of quadratic predictors, 
we will be restricted to matrices sA  satisfying the 
condition ( ) ( )s sC C⊆A V . This restriction is 
reasonable and necessary as ˆ ˆs s s′e A e  is equal to 
ˆ ˆ

s ss s s′ V Ve P A P e  with a probability equal to 1, using 

the fact that ( )ˆ s sC∈e V  is satisfied almost surely. 

Thus, the problem of finding the optimal 
quadratic predictor ,ˆ ˆs s opt s′e A e  of ′e Qe  is reduced 

to finding matrix ,s optA , which is the solution to 
the following minimization problem: 

( ) ( )
( ) ( ){

( ) ( )

1 1

2

2

1                                
2

min
sy

s n s s

s s s s s
C C

s s

tr tr

tr tr

∈ ⊆

′−

 + −   

A A V

A V A V A V QV

A V QV

 (3.3) 

We note that as ( ) ( )1 sC C′ =V V , we have 
1

1 1s s
−′ ′=V V V V  and  

( ) ( )
( )

1 1
1 1 1 1

                     =

s s s s s s

s s s

tr tr

tr

− −′ ′=A V QV A V V V QV V V

A V GV
 

where 1 1
1 1s s

− −′=G V V QV V . 

Moreover, by considering 
1 1
2 2

s s s s=A V A V  and 
1 1
2 2

s s=G V GV , the minimization problem (3.3) can 
be rewritten as follows 

( ) ( )
( ){

( ) ( )

2

21                           
2

min
sy

s n s s

s
C C

s s

tr

tr tr

∈ ⊆

−

 + −   

A A V

A G

A V QV

 

 

 (3.4) 

Indeed, we have this equivalence between (3.3) 
and (3.4) as 

( ) ( ) ( )
( )

2

                      2

s s s s s s s

s s s

tr tr tr

tr

− = +

−

A G A V A V GV GV

A V GV

 
 

and s sGV GV  is independent of sA . The 

expression of matrix sA  minimizing (3.4) is given 
in the following lemma: 

LEMMA 1 : The matrix sA  which is the unique 
solution of (3.4) is given by 

                    ( ), s s ss opt λ= +V V VA P P G P            (3.5) 

where 

                     
( ) ( )

( ) 2
s

s

tr tr

tr
λ

−
=

+

V

V

QV GP

P


         (3.6) 

Proof: the matrix ,s optA  given by (3.5) satisfies 

that ( ) ( ),s opt sC C=A V . Moreover, for any matrix 

s n
≥∈A   satisfying  ( ) ( )s sC C⊆A V , we have 

,where
s s s s s s opt= = −VP B B B A A   

and 

( ) ( ) ( )
22 1

2s str tr tr − + − A G A QV    

is equal to 
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( ) ( ) ( )

( ) ( )

22
, ,

22

1
2

1
2

s opt s opt

s s

tr tr tr

tr tr

 − + − 

 + + + 

A G A QV

B BΔ

  

 

with 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

,2

   2

   2 2

s s

s s

s s s opt

s s

s

tr tr tr tr

tr tr tr tr tr

tr tr tr

λ

λ λ

λ λ

 = + −  
 = + + −  

 = + − + =  

V V

V V

Δ B B A QV

B B P GP QV

B P P 0



  

So, ( ) ( ) ( )
22 1

2s str tr tr − + − A G A QV    is greater 

than ( ) ( ) ( )
22

, ,
1
2s opt s opttr tr tr − + − A G A QV    

and we have equality if and only if s =B 0 , this 

means that ,s s opt=A A  , thus completing the proof. 

The result of Lemma 1 can be used to determine 
the expression of matrix ,s optA , minimizing (3.3). 

THEOREM 1 : The optimal quadratic predictor, 
according to the minimization of the mean squared 
error under the model (2.1), of ′e Qe  where 

sy
N∈Q   is given by ,ˆ ˆs s opt s′e A e  with 

                 1 1 1
, 1 1s opt s s sλ − − −′= +A V V V QV V        (3.7) 

where 

                  
( ) ( )

( )

1
1 1

2
s

s

tr tr

rk
λ

− ′−
=

+

QV QV V V

V
         (3.8) 

Proof: since 
1 1
2 2

s s s s=A V A V , the matrix ,s optA  
minimizing (3.3) is given by 

1 1
2 2

1 1 1 1 1 1
2 2 2 2 2 2

, ,

1 1 1
1 1

        

        
s s s

s opt s s opt s

s s s s s s

s s s

λ

λ

− −

− − − −

− − −

=

= +

′= +

V V V

A V A V

V P V V P V GV P V

V V V QV V



 

In addition, the expression (3.8) of λ  is deduced 
from (3.6). This completes the proof of Theorem 1. 

Note that the quadratic predictor proposed in 
Theorem 1 has an expression much simpler than 
that of Liu's and Rong's predictor by being 
approximately optimal in the class of quadratic 
predictors. Moreover, one can easily demonstrate 
that 

( ) ( )
( )( )

, ,

4 2

ˆ ˆ

                            2 2

s s opt s s s opt s

s

MSE MSE

rk

ξ ξ

σ λ α

′ ′≈

 ≈ + + 

e A e e A e

V
 

where ( ) ( )1 1
1 1 1 1s str trα − −′ ′= −QVQV V V QV V V QV . 

Hence, the ability to approximate the MSE of 
,ˆ ˆs s opt s′e A e  enables to measure its accuracy unlike 

that proposed by Liu and Rong whose complexity 
of its expression makes it impossible to calculate 
accuracy. 

4. OPTIMAL QUADRATIC PREDICTOR 
OF THE RESIDUAL SUMS OF SQUARES  

 
In what follows, we will use the optimal 

quadratic predictor given by (3.7) to provide a new 
predictor of the residual sum of squares (RSS) of a 
regression model given by  

( ) ( )2 ′=e Y - Xb Y - Xb  

which corresponds to the quadratic form ′e Qe  with 

N=Q I  where NI  is the identity matrix. Therefore, 
Theorem 1 allows us to deduce the following result: 

COROLLARY 1 : Under the model  (2.1), the 
optimal quadratic predictor of the residual sum of 

squares 2e  is given by 

1 1 1
, 0ˆ ˆ ˆ ˆs s opt s s s n s sr rs s sλ − − − ′ ′= + + e A e e V I V V V V e  

where 

( ) ( ) ( )
( )

1

0 2
s sr s rs

s

tr tr tr

rk
λ

−− −
=

+

V V V V V

V
 

Proof: for N=Q I , the expression of ,s optA  is 
reduced to 

( )
1 1 1

, 0 1 1

1 1 2 1
0

1 1 1
0

        

        

s opt s s s

s s s sr rs s

s n s sr rs s

λ

λ

λ

− − −

− − −

− − −

′= +

= + +

= + +

A V V V V V

V V V V V V

V I V V V V

 

with 

( ) ( )
( )

( ) ( ) ( )
( )

1
1 1

0

1

2

    
2

s

s

s sr s rs

s

tr tr

rk

tr tr tr

rk

λ
−

−

′−
=

+

− −
=

+

V V V V

V

V V V V V

V
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This completes the proof. 

We note that when ( )2 2
1 ,..., Ndiag v v=V , we 

have  

1
, 0ˆ ˆ ˆ ˆs s opt s s s n sλ − ′ ′= + e A e e V I e  

where  
2

\
0 2

k
k U s

v

n
λ ∈=

+

∑
 

which gets reduced to 

2
,

2ˆ ˆ ˆ
2s s opt s s

N
n
+′ =
+

e A e e  

when N=V I . 

5. CONCLUSION  
 

In this paper, we proposed a new quadratic 
predictor of a residual quadratic form of a linear 
Gaussian model. This predictor was found out to be 
optimal according to the minimization of mean 
squared error under the adopted linear model. The 
main interest of this result is used to provide an 
optimal predictor for any quadratic function 
involving residues of a linear model. This is the 
case, for example, of the model's residual sum of 
squares, which is among the criteria used to 
measure the quality of the model. As such, a new 
optimal quadratic predictor of the residual sum of 
squares of a linear Gaussian model is proposed in 
this pape 
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