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ABSTRACT 
 
Computer systems are often used to store large amounts of data from which individual records must be 
retrieved according to some search criterion. Thus the efficient storage of data to facilitate fast searching is 
an important issue. Frequent pattern mining was first proposed by Agrawal et al. for market basket analysis 
in the form of association rule mining. It analyses customer buying behavior by finding associations 
between the different items that customers place in their shopping baskets. Researchers have proposed 
several algorithms for generating frequent itemsets. Frequent itemsets are found from the dataset through 
several searching algorithmic        approaches.     The novel bit search technique is implemented in 
the existing association rule mining algorithms.  Frequent itemsets are generated with the help of apriori 
based bit search technique is known as Bit Stream Mask Search and eclat based bit search technique is 
branded as Sparse Bit Mask Search.  These two algorithms are implemented in six datasets namely 
T10100K, T40I10100K, Pump, connect-4, mushroom and chess.  These six datasets again run in 
AprioriTrie and FP-Growth algorithms.  All the algorithms are executed in 5% to 25% support level and 
the results are compared.  Efficiency is proved through performance analysis.   
 
Keywords:  Association Rules, Frequent Itemset Mining, Bit Search, Bit Stream Mask Search, Sparse Bit 

Mask Search 
 

1. INTRODUCTION 
 
Data mining is such a technique that extracts 
nontrivial, implicit, previously unknown and 
potentially useful information from data in 
databases. Association rule mining searches for 
interesting correlations among items in a given data 
set. It was originally proposed almost a decade ago 
by Agarwal et al.  [1], and has since then attracted 
enormous attention in both academia and industry. 
 
Frequent Itemset Mining (FIM) [12] is a data 
analysis method, which was originally developed 
for market basket analysis and which aims at 
finding regularities in the shopping behavior of the 
customers of supermarkets, mail-order companies 
and online shops. In particular, it tries to identify 
sets of products that are frequently bought together. 
 
Efficient Mining of frequent itemsets is a 
fundamental problem for mining association rules 
[13].  It also plays an important role in other data 
mining tasks such as sequential patterns, episodes, 
multidimensional patterns [5], etc. The description 
of the problem is as follows: Let I = {i1,i2,…..in} be 
a set of items and D be multiset of transactions, 
where each transaction T is a set of items such that 

T ⊆  I for X ⊆  I, say that T contains X if X⊆ T.  
The set X is called an itemset.  

 
Frequent itemset Rule Mining Algorithms are 
discussed in the Section 2. Section 3 describes 
the problem definition and new search solution.  
New search technique is implemented in the 
existing algorithms and new algorithm is 
proposed in the Section 4. Section 5 contains 
results of proposed algorithm.  Section 6 
discussed about the Performance analysis of new 
algorithms compared with existing algorithms. 
Section 7 is concluded along with future work.  

 
2.  RULE MINING ALGORITHMS 
 
In the last two decades, a lot of algorithms are 
developed for frequent itemset generation.  
Among all, Apriori is candidate itemset 
generation, FP Growth is without candidate 
itemsets and Eclat is vertical data layout are 
played a very good role in frequent itemset 
mining.  There is more number of data structure 
used to find frequent itemsets.  For frequent 
itemset generation, more number of searching 
techniques emerged.  Each and every algorithms 
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have their own method of finding frequent itemsets 
process is analyzed.   
 
2.1. APRIOR ITRIE 
The data structure trie used in the Apriori [9] 
algorithm is a root (downward) directed tree like a 
hash tree.  The root is defined to be at depth 0, and 
a node at depth d can point to nodes at depth d+1.  
A pointer is also called edge or link which is 
labeled by a letter.  There exists a special letter * 
which represents an “end” character.  If node ‘u’ 
points to node ‘v’ then well can ‘u’ the parent of ‘v’, 
and ‘v’ is a child node of ‘u’.   
 
Every leaf ‘l’  represents a word which is the 
concatenation of the letters in the path from the 
root to ‘l’ . Note that if the first k letters are the 
same in two words, then the first k steps on their 
paths are the same as well.  

 
Tries are suitable to store and retrieve not only 
words, but any finite ordered sets. In this setting a 
link is labeled by an element of the set, and the trie 
contains a set if there exists a path where the links 
are labeled by the elements of the set, in increasing 
order. 
 
Patel et al. [14] have proposed parallel algorithm 
for the mining of frequent itemsets. This is an 
algorithm for mining frequent itemsets from those 
databases, whose size is very large and have high 
data skewness. 

 
Other algorithms which adopt the data parallelism 
include CD (PDM by    Park et al.) [6], DMA by 
Cheung et al., [5], CCPD by Zaki et al., [8] and 
Lattice based algorithm by Sharma et al. [7]. These 
algorithms differ in whether further candidate 
pruning or candidate counting techniques are 
employed or not. 
 
2.2. ECLAT ALGORITHM 
In Eclat algorithm [3] implementation the set of 
transactions as a (sparse) bit matrix and intersects 
rows to determine the support of item sets. The 
search space of Eclat algorithm is based on  depth 
first traversal of a prefix tree [2].  

Éclat principle:- 
A convenient way to represent the transactions for 
the Eclat Algorithm is a bit matrix, in which each 
row corresponds to an item, each column to a 
transaction.. A bit is set in this matrix if the item 
corresponding to the row is contained in the 
transaction corresponding to the column, otherwise 

it is cleared. Eclat searches a prefix tree.  The 
transition of a node to its first child consists in 
constructing a new bit matrix by intersecting the 
first row with all following rows. For the second 
child, the second row is intersected with all 
following rows and so on.  
 
The item corresponding to the row is intersected 
with the following rows to form the common 
prefix of the item sets, processed in the 
corresponding child node. Of course, rows 
corresponding to infrequent item sets should be 
discarded from the constructed matrix, which 
can be done most conveniently if it stores with 
each row the corresponding item identifier rather 
than relying on an implicit coding of this item 
identifier in the row   index.  
 
2.3. FP-GROWTH 
The FP tree algorithm [4] scans the database 
twice.  In the first time it determines the frequent 
items that will be used to create the FP-tree and 
sorts them in frequency order.  The top node of 
the graph is the root.  The first node, underneath 
the tool, is the most frequent item for each record 
scanned along with a count. Similarly many 
records are sorted and the most frequent items 
identified.  The basic process involves laying out 
each record in a frequent order and creating a 
node for each item under the root.  As more 
items are added, there will be common prefixes.   

For instance, one record {A,B,C) has a common 
prefix with {A,B,D} namely {A,B}.  Nodes are 
not repeated, but the counts for A and B nodes 
are incremented.  When the C node is reached, a 
new at the same level for C is created with the 
value D.  Note that non frequent items are 
ignored in the FP-tree construction.  In addition, 
a linked list of frequent items is also maintained, 
thus every occurrences of A is linked to every 
other node.   

The inherent advantages of this structure are the 
relatively compact representation of the database 
and the exclusion of non-frequent items.  This 
makes it easy to fit the FP-tree into memory and 
this is easy to scan for rule development.  After 
completion of construction, the tree is mined for 
frequent pattern as  

a) Deriving a set of conditional paths.  
These are suffix patterns from the FP-
tree.   
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b) Constructing a conditional FP-tree for the 
conditional paths. 

c) Exploring the conditional tree recursively 
to find the Frequent Patterns and 
determine the support level for each 
pattern.  

Note that the tree contains only frequent items.  No 
step is wasted with non-frequent items.  In addition, 
since the most frequent items are near the top or 
root of the tree, the mining algorithm works well, 
but there are some limitations.   

a) The databases must be scanned 
twice. 

b) Updating of the database requires a 
complete repetition of the scan 
process and construction of a new 
tree, because the frequent items may 
change with database update.  

c) Lowering the minimum support 
level requires complete rescan and 
construction of a new tree.  

d) The mining algorithm is designed to 
work in memory and performs 
poorly if a higher memory paging is 
required.  

 
3. PROBLEM DEFINITION 

 
Transaction bit array 
Let N be the number of transactions of the data set.  
Let M be the total number of items in the datasets.  
Convert the dataset items into N x M sparse matrix.  
Substitute all non-zero elements of sparse matrix as 
1 and Mask the matrix as sparse bit matrix. Hence, 
keep all the transactions of the dataset as 
transaction bit array. 
 
Subset bit array 
Let I be a set of items. A set X = {i1, . . . , ik} is the 
subset of I is called an itemset, or a     k-itemset if 
it contains k items.  All the k-itemsets are 
converted into bit array by substituting the 
presence of items as 1 and absence as 0.  All subset 
itemsets  are converted into subset bit  array. 
 
Bitwise AND 
Bitwise AND operation is a novel searching 
technique used to find the frequent itemsets.  The 
AND can be used to find the result value for 

subset bit array with transaction bit array of 
dataset sparse bit matrix.  If the result value is 
as same as the subset bit array value, the k-
itemsets are present in the transaction. This 
operation is applicable and done for all the 
subset k-itemsets (where k = 1,2,3,………n) 
and find  the result in a single search.  If the 
result value is not same as the subset bit array 
value, the items are not present in the 
transactions.  
 Bit Mask 
A pattern of binary values which is combined 
with some value using bit values 1 for presence 
of items and 0 for absence of items.  The 
transaction with 0 and 1 combination for 
searching process is called Bit Mask.  
 
In this research work, the new data structure for 
searching k-itemsets  for frequent itemset mining 
is implemented.  One of the important 
contributions of this work is a novel searching 
technique used special data structure, called 
Sparse Bit Matrix. In the newly proposed 
algorithms, the role of transaction bit array and 
subset bit array are explained  with examples on 
datasets. Bit Search has been shown to be a very 
efficient data structure for searching k-itemsets 
which search time is reduced to one. Bit Search 
is implemented in the existing frequent itemset 
mining algorithms. Bit Search technique is 
classified into two types. First one is 
Bit_Search_Item and second one is 
Bit_Search_Tid.  Both types of Bit search are 
implemented in the existing Apriori and eclat 
respectively.  Experimental results are carried 
out from various dataset implementations for 
proposed algorithms and also compared with 
existing AprioriTrie and FP Growth.   
 
4. PROPOSED FREQUENT ITEMSET 

MIINING ALGORITHMS 
 
Searching an itemset from the dataset with bit 
search is implemented in the existing Apriori is 
known as Bit Stream Mask Search (BSMS).  
This BSMS algorithm is developed for candidate 
itemset based Apriori algorithm itemsets search 
is done with the help of Bit Search.  Vertical data 
layout representation of the given dataset is 
implemented by the bit search is known as 
Sparse Bit Mask Search. 
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4.1.   APRIORI WITH BIT SEARCH  
Bit Stream Mask Search is a novel approach in 
which the input file is first transformed into 
numerical data. After this the transaction file is 
compressed into an array for further processing. 16 
items are stored in one single memory location of 
the two dimensional array.  This technique is 
divided into two major procedures.  Bit Stream 
Mask procedure is used to compress the 16 data 
elements in one array location as 16 bit value. MIP 
Search is used for searching the elements in the 
above mentioned array.  All the processes are done 
by with this 16 bit storage only.  This approach 
increases the overall efficiency of the apriori 
algorithm in terms of time and space.   
 
4.1.1. BIT STREAM MASK ALGORITHM 
This algorithm reads the transaction file generated, 
for each transaction it takes items 1 to n and 
transformed it into Bit Stream format which makes 
the overall checking of item combinations for all 
itemsets (1 to n) optimized. 
 
Algorithm 4.1: BitStreamMask 
Input: Numerical dataset  
// allocate Memory for storing the Masked 
information  
 
BitStreamMask( ) 
{ 
BitStreamMask [ no of Transaction] [((Maxitem-
1)/16)+1] 
  for each transaction in input file  { 

    for each item in transaction   { 
    pos=(item -1)/16; 
       if (item%16=0) then 

                 item = 16; 
        else 

                item = item %16 
BitStreamMask [transaction][pos] + = 
power(2,item)  

     } 
} 
     return(BitStreamMask array) 

 } 

 
 
4.1.2. MIP SEARCH ALGORITHM 
This algorithm is used to check whether the subsets 
formed in the subset are frequent or not. This is 
done to make sure that an itemset is frequent only 
if its subsets are frequent. If subsets are found to be 
frequent then the corresponding itemset is added to 
the candidate itemset else it is discarded thus, 
reducing the search space.  

 
For searching k-itemsets, the following new 
searching concept is introduced. This algorithm 
searches k-itemsets in one time search.   This 
search procedure is called Masked Item 
Processing (MIP) Search. This technique uses 
code to search the number of occurrences of a 
particular subset in itemset.   

 
In Masked Itemset Processing (MIP) search, 
Bitwise AND is introduced to search the k-
itemsets in a single time matching.  This MIP 
search algorithm supports k-itemsets (where 
k=1,2,…n) in a single time search. 

 
Algorithm 4.2: MIP Search 
Searching of itemset k  Masked Item processing 
[MIP] 
 
MIPSearch (ith item combination in itemset k , 
minimum support) 
{ 

for each  transaction in MIP array { 
 if ( MIP Search [0,1..n] & (BIT AND) 
MIPSearch [transaction][0,1, ..n] =  MIP            
                                                                              
Search [0,1,..n] ) 
        itemset_count = count++; 
       } 
       if  ( itemset_count >= minsupport ) 
       add itemseti  
       else 
       delete  itemseti 
  } 

 
 
4.1.3. STEPS FOR BIT STREAM MASK 

SEARCH 
Table 4.1 given below represents the numeric 
data items which are converted from transaction 
database.  Algorithm 4.1 compresses the 16 data 
items into one memory storage place.   First step 
of the algorithm is to allocate the memory for the 
given dataset is known as MIP array or 
transaction bit array. If the number of unique 
items in the database is N, and Number of 
transaction in database is T, then the 
BitStreamMask array is declared as 
BitStreamMask [T] [(N-1)/16].  It optimizes the 
dataset process memory. 
 
 
 
 
 



Journal of Theoretical and Applied Information Technology 
15 July 2012. Vol. 41 No.1 

    © 2005 - 2012 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
115 

 

Table 4.1: Transaction dataset 
 

Transaction Sample Dataset 

T1 1 2 3 

T2 1 2 4 17 

T3 5 1 6 4  14 

T4 2 7 15 

T5 8 9 10 16 

T6 2 11 12 18 

T7 4 13 2 9 1 21 28 

T8 4 8 32 

T9 14,18, 25 33 

T10 
1 3 6 9 12 21 25 28 

33 36 
 
 
In Step 1 read each item in transaction 1 to N. In 
the step 2 each 16 data items are compressed into 
one value in single memory location.   Consider the 
following example for masked process. 
 
In the above table 4.1, consider the transaction 
(T10) having items 1 3 6 9 12 21 25 28 33 36 and 
to convert into Bit Stream Mask array. This can be 
stored in the Bit Stream Mask array as in table 4.2 
format. 

Table 4.2 Bit Stream Mask Array storage 
 

 
 
In the given example transaction (T10) the 
numbers are in the range of 1 to 16, 17 to 32 and 
33 to 48 are compressed and the result values are 
stored in the array location.   
  

In BitStreamMask [0][0] , the items 1 to 16 are 
masked. In BitStreamMask [0][1], the items 17 
to 32 is masked, where 17,18,19,…,32 is taken 
as 1,2,3,…..,16. In BitStreamMask [0][2] , the 
items 33 to 48 is masked, where 33,34,35,…,48 
is taken as 1,2,3,…..,16   for each transaction the 
above transformation is done. 
 
Normally, search algorithms explore the whole 
database for each combination of itemsets to 
gather the required itemsets.  But 
BitStreamMask-Search picks out the required 
itemsets at a single glance.   
 
Frequent Itemset Finding 
  
In Step 1, mask the item subset (Masked subset).  
Consider the 2 item subset (2, 3) this is masked 
as follows 
 
2 2-1 + 2 3-1 = 2 + 4 = 6 and position to search in 
MIP array is 0 because the items are between 1 
to 16.  
 
Bitwise AND operation between Masked subset 
and each transaction in MIP array are performed 
to the all transactions. First, check whether the 
items are present in Transaction (T1).   
 
For example, (2,3) � Masked_subset = 6 and 
position is 0.  
                              6 AND MIP[1,2,…n][0] of T1  
=   6  
 
The result is same as the value 6 (Masked subset 
value i.e., 6), so the item subset is present in that 
transaction.  If the bit operation result value is 
not equal to Masked Subset value, then the items 
are not present in that particular transaction.  
 
Similarly, frequent  itemsets are generated for all 
subsets of the  transaction  dataset are searched  
 
4.2. ÉCLAT WITH BIT SEARCH 
Normally, eclat procedure is implemented 
through tree data structure for searching the 
itemsets.  Bit Search procedure is implemented 
in the existing eclat algorithm is known as 
Sparse Bit Mask Search.  First of all, the 
transactions are converted into Sparse Matrix 
and again converted into Sparse Bit Matrix.  All 
the search operations are done only with the help 
of Sparse Bit Matrix.  
 
 

 
BitStream 
Mask [0][0] 

 
BitStream 
Mask [0][1] 
 

 
BitStream 
Mask[0][2] 

 
(21-1+23-1+26-

1+212-1 

 

=1+4+32+2048) 
 
=2085 

 
(25-1+29-1+212-1 

 

=16+256+2048) 
 
=2320 

 
(21-1+24-1 

 

=1+8) 
 
=9 
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4.2.1. BIT ARRAY ECLAT ALGORITHM 
Bit Array Eclat is a new algorithm that mines 
association rules from the transaction file which 
array is transformed as sparse bit matrix for 
processing.  This processing is done from 
numerically transferred input file.  
 
This algorithm shows the usage of sparse matrix to 
mine association rules with bit array data structure.  
This produces only positive association rules. 

 
Algorithm 4.3 converts all the data items in the 
transaction database into sparse bit matrix.  With 
the help of sparse bit matrix {item, tid} 
representation, 1-itemset count is done quickly and 
efficiently. Bit Mask Tid algorithmic procedure is 
followed to find the frequent itemsets. 
 
Algorithm 4.3: Bit_Array_Eclat 
 

1. Initialize the matrix bit[n][m]  where n-
> number of itemsets m-> no. of  
transactions  

2. For each item in the transaction repeat 
the steps 3,4,5 

3. for each transaction in the input file 
repeat the step 4 

4. Check whether the bit [item] [m] is not 
equal to zero.  If yes the increment the 
total  count (tcount) 

5. Calculate the support using total count 
divided by total  no. of transactions 

 
 
 
 

4.2.2. K-ITEMSET BIT SEARCH 
ALGORITHM 
 
The k-itemset (where k = 2, 3,…, n) combination 
subset items are searched with the algorithm 4.4 
using bit search. Bitwise AND operation is used 
to find the k-itemsets in  a single search  
 
Algorithm 4.4: Searching of k- itemset using Bit 

Search 
 
Procedure (kth  item combination in itemset ) 

1. for each transaction in Bit array repeat 
the step 2 

2. Bitwise AND can be used to find the 
result value for subset with transaction 
dataset.  If the result value is as same as 
the subset value, the k-itemsets are 
present in the transaction  

3. increment Bit_itemset count  
4. Check whether bit_item_count is 

greater than or equal to minsup.  If yes 
add the frequent bit_itemsets otherwise 
delete item 

 
 

 
4.2.3. SPARSE BIT MASK SEARCH 
EXPLANATION 
First of all,  the frequent itemset is identified the 
itemset whose support is greater than or equal to 
the minimum threshold value.  In the database 
the every itemsets are found by using the bit 
array structure.  The above numeric transactions 
are given in the table 4.3 as sparse bit matrix 
format.  
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Table 4.3: Sparse Bit Matrix 
 

Item 
sets 

Tids 
Count 

1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 1 0 1 9 

2 1 1 1 1 1 1 1 1 1 1 10 

3 0 0 1 1 0 0 0 0 0 0 2 

4 1 0 0 0 1 1 0 0 1 0 4 

5 0 1 1 0 1 0 0 1 0 1 5 

6 0 0 1 1 0 0 0 0 0 0 2 

7 1 0 0 0 0 0 0 0 1 1 3 

8 1 0 0 0 0 1 1 1 1 1 6 

9 0 0 0 0 1 0 0 0 1 0 2 

10 1 0 0 0 0 1 1 0 0 1 4 

 
 
From the above table 4.3, sparse bits occupy 
only 100 bits for 10 x 10 matrix data 
representation.      
 
Column wise itemset bits are bitwise  AND 
operated to find whether elements are found or 
not in one search.  
 
For example, the subset {2, 10} is used to search 
in the transactions 4 and 6.  From the subset, bit 
representation of array is 1000000010.   
Searching the subset bit array in the transaction 4.   
Transaction bit array of T4 is 0000100111. 
Subset bit array of {2, 10} AND Transaction of 
bit array {T4} 
1000000010 AND 0000100111 = 0000000100 
The result value is 0000000100 which is not 
equal to the subset bit array {2, 10}.  Hence the 
items are not present in the transaction 6.   
 

Searching the subset bit array in the transaction 6.   
Transaction bit array of T6 is 1010001011 
Subset bit array of {2, 10} AND Transaction of 
bit array {T6} 
1000000010 AND 10100010111 = 1000000010. 
 
The result value is 1000000010 which are equal 
to subset bit value.  Therefore, all items in the 
subset are present in that transaction 6 (T6). 
 
In this manner, all the frequent itemsets are 
generated.  
 
5. EXPERIMENT AND RESULTS 
 
5.1. EXPERIMENTAL SETUP 
Bit Stream Mask Search and Sparse Bit Mask 
Search algorithms were experimented on six data 
sets, which exhibit different characteristics and 
the results evaluated.  The data sets used were: 
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T10100K, T40I200200K, pump, chess, connect 
and mushroom obtained from FIMI web site 
[119].  For the experiments, Intel Pentium 2.5 
GHz processor, Windows XP with 256 MB 
RAM was used. 

 
The six data sets were often used in the previous 
study of association rule mining and were 
downloaded from the websites [119] [120]. 
Some characteristics of these datasets are shown 
in table 4.6.  
 
Both Bit Stream Mask-Search and Sparse Bit 
Mask-Search algorithms were implemented to 
the above mentioned six datasets with the 
various support levels.  Experimental evaluation 
is done with C++ language. Further, AprioriTrie 
and FP Growth algorithms are also implemented 
and their results are also tabulated. 
 
Table 5.1: characteristics of experiment data sets 
 
 

 
Data 

 

No. of 
items 

Avg. 
trans. 
length 

Total No. 
of  

transacti
ons 

T10100K 500 10 50,000 

Pump 500 50 29,219 

T40I200200
K 

942 39 50,000 

Mushroom 120 23 8,124 

Connect-4 130 43 67,557 

Chess 75 40 3,225 

 
6. PERFORMANCE ANALYSIS OF 

FREQUENT ITEMSET WITH BIT 
SEARCH 

 
In Section 4, Bit Search is implemented in the 
existing Apriori and eclat algorithms for the both 
type representation.  Both Bit Stream Mask 

Search and Sparse Bit Mask Search results are 
carried out and compared.  
 
6.1. BIT SEARCH PERFORMANCE 

EVALUATION 
 
In theoretical analysis of algorithms it is 
common to estimate their complexity in the 
asymptotic sense, i.e., to estimate the complexity 
function or arbitrarily large input. Big O 
notation, omega notation is used to the new bit 
search technique. Performance analysis is 
measured through finding the time complexity of 
the algorithms. The bit search complexity is the 
complexity for all numeric values either presence 
or absence as a single bit. 
 
Complexity analyses of the new proposed 
algorithms are defined as follows:  For both 
horizontal and vertical sparse bit representation 
of the dataset are same processes. 

 
Let number of items in dataset is M and let the 
number of items in transaction be N.  During the 
searching process, all the items in the 
transactions are converted as bit storage.  The 
required memory allocation is to represent the 
array as bit elements.  So the memory occupation 
was reduced. Approximate number of bytes 
required to the represent items and searching is 
calculated as log M/2.  
 
Time required to search any k-itemset (k=1, 
2,….) in a single transaction  is  1 (one).  For N 
number of transaction is O(N)=N which is the 
lowest one while compared to any other 
Association Rule searching technique.  In Best 
case, searching       1-itemset search space time is 
1 and also in the worst case of k-itemset search 
space time is also reduced to 1.  This algorithm 
implies its best performance for all itemset 
combination from 1 to k search time is reduced 
to 1 (one).   
Figure 6.1 to 6.4 shows the comparison of six 
datasets for various support levels execution time 
for ApriroriTrie, FP-Growth, 
BitStreamMaskSearch and SparseBitMaskSearch 
respectively.               
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Figure 6.1: Run time comparison of AprioriTrie 
 
Figure 6.1 and Figure 6.2 show the comparison 
of AprioriTrie and FP Growth algorithms 
respectively. These two algorithms execution 
time is high.  
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Figure 6.2: Run time comparison of FP Growth 
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Figure 6.3: Run time comparison of Bit Stream 
Mask Search for various datasets 

 
Figure 6.3 shows the Bit Stream Mask Search 
algorithm execution time comparison with six 
datasets.  
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Figure 6.4: Sparse Bit Mask Search Run time 
comparison 

 
Figure 6.4 represents the Sparse Bit Mask Search 
algorithm time comparison for the datasets 
T10100K, T40I20200K, Pump, Connect-4, 
Mushroom and chess datasets respectively.  
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Figure 6.5: Comparison of BSMS, SBMS, AprioriTrie and FP-Growth with datasets 

 
 
In the figure 6.5, the new algorithms Bit Stream 
Mask Search and Sparse Bit Mask Search 
compared with the existing AprioriTrie and FP 
Growth algorithms.  This figure further 
compared with six different datasets and also 
various support level execution times. For the 
dataset T40I20020K, Sparse Bit Mask Search 
execution is less while compared with others in 
all support levels.  SBMS run time is faster than 
other algorithms for the dataset T10100K in all 
support levels. For Pump dataset, Bit Stream 
Mask Search algorithm execution time is less 
than compare with other algorithms.  Sparse Bit 
Mask Search algorithm run time is faster than 
other algorithms for Connect-4 dataset.  For 
Mushroom dataset, SBMS execution time is 
faster than FP Growth and AprioriTrie in all 
support levels.  Sparse Bit Mask Search is 
superior in execution for the dataset Chess in all 
support levels while compared with other 
algorithms.   
 
From the above comparison figure, it proves the 
efficiency of Bit Search techniques reduced the 
execution time more.  Hence, Bit Stream Mask 
Search and Sparse Bit Mask  Search algorithms 

are superior to the existing AprioriTrie and FP 
Growth algorithms.  Sparse Bit Mask Search run 
time is less in all datasets and its support levels.   
 
7. CONCLUSION 
 
The above discussions are made with the 
algorithms which are developed by the new bit 
search technique.  From these comparisons and 
analysis conclude that the bit search produced 
only low execution time in all datasets compared 
with the existing algorithms. Both Bit Stream 
Mask Search and Sparse Bit Mask Search run 
time are very low while comparing with other 
algorithms.  Memory space allocation for Bit 
Search is also less whereas GP-Growth and 
AprioriTrie. Interesting application will be 
developed as future enhancement. 
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