
Journal of Theoretical and Applied Information Technology
31st July 2012. Vol. 41 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

230

A MULTI-AGENTS SYSTEM ARCHITECTURE
TO RESOLVE AN NP-COMPLETE PROBLEM

1ABDOUN OTMAN, 2ABOUCHABAKA JAAFAR AND 3TAJANI CHAKIR
Faculty of sciences IbnTofail University, Kenitra Morocco

Email: 1otman.fsk@gmail.com , 2aboucha06-univ@yahoo.fr , 3chakir_tajani@hotmail.fr

ABSTRACT

The multi-agent system (MAS) is a nature-inspired method, which supports cooperative search by the
self-organization of a group of compact agents situated in an environment with certain sharing public
knowledge. Moreover, each agent in MAS is an autonomous entity with personal declarative memory and
behavioral components. In recent years, multi-agent systems have become a more and more important
in the field of artificial intelligence and specifically in complex systems. In this paper, MAS is refined for
solving the traveling salesman problem (TSP), which is a classic hard computational problem.

Keywords: Artificial Intelligent, Multi-agent Systems, NP-Complete Problem, Travelling Salesman Problem

1. INTRODUCTION

Problems that can be solved by algorithms in pol-
ynomial time are considered tube so called easy
problems. For a problem of size n the time needed
to find absolution is a polynomial function of n.
Harder problems requires on the other hand an
exponential function of n, which of course means
that the execution time grows much faster than for
an easy problem, when the size of the problem
increases [1], [12].NP-complete problems are hard
problems to solve. They belong to a class of com-
putational problems, for which no deterministic
polynomial algorithm has been found. The list of
NP-complete is long, there exits several thousands
problems. They are represented within many dif-
ferent areas as graph theory, network, scheduling,
games and puzzles etc…

The Travelling Salesman problem (TSP) is a well
known NP-complete problem [2]. It is the problem
of finding the least-cost round-trip route that visits a
number of cities exactly once and then returns to the
starting city. The given information is the cities and
the costs of travelling from any city to any other
city. In the M-TSP the m-salesman has to cover the
given cities and each city must be visited by exactly
one salesman. Every salesman starts from the same
city, called depot, and must return at the end of his
journey to this city again.

The Traveling Salesman Problem (TSP) [3]-[4] is
a classic combinatorial optimization problem. Alt-
hough it can be easily formulated, it exhibits vari-
ous interesting aspects of hard computational

problems and has often served as a touchstone for
novel approaches [5]-[6].

Moreover, TSP has various applications, such as
very large scale integration (VLSI) design [10],
rearrangement clustering [8], predicting protein
functions [9], etc…

Meta-heuristics have proven useful when solving
NP-complete problems. It is therefore natural to
explore the possibility that meta-heuristics are also
suitable for solving Traveling Salesman Problem,
such as Ant Colony Optimization [10] and Genetic
Algorithms [1]-[3].

The multi-agent systems (MAS) have potential
advantages in solving problems associated with
open systems, distributed and complex. The mul-
ti-agent system is a nature-inspired method, which
addresses the self-organization of agents working
with limited declarative knowledge and simple
procedural knowledge under ecological rationality
[11]. Specifically, agents explore in parallel based
on socially biased individual learning and indirectly
interact with other agents through sharing public
information organized in the environment.

In this paper, MAS is refined to implement sim-
ple and efficient knowledge components for solving
TSP. In Section II, some existing knowledge
components for TSP, particularly search behaviors
and related auxiliary data structures, are described.
In Section III, some Resolution Methods of TSP are
presented. In Section IV, the Multi-Agents ap-
proach to resolve a TSP is described. In the last
section, this paper is concluded.

Journal of Theoretical and Applied Information Technology
31st July 2012. Vol. 41 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

231

2. THE TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) is one of
the most intensively studied problems in computa-
tional mathematics. In a practical form, the problem
is that of a traveling salesman who has to tour a
certain number of cities, leaving from one of them,
going exactly once through the others, to return at
the end to the city from which he departed [1]. This
traveler wants to minimize the total distance cov-
ered. How should he plan his itinerary for minimum
total cost of the entire tour?

The search space for the TSP is a set of permu-
tations of n cities. Any single permutation of n
cities yields a solution (which is a complete tour of
n cities). The optimal solution is a permutation
which yields the minimum cost of the tour. The
size of the search space is n! [1].

In other words, a TSP of size V is defined by a
set of points v= {v1, v2, …, vn} which vi a city
marked by coordinates vi.x and vi.y where we define
a metric distance function f (1). A solution of TSP
problem is a form of scheduling T = (T[1],
T[2],……, T[n], T[1]) which T[i] is a permutation
on the set {1, 2, …, V}.

The evaluation function calculates the adapta-
tion of each solution of the problem by the fol-
lowing formula:

� �
∑ ���� . � 	 ����. �
�	�	��� . 	 ����.
����

��� �

	����. � � �1. ��
2	�	���. 	 � �1. 	�

2
(1)

Where n is the number of cities.

If d, a distance matrix, is added to the TSP

problem, and d(i, j) a distance between the city vi
and vj (2), so the cost function f (1) is expressed as
follows:

d�i	, j
 � ���� . � 	 �� . ���	�	��� . 	 �� . ��
(2)

���
 � ∑ d�T�i�, T�i � 1�
���
��� 	�

	d�T�n�, T�1�
			(3)

The mathematical formulation of TSP problem

expresses by:

�������
, � � ���1�, ��2�, …… , ����
	! (4)

Which T[i] is a permutation on the set {1, 2,
…,V}.

The travelling salesman problem (TSP) is an

NP-hard problem in combinatorial optimization
studied in operations research and theoretical
computer science [3].

A quick calculation shows that the complexity is
O(n!) which n is the number of cities (Table. 1) [1]
and [2].

 Table 1. Number of possibilities and calculation time

by the number of cities

Number of cities Number of possibili-
ties

Computation time

5
10
15
20
25

12
181440

43 billions
60 E+15
310 E+21

12 µs
0,18 ms
12 hours

1928 years
9,8 billions of years

3. RESOLUTION METHODS OF TSP

3.1. Ant Colony

We describe an artificial ant colony capable of
solving the traveling salesman problem (TSP). Ants
of the artificial colony are able to generate succes-
sively shorter feasible tours by using information
accumulated in the form of a pheromone trail de-
posited on the edges of the TSP graph. Computer
simulations demonstrate that the artificial ant col-
ony is capable of generating good solutions to both
symmetric and asymmetric instances of the TSP
[16].

Figure 1. (A) Real ants follow a path between nest and
food source. (B) An obstacle appears on the path: Ants
choose whether to turn left or right with equal probabil-

ity. (C) Pheromone is deposited more quickly on the
shorter path. (D) All ants have chosen the shorter path.

In recent years, many research works have been

devoted to ant colony optimization (ACO) tech-
niques indifferent areas. It is a relatively novel
meta-heuristic technique and has been successfully
used in many applications especially problems in

Journal of Theoretical and Applied Information Technology
31st July 2012. Vol. 41 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

232

combinatorial optimization. ACO algorithm models
the behavior of real ant colonies in establishing the
shortest path between food sources and nests. Ants
can communicate with one another through
chemicals called pheromones in their immediate
environment. The ants release pheromone on the
ground while walking from their nest to food and
then go back to the nest. The ants move according to
the amount of pheromones, the richer the phero-
mone trail on a path is, the more likely it would-be
followed by other ants.

So a shorter path has a higher amount of phero-
mone in probability, ants will tend to choose a
shorter path. Through this mechanism, ants will
eventually find the shortest path. Artificial ants
imitate the behavior of real ants, but can solve much
more complicated problem than real ants can [17].

ACO has been widely applied to solving various
combinatorial optimization problems such as
Traveling Salesman Problem (TSP) [9], [15], [16],
Job-shop Scheduling Problem (JSP), Vehicle
Routing Problem (VRP), Quadratic Assignment
Problem (QAP), etc.

Ants are a biological example of a self-organized
system. Travelling between their nest and food
sources, they deposit a chemical pheromone, guid-
ing themselves towards optimal routes between nest
and food source (figure 1). It so happens that the
chemical pheromone is detectable by the ants, and
that they prefer to follow paths with large amounts
of pheromone deposited. This way the ants will
follow the shortest route – more pheromone will be
deposited on the shortest path, as more ants will be
able to cover this distance in the same time as the
time taken to travel any other path.

In mathematical terms they form a minimum
spanning tree of the Euclidean graph with vertices
defined by their nest and food sources. Though
complex algorithms exist for computing minimum
spanning trees, the ants are only controlled by local
interactions [14].

M. Dorigo proposed in his Ph.D thesis to use
this ant behavior as a way to solve the TSP [16] :
• A number of artificial ants (not necessarily |V|

ants) moves from vertex to vertex in the graph,
depositing pheromone on edges travelled. The
starting vertex of each ant is chosen at random.

• Ants probabilistically prefer edges with a lot of
pheromone deposited and/or light edges, but
they are required not to revisit vertices already
visited.

• When travelling an edge the ant performs a

local trail update. A local trail update adds
pheromone to the edge, but it also subtracts a
certain amount to image the evaporation of
chemical pheromone in nature.

• When all ants have completed a cycle of the
graph, the ant that followed the lightest cycle of
the graph, performs a global trail update: It
modifies the pheromone amount of each edge
in its cycle by adding an amount that is in-
versely proportional to the weight of the cycle.

This process is iterated until some stopping cri-
terion (usually that no large improvement to the
cycle weights occurs for some number of consecu-
tive iterations). While the local trail update serves to
direct the behavior of the ants towards some level of
diversification, by evaporating some of the depos-
ited pheromone, the global trail update serves to
intensify the search near the solutions.

But, the Ant Colony method has an inconvenient
we cite:

• Although ACO has a powerful capacity to find
out solutions to combinational optimization
problems, it has the problems of stagnation and
premature convergence and the convergence
speed of ACO is very slow. Those problems
will be more obvious when the problem size
increases.

• The generic ant colony optimization algorithm
for the TSP does not handle incomplete graphs
very well. It is a requirement that each ant can
traverse a Hamiltonian cycle of the graph, no
matter which edges it chooses on its way. This
requirement however cannot be satisfied by an
incomplete graph.

3.2. Genetic Algorithm

Compared to evolutionary biology, instead of
studying populations of creatures, solutions to
combinatory optimization problems are the subjects
in the populations of genetic algorithms (GA).As
with local search an evaluation function is used to
determine the fitness of the solutions [1]. A stand-
ard GA for a combinatory optimization problem has
the form:

1. Initialize the population with individuals being
representations of solutions.

2. Genetic Operators: Reproduction, Mutation and
Elimination.

3. Return best solution from the population.
Compared to the classical optimization algo-

rithms, the genetic algorithm has several ad-
vantages as:

Journal of Theoretical and Applied Information Technology
31st July 2012. Vol. 41 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

233

• Use only the evaluation of the objective func-
tion regardless of its nature. In fact we do not
require any special property of the function to
be optimized (continuity, differentiability,
connectedness, ..), which gives it more flexibil-
ity and a wide range of applications ;

• Generation has a parallel form by working on
several points at once (population of size N)
instead of a single iteration in the classical al-
gorithms ;

• The use of probabilistic transition rules (cross-
over and mutation probability), as opposed to
deterministic algorithms where the transition
between two individuals is required by the
structure and nature of the algorithm [1].

The reproduction function is often referred to as

a crossover function, due to the origin in biology
where a chromosomal crossover is the exchange of
material between two chromosomes.
The following, very frequent used scheme was
used in [1-3]:
• The representation for a TSP solution is a list

of vertices – completely equivalent to the
mathematical representation of the cycle.

• The evaluation function is then just a mapping
from a cycle to its weight (the sum of the
weights of all its edges).

3.3. Multi-Agents System

It is assumed that the reader has some knowledge
about agents and multi-agent systems (MAS), and
therefore this section will only give a brief descrip-
tion of agents and multi-agent systems. Since a
multi-agent system is a system consisting of indi-
vidual agents, its necessary first to define what an
agent is. The following definition is given in [15]:

An agent is a computer system that is situated
in some environment, and that is capable of
autonomous action in this environment in
order to meet its design objectives.

Figure 2. Typical structure of MAS. Figure from [17]

A MAS is a composed system of several agents
which interact and work together in order to archive
certain goals [18]. Their interactions can be either
co-operative or selfish. That is, the agents can share
a common goal, or they can pursue their own in-
terests. The typical characteristics of MAS's are that
each agent has incomplete information or capabili-
ties for solving the problem.

I.e. each agent can have a local perception of the
global state and need to co-operate in an autono-
mous and asynchronous way with other agents in
order to meet the goals of the global system.

To get a more illustratively presentation of a
MAS, see figure 2. Here is the typical structure of a
MAS shown. The system contains multiple agents
who interact through a communication protocol,
which are indicated with the double pointing ar-
rows. The agents are able to act in the environment
(grey sphere), but with different influence on the
environment.

The spheres of influence show the different parts
of the environment the agents have influence over.
These spheres may coincide in some cases, which
may give rise to dependency relationships between
the agents.

In [15] they give the example that two agents
may both be able to move through a door, but may
not be able to do so simultaneously. Additionally
agents will typically be linked by other, which is
show with the punctuated sphere. This could be that
an agent is the boss of another.

In the following we try to analyze the common
characteristics when using MAS in solving
NP-complete problems. The usage of MAS when
solving NP-complete problems may differ from the
intuitive perception of MAS. In the following we
give an overview of the different categories of
multi-agent systems when solving NP-complete
problems.

4. NEW COOPERATIVE APPROACH TO
RESOLVE A TSP

The Cooperative approach proposed in this pa-
per, see figure 3, to solve the Travelling Salesman
Problem Contains various agents include the fol-
lowing:

4.1. Domain Agent (D.A.)

Domain agent which is responsible for a domain
in the Travelling Salesman Problem. Its main task is
to ensure that the domain constraint is satisfied.

Journal of Theoretical and Applied Information Technology
31st July 2012. Vol. 41 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

234

Furthermore the domain agent has the responsibility
to inform the coordinator agent about possible
steps, it can take towards a solution of the TSP
(solution steps).The two possible solution steps,
which the agent should recognize, are:

• A cell, where the state of the domain results in
a value that is unambiguous (defined as a value
solution step)

• If a value has been sat in one of its cells, it
should suggest to eliminate the candidate from
every other cell in the domain (defined as an
elimination solution step).

4.2. Naked Agent (N.A.)

The Naked Set strategy bases its elimination on
knowledge about the number of candidates inside a
set of cells, and the value of these candidates.
Therefore when the Naked Set agent is requested to
perform a search for a Naked Set, it should search
through a given set of cells and determine, if they
contain a Naked Set. It should not search the entire
Space of location in the TSP instance at once, but
instead search small parts of this space. Because the
search is divided, it is possible to ensure that the
agent only searches the parts of the TSP space that
are relevant.

The division of the TSP Maps, space of the in-
stance TSP locations, into domain agents comes in
handy at this point, as the strategy agent can request
the relevant domain agents for a list of cells, in
which to search.

In order to avoid requesting the same domain mul-
tiple times, the agent should only request cells from
domains that it has not searched before, or domains
that have changed since the last time it 'visited'.
Each agent can make the optimal way in its part of
the TSP space.

To illustrate the search procedure executed by the
Naked Agent to determine the optimal sub-path,
consider the following example for five cities
(Figure 4).

(A) (B)

Figure 4. (A) Initial positions for an example of 5
Cities, (B) The searched Optimal sub-path (5 Cities)

1 3

2

4

5

1 3

2

4

5

Figure 3. Schema of the proposed cooperative approach

Journal of Theoretical and Applied Information Technology
31st July 2012. Vol. 41 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

235

First, the Naked Agent initializes the
sub-path with a starting point “1” (Table 2.A).
And then the agent makes calls to the function
NakedSet(1, {1},{2, 3, 4, 5}, 1, 5}, and specify-
ing as parameters of this function (The current
city "Stop", cities crossed "Neighbors", the
choices remaining "choices", the length of the
path made up now "lg", the full length of the
path "max_lg”.

At the beginning of each jump, the algorithm
(figure.5) assumes that the first element of the
set "choices" is the best, i.e. it is the nearest city
"New_neighbor" from our stopping point
"Stop". Then it compares its distance "d_max"
with other distances obtained when we choose
another city "Neighbor" of all "choices", pro-
vided that this latter should not be crossed be-
fore (Table 2. “B, C, E and D”).

After each iteration, and as there are still cities
to cross, the Naked Agent defines the next town
“New_neighbor”, nearest to the breakpoint current
“Stop”, adding this city in the set of crossed cities
"neighbors" and removing it from the set of cities
to choose "choices".

To complete this sub-path, the traveler must return
to the starting point that is why the Naked Agent
specifies as last stopped the city "1" (Table 2.f).

Table 2. The Naked Agent strategy (or method)

(A)
The sub-path takes the

city"1"asadeparture city

1

(B)
NakedSet(1, {1},{2,3,4,5},1,5}

1 3

(C)

NakedSet(3,{1,3},{2,4,5},2,5}

1 3 4

(D)
NakedSet(4,{1,3,4},{2,5},3,5}

1 3 4 5

(E)
NakedSet(5, {1,3,4,5},{2},4,5}

1 3 4 5 2

(F)
Complete the trajectory by putting

the city "1" as arrival city

1 3 4 5 2 1

Algorithm NakedSetSearch(Stop, neighbors, choices, lg, maxlg)
// Stop The current location
// neighbors the cities chosen
// choices the remaining cities
{Check if we have n stops with only n possible cities, meaning that we are at the endpoint of a sub-path of naked
cities}
iflg� count(choices) then

return MAKE-SET(neighbors)
end if
while count(choices) > 0 do
// Search one of the towns, from the set "choices", nearest to the current city “stop”, and which has not yet been
chosen from among the towns of trajectory "neighbors"
// We assume that the first city in the set of choices “choices” is the nearest city “New_neighbor”
New_neighbor�first(choices) { Get the first cities in choices}
//Calculate the distance between the current city “Stop” and the city recently chosen “New_neighbor “
D_min�distance(Stop, New_neighbor)
for each element of choices, lets beginning with the second choice (i=2)do
// verify, if this element includes in the set “neighbors” or not

if include(Neighbor, neighbors) = false then
 D�distance(Neighbor, Stop)
 if D <D_min then
 New_neighbor� Neighbor
 D_min� D
 endif

endif
endfor
//Add New_neighborin neighbors
choices’� choices - New_neighbor
//Remove neighbor from neighbors
neighbors’� neighbors +New_neighbor
nakedset�Naked SetSearch(New_neighbor, neighbours’,choices’, lg+1,maxlg)
end while
return MAKE-SET(empty) { Nothing was found }

Figure 5. Algorithm of Naked Agent strategy to find the optimal sub-path

Journal of Theoretical and Applied Information Technology
31st July 2012. Vol. 41 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

236

4.3. Coordinator Agent (C.A.)

Coordinator agent which maintains the state of
the TSP cell entities. It should also manage the
progress of the solution, by cooperation between the
domain and strategy agents. This agent should also
be responsible for determining, if the TSP has been
successfully solved, and should notify interested
listeners that a solution was found.

4.4. Strategy Agent (S.A.)

Strategy agent which is responsible for a solution
strategy heuristic. Its task is to use its strategy to
suggest possible solution steps to the coordinator
agent. The steps towards a solution, proposed by
strategy agents, will always be elimination solution
steps.

4.5. Intersection Agent (I.A.)

The intersection agent uses a slightly different
strategy, than the previous two agents. In order to
determine an Intersection Set, the agent needs to
know the unique chains within a domain, and
thereafter determine if any of the unique chains also
share a second domain.

Therefore the relevant parts to search in this
agent, is the square domains, since all intersection
sets are also within a square domain. The agent
should therefore acquire the unique chains from a
relevant square domain, and determine if one of the
chains also is part of a row or column domain. This
can be determined fairly simple by running through
the unique chains, and explore if all the cells share
two common domains.

5. CONCLUSION

The Travelling Salesman Problem is not as simple
a problem as it could seem, in particular it has
been the basis for numerous publications and even
whole books [13]. The Travelling Salesman Prob-
lem, in addition to being one of the most widely
known NP-complete problems, it is as relevant for
further studies as it was when Sir William Rowan
Hamilton in 1856 formulated the Hamiltonian Cy-
cle Problem – a simpler version of the Travelling
Salesman Problem. In spite of the amount of work
done, the Travelling Salesman Problem is still the
center of attention for numerous research activi-
ties. Competitions on the World Wide Web are
held among students and researchers in the attempt
to discover novel ways of solving the problem.
The purpose of the project was to examine the fea-
sibility of applying the emergent behavior of a
Multi-Agent System to the problem.

The distributed, adaptive nature of an Mul-
ti-Agent System makes it natural to consider the
possibility of extending the system, giving the user
the ability to modify the graph while the system is
online; letting the system dynamically adapt to the
modifications made. E.g. if a user removes an edge
of the graph, the system should adapt and if the
edge was part of the cycle, find a new Hamiltonian
cycle not including the removed edge. According
to our system should be able to adapt to these
modifications of the environment. This aspect of
adaptivity to online modifications has to our
knowledge not yet been an integral part or proper-
ty of methods solving the TSP. In this light it
would be very interesting to reach such a result.
And not least evaluate the solutions and efficiency
of the system.

REFRENCES:

[1] O. Abdoun, J. Abouchabaka, and C. Tajani, “An-
alyzing the Performance of Mutation Operators to
Solve the Travelling Salesman Problem”. IJES,
Vol.2, No. 1, 2012.

[2] O. Abdoun, C. Tajani, and J. Abouchabaka, “Hy-
bridizing PSM and RSM Operator for Solving
NP-Complete Problems: Application to Traveling
Salesman Problem”. IJCSI, Vol. 9, No. 1, 2012.

[3] O. Abdoun O. and J. Abouchabaka, “A Compara-
tive Study of Adaptive Crossover Operators for
Genetic Algorithms to Resolve the Traveling
Salesman Problem”. IJCA, Vol. 31, No. 11, 2011.

[4] G. Reinelt, “The Traveling Salesman: Computa-
tional Solutions for TSP Applications”. Berlin,
Germany: Springer-Verlag, 1994.

[5] C. Walshaw, “A multilevel approach to the travel-
ling salesman problem,” Oper. Res., vol. 50, no. 5,
pp. 8, 2002.

[6] G. Zaránd, F. Pázmándi, K. F. Pál, and G. T.
Zimányi, “Using hysteresis for optimization,”
Phys. Rev. Lett., vol. 89, no. 15, p. 150 201, Oct.
2002.

[7] W. Cook, VLSI Data Sets, 2003. [Online]. Avai-
lable: http://www.tsp.gatech.edu/vlsi/

[8] S. Climer and W. Zhang, “Take a walk and cluster
genes: A TSP-based approach to optimal rear-
rangement clustering,” in Proc. Int. Conf. Mach.
Learn., Banff, AB, Canada, pp. 169–176, 2004.

[9] O. Johnson and J. Liu, “A traveling salesman ap-
proach for predicting protein functions,” Source
Code Biol. Med., vol. 1, pp. 1–7, 2006.

[10] Dorigo. M, and Gambardella. LM, “Ant colonies
for the traveling salesman problem”. BioSystems;
43 ; 73–81, 1997.

[11] Xiao-FengXie, “Multiagent Optimization System
for Solving the Traveling Salesman Problem

Journal of Theoretical and Applied Information Technology
31st July 2012. Vol. 41 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

237

(TSP)”, IEEE Trans Syst Man Cybern B Cybern,
VOL. 39, NO. 2, 2009

[12] Christian Agerbeck. A Multi-Agent Approach to
Solving NP-Complete Problems. IMM-thesis,
School of Engineering, Technical University of
Denmark, 2008.

[13] Gerhard Reinelt. The Traveling Salesman: Com-
putational Solutions for TSP Applications, volume
Lecture Notes in Computer Science, 840. Spring-
er-Verlag, Berlin, 1994.

[14] Daniel R. Kunkle. Self-organizing computation
and information systems: Ant systems and algo-
rithms. WWW:
http://www.redfish.com/dkunkle/mypapers/selfOr
gAnts.pdf, 2001.

[15] H. K. Tsai, J. M. Yang, Y. F. Tsai, and C. Y. Kao,
“An evolutionary algorithm for large traveling
salesman problems,” IEEE Trans. Syst.,Man, Cy-
bern. B, Cybern., vol. 34, no. 4, pp. 1718–1729,
Aug. 2004.

[16] Marco Dorigo and Luca Maria Gambardella. Ant
colonies for the traveling salesman problem.
Technical Report TR/IRIDIA/1996-3, Universi-
téLibre de Bruxelles, Belgium, 1996.

[17] Zar Chi Su SuHlaing, May Aye Khine, An Ant
Colony Optimization Algorithm for Solving Trav-
eling Salesman Problem, 2011 International Pro-
ceedings of Computer Science and Information
Technology, 16, 54 - 59, 2011.

[18] M. Wooldridge. An Introduction to MultiAgent
Systems. Wiley, 2002.

[19] Rachid El Bejjet, HichamMedromi, A Generic
Platform for a Multi-Agent Systems, Proceedings
of the World Congress on Engineering and Com-
puter Science WCECS, San Francisco, USA, 2010

