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ABSTRACT 
 

The multi-agent system (MAS) is a nature-inspired method, which supports cooperative search by the 
self-organization of a group of compact agents situated in an environment with certain sharing public 
knowledge. Moreover, each agent in MAS is an autonomous entity with personal declarative memory and 
behavioral components. In recent years, multi-agent systems have become a more and more       important 
in the field of artificial intelligence and specifically in complex systems. In this paper, MAS is refined for 
solving the traveling salesman problem (TSP), which is a classic hard computational problem. 
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1. INTRODUCTION  
 

Problems that can be solved by algorithms in pol-
ynomial time are considered tube so called easy 
problems. For a problem of size n the time needed 
to find absolution is a polynomial function of n. 
Harder problems requires on the other hand an 
exponential function of n, which of course means 
that the execution time grows much faster than for 
an easy problem, when the size of the problem 
increases [1], [12].NP-complete problems are hard 
problems to solve. They belong to a class of com-
putational problems, for which no deterministic 
polynomial algorithm has been found. The list of 
NP-complete is long, there exits several thousands 
problems. They are represented within many dif-
ferent areas as graph theory, network, scheduling, 
games and puzzles etc… 

The Travelling Salesman problem (TSP) is a well 
known NP-complete problem [2]. It is the problem 
of finding the least-cost round-trip route that visits a 
number of cities exactly once and then returns to the 
starting city. The given information is the cities and 
the costs of travelling from any city to any other 
city. In the M-TSP the m-salesman has to cover the 
given cities and each city must be visited by exactly 
one salesman. Every salesman starts from the same 
city, called depot, and must return at the end of his 
journey to this city again. 

The Traveling Salesman Problem (TSP) [3]-[4] is 
a classic combinatorial optimization problem. Alt-
hough it can be easily formulated, it exhibits vari-
ous interesting aspects of hard computational 

problems and has often served as a touchstone for 
novel approaches [5]-[6].   

Moreover, TSP has various applications, such as 
very large scale integration (VLSI) design [10], 
rearrangement clustering [8], predicting protein 
functions [9], etc… 

Meta-heuristics have proven useful when solving 
NP-complete problems. It is therefore natural to 
explore the possibility that meta-heuristics are also 
suitable for solving Traveling Salesman Problem, 
such as Ant Colony Optimization [10] and Genetic 
Algorithms [1]-[3]. 

The multi-agent systems (MAS) have potential 
advantages in solving problems associated with 
open systems, distributed and complex. The mul-
ti-agent system is a nature-inspired method, which 
addresses the self-organization of agents working 
with limited declarative knowledge and simple 
procedural knowledge under ecological rationality 
[11]. Specifically, agents explore in parallel based 
on socially biased individual learning and indirectly 
interact with other agents through sharing public 
information organized in the environment. 

In this paper, MAS is refined to implement sim-
ple and efficient knowledge components for solving 
TSP. In Section II, some existing knowledge 
components for TSP, particularly search behaviors 
and related auxiliary data structures, are described. 
In Section III, some Resolution Methods of TSP are 
presented. In Section IV, the Multi-Agents ap-
proach to resolve a TSP is described. In the last 
section, this paper is concluded. 
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2. THE TRAVELING SALESMAN PROBLEM 
 

The Traveling Salesman Problem (TSP) is one of 
the most intensively studied problems in computa-
tional mathematics. In a practical form, the problem 
is that of a traveling salesman who has to tour a 
certain number of cities, leaving from one of them, 
going exactly once through the others, to return at 
the end to the city from which he departed [1]. This 
traveler wants to minimize the total distance cov-
ered. How should he plan his itinerary for minimum 
total cost of the entire tour?  

The search space for the TSP is a set of permu-
tations of n cities. Any single permutation of n 
cities yields a solution (which is a complete tour of 
n cities). The optimal solution is a permutation 
which yields the minimum cost of the tour. The 
size of the search space is n! [1]. 

In other words, a TSP of size V is defined by a 
set of points v= {v1, v2, …, vn} which vi a city 
marked by coordinates vi.x and vi.y where we define 
a metric distance function f (1). A solution of TSP 
problem is a form of scheduling T = (T[1], 
T[2],……, T[n], T[1]) which T[i]  is a permutation 
on the set {1, 2, …, V}.  

The evaluation function calculates the adapta-
tion of each solution of the problem by the fol-
lowing formula: 
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Where n is the number of cities. 
 
If d, a distance matrix, is added to the TSP 

problem, and d(i, j) a distance between the city vi 
and vj (2), so the cost function f (1) is expressed as 
follows: 
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The mathematical formulation of TSP problem       

expresses by: 
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Which T[i] is a permutation on the set {1, 2, 
…,V}. 

 
The travelling salesman problem (TSP) is an 

NP-hard problem in combinatorial optimization 
studied in operations research and theoretical 
computer science [3].  

A quick calculation shows that the complexity is 
O(n!) which n is the number of cities (Table. 1) [1] 
and [2]. 

 
 Table 1. Number of possibilities and calculation time 

by the number of cities 

Number of cities Number of possibili-
ties 

Computation time 

5 
10 
15 
20 
25 

12 
181440 

43 billions 
60 E+15 
310 E+21 

12 µs 
0,18 ms 
12 hours 

1928 years 
9,8 billions of years 

 
3. RESOLUTION METHODS OF TSP 

3.1. Ant Colony 

We describe an artificial ant colony capable of 
solving the traveling salesman problem (TSP). Ants 
of the artificial colony are able to generate succes-
sively shorter feasible tours by using information 
accumulated in the form of a pheromone trail de-
posited on the edges of the TSP graph. Computer 
simulations demonstrate that the artificial ant col-
ony is capable of generating good solutions to both 
symmetric and asymmetric instances of the TSP 
[16]. 

 

Figure 1. (A) Real ants follow a path between nest and 
food source. (B) An obstacle appears on the path: Ants 
choose whether to turn left or right with equal probabil-

ity. (C) Pheromone is deposited more quickly on the 
shorter path. (D) All ants have chosen the shorter path. 

 
In recent years, many research works have been 

devoted to ant colony optimization (ACO) tech-
niques indifferent areas. It is a relatively novel 
meta-heuristic technique and has been successfully 
used in many applications especially problems in 
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combinatorial optimization. ACO algorithm models 
the behavior of real ant colonies in establishing the 
shortest path between food sources and nests. Ants 
can communicate with one         another through 
chemicals called pheromones in their immediate 
environment. The ants release pheromone on the 
ground while walking from their nest to food and 
then go back to the nest. The ants move according to 
the amount of pheromones, the richer the phero-
mone trail on a path is, the more likely it would-be 
followed by other ants.  

So a shorter path has a higher amount of phero-
mone in probability, ants will tend to choose a 
shorter path. Through this mechanism, ants will 
eventually find the shortest path. Artificial ants 
imitate the behavior of real ants, but can solve much 
more complicated problem than real ants can [17]. 

ACO has been widely applied to solving various 
combinatorial optimization problems such as 
Traveling Salesman Problem (TSP) [9], [15], [16], 
Job-shop Scheduling Problem (JSP), Vehicle 
Routing Problem (VRP), Quadratic Assignment 
Problem (QAP), etc. 

Ants are a biological example of a self-organized  
system. Travelling between their nest and food 
sources, they deposit a chemical pheromone, guid-
ing themselves towards optimal routes between nest 
and food source (figure 1). It so happens that the 
chemical pheromone is detectable by the ants, and 
that they prefer to follow paths with large amounts 
of pheromone deposited. This way the ants will 
follow the shortest route – more pheromone will be 
deposited on the shortest path, as more ants will be 
able to cover this distance in the same time as the 
time taken to travel any other path. 

In mathematical terms they form a minimum 
spanning tree of the Euclidean graph with vertices 
defined by their nest and food sources. Though 
complex algorithms exist for computing minimum 
spanning trees, the ants are only controlled by local 
interactions [14].  

M. Dorigo proposed in his Ph.D thesis to use 
this ant behavior as a way to solve the TSP [16] : 
• A number of artificial ants (not necessarily |V| 

ants) moves from vertex to vertex in the graph, 
depositing pheromone on edges travelled. The 
starting vertex of each ant is chosen at random. 

• Ants probabilistically prefer edges with a lot of 
pheromone deposited and/or light edges, but 
they are required not to revisit vertices already 
visited. 

• When travelling an edge the ant performs a 

local trail update. A local trail update adds 
pheromone to the edge, but it also subtracts a 
certain amount to image the evaporation of 
chemical pheromone in nature. 

• When all ants have completed a cycle of the 
graph, the ant that followed the lightest cycle of 
the graph, performs a global trail update: It 
modifies the pheromone amount of each edge 
in its cycle by adding an amount that is in-
versely proportional to the weight of the cycle. 

This process is iterated until some stopping cri-
terion (usually that no large improvement to the 
cycle weights occurs for some number of consecu-
tive iterations). While the local trail update serves to 
direct the behavior of the ants towards some level of 
diversification, by evaporating some of the depos-
ited pheromone, the global trail update serves to 
intensify the search near the solutions. 

But, the Ant Colony method has an inconvenient 
we cite: 

• Although ACO has a powerful capacity to find 
out solutions to combinational optimization 
problems, it has the problems of stagnation and 
premature convergence and the convergence 
speed of ACO is very slow. Those problems 
will be more obvious when the problem size 
increases. 

• The generic ant colony optimization algorithm 
for the TSP does not handle incomplete graphs 
very well. It is a requirement that each ant can 
traverse a Hamiltonian cycle of the graph, no 
matter which edges it chooses on its way. This 
requirement however cannot be satisfied by an 
incomplete graph.  

3.2. Genetic Algorithm 

Compared to evolutionary biology, instead of 
studying populations of creatures, solutions to 
combinatory optimization problems are the subjects 
in the populations of genetic algorithms (GA).As 
with local search an evaluation function is used to 
determine the fitness of the solutions [1]. A stand-
ard GA for a combinatory optimization problem has 
the form: 

1. Initialize the population with individuals being 
representations of solutions. 

2. Genetic Operators: Reproduction, Mutation and 
Elimination. 

3. Return best solution from the population. 
Compared to the classical optimization algo-

rithms, the genetic algorithm has several ad-
vantages as: 
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• Use only the evaluation of the objective func-
tion regardless of its nature. In fact we do not 
require any special property of the function to 
be optimized (continuity, differentiability, 
connectedness, ..), which gives it more flexibil-
ity and a wide range of applications ; 

• Generation has a parallel form by working on 
several points at once (population of size N) 
instead of a single iteration in the classical al-
gorithms ; 

• The use of probabilistic transition rules (cross-
over and mutation probability), as opposed to 
deterministic algorithms where the transition 
between two individuals is required by the 
structure and nature of the algorithm [1]. 

 
The reproduction function is often referred to as 

a crossover function, due to the origin in biology 
where a chromosomal crossover is the exchange of 
material between two chromosomes. 
The following, very frequent used scheme was 
used in [1-3]: 
• The representation for a TSP solution is a list 

of vertices – completely equivalent to the 
mathematical representation of the cycle. 

• The evaluation function is then just a mapping 
from a cycle to its weight (the sum of the 
weights of all its edges). 

3.3. Multi-Agents System 

It is assumed that the reader has some knowledge 
about agents and multi-agent systems (MAS), and 
therefore this section will only give a brief descrip-
tion of agents and multi-agent systems. Since a 
multi-agent system is a system consisting of indi-
vidual agents, its necessary first to define what an 
agent is. The following definition is given in [15]: 

An agent is a computer system that is situated 
in some environment, and that is capable of 
autonomous action in this environment in 
order to meet its design objectives. 

 

Figure 2. Typical structure of MAS. Figure from [17] 

 

A MAS is a composed system of several agents 
which interact and work together in order to archive 
certain goals [18]. Their interactions can be either 
co-operative or selfish. That is, the agents can share 
a common goal, or they can pursue their own in-
terests. The typical characteristics of MAS's are that 
each agent has incomplete information or capabili-
ties for solving the problem. 

I.e. each agent can have a local perception of the 
global state and need to co-operate in an autono-
mous and asynchronous way with other agents in 
order to meet the goals of the global system. 

To get a more illustratively presentation of a 
MAS, see figure 2. Here is the typical structure of a 
MAS shown. The system contains multiple agents 
who interact through a communication protocol, 
which are indicated with the double pointing ar-
rows. The agents are able to act in the environment 
(grey sphere), but with different influence on the 
environment.  

The spheres of influence show the different parts 
of the environment the agents have influence over. 
These spheres may coincide in some cases, which 
may give rise to dependency relationships between 
the agents.  

In [15] they give the example that two agents 
may both be able to move through a door, but may 
not be able to do so simultaneously. Additionally 
agents will typically be linked by other, which is 
show with the punctuated sphere. This could be that 
an agent is the boss of another. 

In the following we try to analyze the common 
characteristics when using MAS in solving 
NP-complete problems. The usage of MAS when 
solving NP-complete problems may differ from the 
intuitive perception of MAS. In the following we 
give an overview of the different categories of 
multi-agent systems when solving NP-complete 
problems. 

4. NEW COOPERATIVE APPROACH TO 
RESOLVE A TSP 
 

The Cooperative approach proposed in this pa-
per, see figure 3, to solve the Travelling Salesman 
Problem Contains various agents include the fol-
lowing: 

4.1. Domain Agent (D.A.) 

Domain agent which is responsible for a domain 
in the Travelling Salesman Problem. Its main task is 
to ensure that the domain constraint is satisfied. 
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Furthermore the domain agent has the responsibility 
to inform the coordinator agent about possible 
steps, it can take towards a solution of the TSP 
(solution steps).The two possible solution steps, 
which the agent should recognize, are: 

• A cell, where the state of the domain results in 
a value that is unambiguous (defined as a value 
solution step) 

• If a value has been sat in one of its cells, it 
should suggest to eliminate the candidate from 
every other cell in the domain (defined as an 
elimination solution step). 

4.2. Naked Agent (N.A.) 

The Naked Set strategy bases its elimination on 
knowledge about the number of candidates inside a 
set of cells, and the value of these candidates. 
Therefore when the Naked Set agent is requested to 
perform a search for a Naked Set, it should search 
through a given set of cells and determine, if they 
contain a Naked Set. It should not search the entire 
Space of location in the TSP instance at once, but 
instead search small parts of this space. Because the 
search is divided, it is possible to ensure that the 
agent only searches the parts of the TSP space that 
are relevant.  

The division of the TSP Maps, space of the in-
stance TSP locations, into domain agents comes in 
handy at this point, as the strategy agent can request 
the relevant domain agents for a list of cells, in 
which to search. 

 

In order to avoid requesting the same domain mul-
tiple times, the agent should only request cells from 
domains that it has not searched before, or domains 
that have changed since the last time it 'visited'. 
Each agent can make the optimal way in its part of 
the TSP space. 

To illustrate the search procedure executed by the 
Naked Agent to determine the optimal sub-path, 
consider the following example for five cities 
(Figure 4). 

 

 
 
 
 
 

 

 

 

(A)                         (B) 

Figure 4. (A) Initial positions for an example of 5 
Cities, (B) The searched Optimal sub-path (5 Cities) 

  

1 3 

2 

4 

5 

1 3 

2 

4 

5 

Figure 3. Schema of the proposed cooperative approach 
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First, the Naked Agent initializes the 
sub-path with a starting point “1” (Table 2.A). 
And then the agent makes calls to the function 
NakedSet(1, {1},{2, 3, 4, 5}, 1, 5}, and specify-
ing as parameters of this function (The current 
city "Stop", cities crossed "Neighbors", the 
choices remaining "choices", the length of the 
path made up now "lg", the full length of the 
path "max_lg”. 

At the beginning of each jump, the algorithm             
(figure.5) assumes that the first element of the 
set "choices" is the best, i.e. it is the nearest city 
"New_neighbor" from our stopping point 
"Stop". Then it compares its distance "d_max" 
with other distances obtained when we choose 
another city "Neighbor" of all "choices", pro-
vided that this latter should not be crossed be-
fore (Table 2. “B, C, E and D”). 

After each iteration, and as there are still cities 
to cross, the Naked Agent defines the next town 
“New_neighbor”, nearest to the breakpoint current 
“Stop”, adding this city in the set of crossed cities 
"neighbors" and removing it from the set of cities 
to choose "choices". 

 

To complete this sub-path, the traveler must return 
to the starting point that is why the Naked Agent 
specifies as last stopped the city "1" (Table 2.f). 

Table 2. The Naked Agent strategy (or method) 

(A) 
The sub-path takes the 

city"1"asadeparture city 

1      

(B) 
NakedSet(1, {1},{2,3,4,5},1,5} 

 

1 3     

(C) 

NakedSet(3,{1,3},{2,4,5},2,5} 

1 3 4    

(D) 
NakedSet(4,{1,3,4},{2,5},3,5} 

1 3 4 5   

(E) 
NakedSet(5, {1,3,4,5},{2},4,5} 

 

1 3 4 5 2  

(F) 
Complete the trajectory by putting 

the city "1" as arrival city 

1 3 4 5 2 1 

 
  

Algorithm NakedSetSearch(Stop, neighbors, choices, lg, maxlg) 
// Stop The current location 
// neighbors the cities chosen 
// choices the remaining cities 
{Check if we have n stops with only n possible cities, meaning that we are at the endpoint of a sub-path of naked 
cities} 
iflg� count(choices) then 

return MAKE-SET(neighbors) 
end if 
while count(choices) > 0 do 
// Search one of the towns, from the set "choices", nearest to the current city “stop”, and which has not yet been 
chosen from among the towns of trajectory "neighbors" 
// We assume that the first city in the set of choices “choices” is the nearest city “New_neighbor” 
New_neighbor�first(choices) { Get the first cities  in choices} 
//Calculate the distance between the current city “Stop” and the city recently chosen “New_neighbor “ 
D_min�distance(Stop, New_neighbor) 
for each element of choices, lets beginning with the second choice (i=2)do 
// verify, if this element includes in the set “neighbors” or not  

if include(Neighbor, neighbors) = false then 
  D�distance(Neighbor, Stop) 
  if D <D_min then 
   New_neighbor� Neighbor 
   D_min� D 
  endif 

endif 
endfor 
//Add New_neighborin neighbors 
choices’� choices - New_neighbor 
//Remove neighbor from neighbors 
neighbors’� neighbors +New_neighbor 
nakedset�Naked SetSearch(New_neighbor, neighbours’,choices’, lg+1,maxlg) 
end while 
return MAKE-SET(empty) { Nothing was found } 

Figure 5. Algorithm of Naked Agent strategy to find the optimal sub-path  
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4.3. Coordinator Agent (C.A.) 

Coordinator agent which maintains the state of 
the TSP cell entities. It should also manage the 
progress of the solution, by cooperation between the 
domain and strategy agents. This agent should also 
be responsible for determining, if the TSP has been 
successfully solved, and should notify interested 
listeners that a solution was found. 

4.4. Strategy Agent (S.A.) 

Strategy agent which is responsible for a solution 
strategy heuristic. Its task is to use its strategy to 
suggest possible solution steps to the coordinator 
agent. The steps towards a solution, proposed by 
strategy agents, will always be elimination solution 
steps. 

4.5. Intersection Agent (I.A.) 

The intersection agent uses a slightly different 
strategy, than the previous two agents. In order to 
determine an Intersection Set, the agent needs to 
know the unique chains within a domain, and 
thereafter determine if any of the unique chains also 
share a second domain.  

Therefore the relevant parts to search in this 
agent, is the square domains, since all intersection 
sets are also within a square domain. The agent 
should therefore acquire the unique chains from a 
relevant square domain, and determine if one of the 
chains also is part of a row or column domain. This 
can be determined fairly simple by running through 
the unique chains, and explore if all the cells share 
two common domains.  

5. CONCLUSION 
 
The Travelling Salesman Problem is not as simple 
a problem as it could seem, in particular it has 
been the basis for numerous publications and even 
whole books [13]. The Travelling Salesman Prob-
lem, in addition to being one of the most widely 
known NP-complete problems, it is as relevant for 
further studies as it was when Sir William Rowan 
Hamilton in 1856 formulated the Hamiltonian Cy-
cle Problem – a simpler version of the Travelling 
Salesman Problem. In spite of the amount of work 
done, the Travelling Salesman Problem is still the 
center of attention for numerous research activi-
ties. Competitions on the World Wide Web are 
held among students and researchers in the attempt 
to discover novel ways of solving the problem. 
The purpose of the project was to examine the fea-
sibility of applying the emergent behavior of a 
Multi-Agent System to the problem. 

The distributed, adaptive nature of an Mul-
ti-Agent System makes it natural to consider the 
possibility of extending the system, giving the user 
the ability to modify the graph while the system is 
online; letting the system dynamically adapt to the 
modifications made. E.g. if a user removes an edge 
of the graph, the system should adapt and if the 
edge was part of the cycle, find a new Hamiltonian 
cycle not including the removed edge. According 
to our system should be able to adapt to these 
modifications of the environment. This aspect of           
adaptivity to online modifications has to our 
knowledge not yet been an integral part or proper-
ty of methods solving the TSP. In this light it 
would be very interesting to reach such a result. 
And not least evaluate the solutions and efficiency 
of the system. 
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