
Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

111

FREQUENT ITEMSET MINING WITH BIT SEARCH

1N. VENKATESAN, 2RAMARAJ

1Research Scholar, Madurai Kamaraj University, Madurai, INDIA
2Technology Advisor, Madurai Kamaraj University, Madurai, INDIA

Email: Email: 1envenki@gmail.com, envenki@sify.com, 2dr_ramaraj@yahoo.co.in

ABSTRACT

Computer systems are often used to store large amounts of data from which individual records must be
retrieved according to some search criterion. Thus the efficient storage of data to facilitate fast searching is
an important issue. Frequent pattern mining was first proposed by Agrawal et al. for market basket analysis
in the form of association rule mining. It analyses customer buying behavior by finding associations
between the different items that customers place in their shopping baskets. Researchers have proposed
several algorithms for generating frequent itemsets. Frequent itemsets are found from the dataset through
several searching algorithmic approaches. The novel bit search technique is implemented in
the existing association rule mining algorithms. Frequent itemsets are generated with the help of apriori
based bit search technique is known as Bit Stream Mask Search and eclat based bit search technique is
branded as Sparse Bit Mask Search. These two algorithms are implemented in six datasets namely
T10100K, T40I10100K, Pump, connect-4, mushroom and chess. These six datasets again run in
AprioriTrie and FP-Growth algorithms. All the algorithms are executed in 5% to 25% support level and
the results are compared. Efficiency is proved through performance analysis.

Keywords: Association Rules, Frequent Itemset Mining, Bit Search, Bit Stream Mask Search, Sparse Bit

Mask Search

1. INTRODUCTION

Data mining is such a technique that extracts
nontrivial, implicit, previously unknown and
potentially useful information from data in
databases. Association rule mining searches for
interesting correlations among items in a given data
set. It was originally proposed almost a decade ago
by Agarwal et al. [1], and has since then attracted
enormous attention in both academia and industry.

Frequent Itemset Mining (FIM) [12] is a data
analysis method, which was originally developed
for market basket analysis and which aims at
finding regularities in the shopping behavior of the
customers of supermarkets, mail-order companies
and online shops. In particular, it tries to identify
sets of products that are frequently bought together.

Efficient Mining of frequent itemsets is a
fundamental problem for mining association rules
[13]. It also plays an important role in other data
mining tasks such as sequential patterns, episodes,
multidimensional patterns [5], etc. The description
of the problem is as follows: Let I = {i1,i2,…..in} be
a set of items and D be multiset of transactions,
where each transaction T is a set of items such that

T ⊆ I for X ⊆ I, say that T contains X if X⊆ T.
The set X is called an itemset.

Frequent itemset Rule Mining Algorithms are
discussed in the Section 2. Section 3 describes
the problem definition and new search solution.
New search technique is implemented in the
existing algorithms and new algorithm is
proposed in the Section 4. Section 5 contains
results of proposed algorithm. Section 6
discussed about the Performance analysis of new
algorithms compared with existing algorithms.
Section 7 is concluded along with future work.

2. RULE MINING ALGORITHMS

In the last two decades, a lot of algorithms are
developed for frequent itemset generation.
Among all, Apriori is candidate itemset
generation, FP Growth is without candidate
itemsets and Eclat is vertical data layout are
played a very good role in frequent itemset
mining. There is more number of data structure
used to find frequent itemsets. For frequent
itemset generation, more number of searching
techniques emerged. Each and every algorithms

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

112

have their own method of finding frequent itemsets
process is analyzed.

2.1. APRIOR ITRIE
The data structure trie used in the Apriori [9]
algorithm is a root (downward) directed tree like a
hash tree. The root is defined to be at depth 0, and
a node at depth d can point to nodes at depth d+1.
A pointer is also called edge or link which is
labeled by a letter. There exists a special letter *
which represents an “end” character. If node ‘u’
points to node ‘v’ then well can ‘u’ the parent of ‘v’,
and ‘v’ is a child node of ‘u’.

Every leaf ‘l’ represents a word which is the
concatenation of the letters in the path from the
root to ‘l’ . Note that if the first k letters are the
same in two words, then the first k steps on their
paths are the same as well.

Tries are suitable to store and retrieve not only
words, but any finite ordered sets. In this setting a
link is labeled by an element of the set, and the trie
contains a set if there exists a path where the links
are labeled by the elements of the set, in increasing
order.

Patel et al. [14] have proposed parallel algorithm
for the mining of frequent itemsets. This is an
algorithm for mining frequent itemsets from those
databases, whose size is very large and have high
data skewness.

Other algorithms which adopt the data parallelism
include CD (PDM by Park et al.) [6], DMA by
Cheung et al., [5], CCPD by Zaki et al., [8] and
Lattice based algorithm by Sharma et al. [7]. These
algorithms differ in whether further candidate
pruning or candidate counting techniques are
employed or not.

2.2. ECLAT ALGORITHM
In Eclat algorithm [3] implementation the set of
transactions as a (sparse) bit matrix and intersects
rows to determine the support of item sets. The
search space of Eclat algorithm is based on depth
first traversal of a prefix tree [2].

Éclat principle:-
A convenient way to represent the transactions for
the Eclat Algorithm is a bit matrix, in which each
row corresponds to an item, each column to a
transaction.. A bit is set in this matrix if the item
corresponding to the row is contained in the
transaction corresponding to the column, otherwise

it is cleared. Eclat searches a prefix tree. The
transition of a node to its first child consists in
constructing a new bit matrix by intersecting the
first row with all following rows. For the second
child, the second row is intersected with all
following rows and so on.

The item corresponding to the row is intersected
with the following rows to form the common
prefix of the item sets, processed in the
corresponding child node. Of course, rows
corresponding to infrequent item sets should be
discarded from the constructed matrix, which
can be done most conveniently if it stores with
each row the corresponding item identifier rather
than relying on an implicit coding of this item
identifier in the row index.

2.3. FP-GROWTH
The FP tree algorithm [4] scans the database
twice. In the first time it determines the frequent
items that will be used to create the FP-tree and
sorts them in frequency order. The top node of
the graph is the root. The first node, underneath
the tool, is the most frequent item for each record
scanned along with a count. Similarly many
records are sorted and the most frequent items
identified. The basic process involves laying out
each record in a frequent order and creating a
node for each item under the root. As more
items are added, there will be common prefixes.

For instance, one record {A,B,C) has a common
prefix with {A,B,D} namely {A,B}. Nodes are
not repeated, but the counts for A and B nodes
are incremented. When the C node is reached, a
new at the same level for C is created with the
value D. Note that non frequent items are
ignored in the FP-tree construction. In addition,
a linked list of frequent items is also maintained,
thus every occurrences of A is linked to every
other node.

The inherent advantages of this structure are the
relatively compact representation of the database
and the exclusion of non-frequent items. This
makes it easy to fit the FP-tree into memory and
this is easy to scan for rule development. After
completion of construction, the tree is mined for
frequent pattern as

a) Deriving a set of conditional paths.
These are suffix patterns from the FP-
tree.

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

113

b) Constructing a conditional FP-tree for the
conditional paths.

c) Exploring the conditional tree recursively
to find the Frequent Patterns and
determine the support level for each
pattern.

Note that the tree contains only frequent items. No
step is wasted with non-frequent items. In addition,
since the most frequent items are near the top or
root of the tree, the mining algorithm works well,
but there are some limitations.

a) The databases must be scanned
twice.

b) Updating of the database requires a
complete repetition of the scan
process and construction of a new
tree, because the frequent items may
change with database update.

c) Lowering the minimum support
level requires complete rescan and
construction of a new tree.

d) The mining algorithm is designed to
work in memory and performs
poorly if a higher memory paging is
required.

3. PROBLEM DEFINITION

Transaction bit array
Let N be the number of transactions of the data set.
Let M be the total number of items in the datasets.
Convert the dataset items into N x M sparse matrix.
Substitute all non-zero elements of sparse matrix as
1 and Mask the matrix as sparse bit matrix. Hence,
keep all the transactions of the dataset as
transaction bit array.

Subset bit array
Let I be a set of items. A set X = {i1, . . . , ik} is the
subset of I is called an itemset, or a k-itemset if
it contains k items. All the k-itemsets are
converted into bit array by substituting the
presence of items as 1 and absence as 0. All subset
itemsets are converted into subset bit array.

Bitwise AND
Bitwise AND operation is a novel searching
technique used to find the frequent itemsets. The
AND can be used to find the result value for

subset bit array with transaction bit array of
dataset sparse bit matrix. If the result value is
as same as the subset bit array value, the k-
itemsets are present in the transaction. This
operation is applicable and done for all the
subset k-itemsets (where k = 1,2,3,………n)
and find the result in a single search. If the
result value is not same as the subset bit array
value, the items are not present in the
transactions.
 Bit Mask
A pattern of binary values which is combined
with some value using bit values 1 for presence
of items and 0 for absence of items. The
transaction with 0 and 1 combination for
searching process is called Bit Mask.

In this research work, the new data structure for
searching k-itemsets for frequent itemset mining
is implemented. One of the important
contributions of this work is a novel searching
technique used special data structure, called
Sparse Bit Matrix. In the newly proposed
algorithms, the role of transaction bit array and
subset bit array are explained with examples on
datasets. Bit Search has been shown to be a very
efficient data structure for searching k-itemsets
which search time is reduced to one. Bit Search
is implemented in the existing frequent itemset
mining algorithms. Bit Search technique is
classified into two types. First one is
Bit_Search_Item and second one is
Bit_Search_Tid. Both types of Bit search are
implemented in the existing Apriori and eclat
respectively. Experimental results are carried
out from various dataset implementations for
proposed algorithms and also compared with
existing AprioriTrie and FP Growth.

4. PROPOSED FREQUENT ITEMSET

MIINING ALGORITHMS

Searching an itemset from the dataset with bit
search is implemented in the existing Apriori is
known as Bit Stream Mask Search (BSMS).
This BSMS algorithm is developed for candidate
itemset based Apriori algorithm itemsets search
is done with the help of Bit Search. Vertical data
layout representation of the given dataset is
implemented by the bit search is known as
Sparse Bit Mask Search.

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

114

4.1. APRIORI WITH BIT SEARCH
Bit Stream Mask Search is a novel approach in
which the input file is first transformed into
numerical data. After this the transaction file is
compressed into an array for further processing. 16
items are stored in one single memory location of
the two dimensional array. This technique is
divided into two major procedures. Bit Stream
Mask procedure is used to compress the 16 data
elements in one array location as 16 bit value. MIP
Search is used for searching the elements in the
above mentioned array. All the processes are done
by with this 16 bit storage only. This approach
increases the overall efficiency of the apriori
algorithm in terms of time and space.

4.1.1. BIT STREAM MASK ALGORITHM
This algorithm reads the transaction file generated,
for each transaction it takes items 1 to n and
transformed it into Bit Stream format which makes
the overall checking of item combinations for all
itemsets (1 to n) optimized.

Algorithm 4.1: BitStreamMask
Input: Numerical dataset
// allocate Memory for storing the Masked
information

BitStreamMask()
{
BitStreamMask [no of Transaction] [((Maxitem-
1)/16)+1]
 for each transaction in input file {

 for each item in transaction {
 pos=(item -1)/16;
 if (item%16=0) then

 item = 16;
 else

 item = item %16
BitStreamMask [transaction][pos] + =
power(2,item)

 }
}
 return(BitStreamMask array)

 }

4.1.2. MIP SEARCH ALGORITHM
This algorithm is used to check whether the subsets
formed in the subset are frequent or not. This is
done to make sure that an itemset is frequent only
if its subsets are frequent. If subsets are found to be
frequent then the corresponding itemset is added to
the candidate itemset else it is discarded thus,
reducing the search space.

For searching k-itemsets, the following new
searching concept is introduced. This algorithm
searches k-itemsets in one time search. This
search procedure is called Masked Item
Processing (MIP) Search. This technique uses
code to search the number of occurrences of a
particular subset in itemset.

In Masked Itemset Processing (MIP) search,
Bitwise AND is introduced to search the k-
itemsets in a single time matching. This MIP
search algorithm supports k-itemsets (where
k=1,2,…n) in a single time search.

Algorithm 4.2: MIP Search
Searching of itemset k Masked Item processing
[MIP]

MIPSearch (ith item combination in itemset k ,
minimum support)
{

for each transaction in MIP array {
 if (MIP Search [0,1..n] & (BIT AND)
MIPSearch [transaction][0,1, ..n] = MIP

Search [0,1,..n])
 itemset_count = count++;
 }
 if (itemset_count >= minsupport)
 add itemseti
 else
 delete itemseti
 }

4.1.3. STEPS FOR BIT STREAM MASK

SEARCH
Table 4.1 given below represents the numeric
data items which are converted from transaction
database. Algorithm 4.1 compresses the 16 data
items into one memory storage place. First step
of the algorithm is to allocate the memory for the
given dataset is known as MIP array or
transaction bit array. If the number of unique
items in the database is N, and Number of
transaction in database is T, then the
BitStreamMask array is declared as
BitStreamMask [T] [(N-1)/16]. It optimizes the
dataset process memory.

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

115

Table 4.1: Transaction dataset

Transaction Sample Dataset

T1 1 2 3

T2 1 2 4 17

T3 5 1 6 4 14

T4 2 7 15

T5 8 9 10 16

T6 2 11 12 18

T7 4 13 2 9 1 21 28

T8 4 8 32

T9 14,18, 25 33

T10
1 3 6 9 12 21 25 28

33 36

In Step 1 read each item in transaction 1 to N. In
the step 2 each 16 data items are compressed into
one value in single memory location. Consider the
following example for masked process.

In the above table 4.1, consider the transaction
(T10) having items 1 3 6 9 12 21 25 28 33 36 and
to convert into Bit Stream Mask array. This can be
stored in the Bit Stream Mask array as in table 4.2
format.

Table 4.2 Bit Stream Mask Array storage

In the given example transaction (T10) the
numbers are in the range of 1 to 16, 17 to 32 and
33 to 48 are compressed and the result values are
stored in the array location.

In BitStreamMask [0][0] , the items 1 to 16 are
masked. In BitStreamMask [0][1], the items 17
to 32 is masked, where 17,18,19,…,32 is taken
as 1,2,3,…..,16. In BitStreamMask [0][2] , the
items 33 to 48 is masked, where 33,34,35,…,48
is taken as 1,2,3,…..,16 for each transaction the
above transformation is done.

Normally, search algorithms explore the whole
database for each combination of itemsets to
gather the required itemsets. But
BitStreamMask-Search picks out the required
itemsets at a single glance.

Frequent Itemset Finding

In Step 1, mask the item subset (Masked subset).
Consider the 2 item subset (2, 3) this is masked
as follows

2 2-1 + 2 3-1 = 2 + 4 = 6 and position to search in
MIP array is 0 because the items are between 1
to 16.

Bitwise AND operation between Masked subset
and each transaction in MIP array are performed
to the all transactions. First, check whether the
items are present in Transaction (T1).

For example, (2,3) � Masked_subset = 6 and
position is 0.
 6 AND MIP[1,2,…n][0] of T1
= 6

The result is same as the value 6 (Masked subset
value i.e., 6), so the item subset is present in that
transaction. If the bit operation result value is
not equal to Masked Subset value, then the items
are not present in that particular transaction.

Similarly, frequent itemsets are generated for all
subsets of the transaction dataset are searched

4.2. ÉCLAT WITH BIT SEARCH
Normally, eclat procedure is implemented
through tree data structure for searching the
itemsets. Bit Search procedure is implemented
in the existing eclat algorithm is known as
Sparse Bit Mask Search. First of all, the
transactions are converted into Sparse Matrix
and again converted into Sparse Bit Matrix. All
the search operations are done only with the help
of Sparse Bit Matrix.

BitStream
Mask [0][0]

BitStream
Mask [0][1]

BitStream
Mask[0][2]

(21-1+23-1+26-

1+212-1

=1+4+32+2048)

=2085

(25-1+29-1+212-1

=16+256+2048)

=2320

(21-1+24-1

=1+8)

=9

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

116

4.2.1. BIT ARRAY ECLAT ALGORITHM
Bit Array Eclat is a new algorithm that mines
association rules from the transaction file which
array is transformed as sparse bit matrix for
processing. This processing is done from
numerically transferred input file.

This algorithm shows the usage of sparse matrix to
mine association rules with bit array data structure.
This produces only positive association rules.

Algorithm 4.3 converts all the data items in the
transaction database into sparse bit matrix. With
the help of sparse bit matrix {item, tid}
representation, 1-itemset count is done quickly and
efficiently. Bit Mask Tid algorithmic procedure is
followed to find the frequent itemsets.

Algorithm 4.3: Bit_Array_Eclat

1. Initialize the matrix bit[n][m] where n-
> number of itemsets m-> no. of
transactions

2. For each item in the transaction repeat
the steps 3,4,5

3. for each transaction in the input file
repeat the step 4

4. Check whether the bit [item] [m] is not
equal to zero. If yes the increment the
total count (tcount)

5. Calculate the support using total count
divided by total no. of transactions

4.2.2. K-ITEMSET BIT SEARCH
ALGORITHM

The k-itemset (where k = 2, 3,…, n) combination
subset items are searched with the algorithm 4.4
using bit search. Bitwise AND operation is used
to find the k-itemsets in a single search

Algorithm 4.4: Searching of k- itemset using Bit

Search

Procedure (kth item combination in itemset)

1. for each transaction in Bit array repeat
the step 2

2. Bitwise AND can be used to find the
result value for subset with transaction
dataset. If the result value is as same as
the subset value, the k-itemsets are
present in the transaction

3. increment Bit_itemset count
4. Check whether bit_item_count is

greater than or equal to minsup. If yes
add the frequent bit_itemsets otherwise
delete item

4.2.3. SPARSE BIT MASK SEARCH
EXPLANATION
First of all, the frequent itemset is identified the
itemset whose support is greater than or equal to
the minimum threshold value. In the database
the every itemsets are found by using the bit
array structure. The above numeric transactions
are given in the table 4.3 as sparse bit matrix
format.

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

117

Table 4.3: Sparse Bit Matrix

Item
sets

Tids
Count

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 0 1 9

2 1 1 1 1 1 1 1 1 1 1 10

3 0 0 1 1 0 0 0 0 0 0 2

4 1 0 0 0 1 1 0 0 1 0 4

5 0 1 1 0 1 0 0 1 0 1 5

6 0 0 1 1 0 0 0 0 0 0 2

7 1 0 0 0 0 0 0 0 1 1 3

8 1 0 0 0 0 1 1 1 1 1 6

9 0 0 0 0 1 0 0 0 1 0 2

10 1 0 0 0 0 1 1 0 0 1 4

From the above table 4.3, sparse bits occupy
only 100 bits for 10 x 10 matrix data
representation.

Column wise itemset bits are bitwise AND
operated to find whether elements are found or
not in one search.

For example, the subset {2, 10} is used to search
in the transactions 4 and 6. From the subset, bit
representation of array is 1000000010.
Searching the subset bit array in the transaction 4.
Transaction bit array of T4 is 0000100111.
Subset bit array of {2, 10} AND Transaction of
bit array {T4}
1000000010 AND 0000100111 = 0000000100
The result value is 0000000100 which is not
equal to the subset bit array {2, 10}. Hence the
items are not present in the transaction 6.

Searching the subset bit array in the transaction 6.
Transaction bit array of T6 is 1010001011
Subset bit array of {2, 10} AND Transaction of
bit array {T6}
1000000010 AND 10100010111 = 1000000010.

The result value is 1000000010 which are equal
to subset bit value. Therefore, all items in the
subset are present in that transaction 6 (T6).

In this manner, all the frequent itemsets are
generated.

5. EXPERIMENT AND RESULTS

5.1. EXPERIMENTAL SETUP
Bit Stream Mask Search and Sparse Bit Mask
Search algorithms were experimented on six data
sets, which exhibit different characteristics and
the results evaluated. The data sets used were:

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

118

T10100K, T40I200200K, pump, chess, connect
and mushroom obtained from FIMI web site
[119]. For the experiments, Intel Pentium 2.5
GHz processor, Windows XP with 256 MB
RAM was used.

The six data sets were often used in the previous
study of association rule mining and were
downloaded from the websites [119] [120].
Some characteristics of these datasets are shown
in table 4.6.

Both Bit Stream Mask-Search and Sparse Bit
Mask-Search algorithms were implemented to
the above mentioned six datasets with the
various support levels. Experimental evaluation
is done with C++ language. Further, AprioriTrie
and FP Growth algorithms are also implemented
and their results are also tabulated.

Table 5.1: characteristics of experiment data sets

Data

No. of
items

Avg.
trans.
length

Total No.
of

transacti
ons

T10100K 500 10 50,000

Pump 500 50 29,219

T40I200200
K

942 39 50,000

Mushroom 120 23 8,124

Connect-4 130 43 67,557

Chess 75 40 3,225

6. PERFORMANCE ANALYSIS OF

FREQUENT ITEMSET WITH BIT
SEARCH

In Section 4, Bit Search is implemented in the
existing Apriori and eclat algorithms for the both
type representation. Both Bit Stream Mask

Search and Sparse Bit Mask Search results are
carried out and compared.

6.1. BIT SEARCH PERFORMANCE

EVALUATION

In theoretical analysis of algorithms it is
common to estimate their complexity in the
asymptotic sense, i.e., to estimate the complexity
function or arbitrarily large input. Big O
notation, omega notation is used to the new bit
search technique. Performance analysis is
measured through finding the time complexity of
the algorithms. The bit search complexity is the
complexity for all numeric values either presence
or absence as a single bit.

Complexity analyses of the new proposed
algorithms are defined as follows: For both
horizontal and vertical sparse bit representation
of the dataset are same processes.

Let number of items in dataset is M and let the
number of items in transaction be N. During the
searching process, all the items in the
transactions are converted as bit storage. The
required memory allocation is to represent the
array as bit elements. So the memory occupation
was reduced. Approximate number of bytes
required to the represent items and searching is
calculated as log M/2.

Time required to search any k-itemset (k=1,
2,….) in a single transaction is 1 (one). For N
number of transaction is O(N)=N which is the
lowest one while compared to any other
Association Rule searching technique. In Best
case, searching 1-itemset search space time is
1 and also in the worst case of k-itemset search
space time is also reduced to 1. This algorithm
implies its best performance for all itemset
combination from 1 to k search time is reduced
to 1 (one).
Figure 6.1 to 6.4 shows the comparison of six
datasets for various support levels execution time
for ApriroriTrie, FP-Growth,
BitStreamMaskSearch and SparseBitMaskSearch
respectively.

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

119

AprioriTrie

0

2

4

6

8

10

12

14

16

18

20

T10100K T40I200200K Pump Connect 4 mushroom chess

Datasets

R
u

n
 t

im
e

z

Series1

Series2

Series3

Series4

Series5

Figure 6.1: Run time comparison of AprioriTrie

Figure 6.1 and Figure 6.2 show the comparison
of AprioriTrie and FP Growth algorithms
respectively. These two algorithms execution
time is high.

Bit Stream Mask Search

0

1

2

3

4

5

6

7

8

9

10

T10100K T40I200200K Pump Connect 4 Mushroom Chess

Datasets

R
u

n
 t

im
e

(S
ec

)

5

10

15

20

25

Figure 6.2: Run time comparison of FP Growth

FP Growth

0

5

10

15

20

25

30

35

T10100K T40I200200K Pump Connect 4 mushroom chess

Dataset

ru
n

 t
im

e
(s

ec
) 5

10

15

20

25

Figure 6.3: Run time comparison of Bit Stream
Mask Search for various datasets

Figure 6.3 shows the Bit Stream Mask Search
algorithm execution time comparison with six
datasets.

Sparse Bit Mask Search

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T10100K T40I200200K Pump Connect 4 mushroom chess

Datasets

R
u

n
 t

im
es

 (
S

ec
)

5

10

15

25

Figure 6.4: Sparse Bit Mask Search Run time
comparison

Figure 6.4 represents the Sparse Bit Mask Search
algorithm time comparison for the datasets
T10100K, T40I20200K, Pump, Connect-4,
Mushroom and chess datasets respectively.

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

120

Run time comparison of Datasets

0

5

10

15

20

25

30

35

A
pr

io
riT

rie

F
P

 G
ro

w
th

B
S

M
S

S
B

M
S

A
pr

io
riT

rie

F
P

 G
ro

w
th

B
S

M
S

S
B

M
S

A
pr

io
riT

rie

F
P

 G
ro

w
th

B
S

M
S

S
B

M
S

A
pr

io
riT

rie

F
P

 G
ro

w
th

B
S

M
S

S
B

M
S

A
pr

io
riT

rie

F
P

 G
ro

w
th

B
S

M
S

S
B

M
S

A
pr

io
riT

rie

F
P

 G
ro

w
th

B
S

M
S

S
B

M
S

T40I200200K T10100K Pump connect=-4 Mushroom CHESS

Datasets

R
u

n
ti

m
e

(S
ec

) 5

10

15

20

25

Figure 6.5: Comparison of BSMS, SBMS, AprioriTrie and FP-Growth with datasets

In the figure 6.5, the new algorithms Bit Stream
Mask Search and Sparse Bit Mask Search
compared with the existing AprioriTrie and FP
Growth algorithms. This figure further
compared with six different datasets and also
various support level execution times. For the
dataset T40I20020K, Sparse Bit Mask Search
execution is less while compared with others in
all support levels. SBMS run time is faster than
other algorithms for the dataset T10100K in all
support levels. For Pump dataset, Bit Stream
Mask Search algorithm execution time is less
than compare with other algorithms. Sparse Bit
Mask Search algorithm run time is faster than
other algorithms for Connect-4 dataset. For
Mushroom dataset, SBMS execution time is
faster than FP Growth and AprioriTrie in all
support levels. Sparse Bit Mask Search is
superior in execution for the dataset Chess in all
support levels while compared with other
algorithms.

From the above comparison figure, it proves the
efficiency of Bit Search techniques reduced the
execution time more. Hence, Bit Stream Mask
Search and Sparse Bit Mask Search algorithms

are superior to the existing AprioriTrie and FP
Growth algorithms. Sparse Bit Mask Search run
time is less in all datasets and its support levels.

7. CONCLUSION

The above discussions are made with the
algorithms which are developed by the new bit
search technique. From these comparisons and
analysis conclude that the bit search produced
only low execution time in all datasets compared
with the existing algorithms. Both Bit Stream
Mask Search and Sparse Bit Mask Search run
time are very low while comparing with other
algorithms. Memory space allocation for Bit
Search is also less whereas GP-Growth and
AprioriTrie. Interesting application will be
developed as future enhancement.

REFERENCE:

[1]. Agrawal, R., Imielinski, T., and Swami, A.

N. ‘Mining association rules between sets of
items in large databases’. In Proceedings of
the 1993 ACM SIGMOD International

Journal of Theoretical and Applied Information Technology
15 July 2012. Vol. 41 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

121

Conference on Management of Data, 1993,
pp: 207-216.

[2]. Bayardo, R.J., ‘Efficiently mining long
patterns from databases’ . Proceedings of the
1998 ACM SIGMOD International
Conference on Management of Data, June 1-
4, 1998. New York, USA., pp: 85-93.

[3]. Bucila, C., J. Gehrke, D. Kifer and W.
White, ‘DualMiner: A dual-pruning
algorithm for itemsets with constraints’.
Data Mining and Knowledge Discovery, 7
2003. 241-272.

[4]. Calders, T. and B. Goethals, ‘Depth-first
non-derivable itemset mining’. Proc. SIAM
Int. Conf. Data Min., 119 2005. pp: 250-261.

[5]. Cheung, D.W., J. Han, V.T. Ng and C.Y.
Wong, ‘Maintenance of discovered
association rules in large databases: An
incremental updating technique’.
Proceedings of International Conference on
Data Engineering, Feb. 26-Mar. 1, 1996.
New Orleans, Louisiana, pp: 106-114.

[6]. Park, J.S., Chen M.S.and Yu, P.S. ‘Efficient
parallel mining for association rules’.
Proceedings of the 4th International
Conference on Information and Knowledge
Management, Nov. 29-Dec. 2, 1995.
Baltimore, MD., pp: 31-36.

[7]. Sharma, S., Tiwari, A. Sharma S. and
Pardasani, K.R. ‘Design of algorithm for
frequent pattern discovery using lattice
approach.’ Asian J. Inform. Manage, 2007.
1: pp: 11-18.

[8]. Zaki, M.J., Mitsunori, O. Parthasarathy S.
and Wei, L. ‘Parallel data mining for
association rules on shared memory
multiprocessors’. Proceedings of the 1996
ACM/IEEE Conference on High
Performance Networking and Computing,
Jan. 01, 1996. IEEE Computer Society,
Washington, DC., USA., pp: 1-25.

[9]. Bart Goethals ‘Survey on Frequent Patten
Mining’ 2004

[10]. FIMI dataset – http://fimi.cs.helsinki.fi/
[11]. http://miles.cnuce.cnr.it/

palmeri/datam/DCI /datasets.php
[12]. Margret H. Dunham, Data Mining:

Introductory and Advanced Topics , Pearson
Edition , 2004.

[13]. Agrawal, R. and R. Srikant, ‘Mining
sequential patterns’. Proceedings of the 11th
International Conference on Data
Engineering, March 6-10, 1995 Taipei,
Taiwan, pp: 3-14.

[14]. Pei, J., Han J. and Wang, W.
‘Constraint-based sequential pattern mining
in large databases’. Proceeding of the 2002
International Conference on Information and
Knowledge Management, Nov. 4-9, 2002.
McLean, VA., pp: 18-25.

