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ABSTRACT 
 

The traveling salesman problem (TSP) is a well-known NP-hard combinatorial optimization problem. The 
problem is easy to state, but hard to solve. Many real-world problems can be formulated as instances of the 
TSP, for example, computer wiring, vehicle routing, crystallography, robot control, drilling of printed 
circuit boards and chronological sequencing. In this paper, we present a modified hybrid Particle Swarm 
Optimization (MHPSO) algorithm in which we combine some principles of Particle Swarm Optimization 
(PSO), the Crossover operation of the Genetic Algorithm and 2-opt improvement heuristic. The main 
feature of our approach is that it allows avoiding a major problem of metaheuristics: the parameters setting. 
In the aim to prove the performance and convergence of the proposed algorithm, we have used it to solve 
some TSP instances taken from TSPLIB library. Moreover, we have compared our results with those 
obtained by other algorithms based PSO. 
 
Keywords: Traveling Salesman Problem, Particle Swarm Optimization, Optimization, Meta-heuristics. 
 

 
1.  INTRODUCTION 

    The traveling salesmen problem (TSP) is a 
classical NP-Hard combinatorial optimization 
problem [1]. It can be formulated as follows: giving 
a set of cities, and distances between them, the goal 
is to find the shortest tour visiting every city only 
once and returning to the starting city.  The 
problem where distance between two cities does not 
depend on the direction is called symmetric TSP; 
and asymmetric otherwise. The distance can be 
replaced by another notion, such as time or money. 
In all cases, we talk about cost.  
    The TSP finds application in a variety of 
situations such as vehicle routing, logistics, 
automatic drilling of printed circuit boards, x-ray 
crystallography, robot control, and chronological 
sequencing. TSP problem has been used during the 
last years as a basis for comparison in order to 
improve several optimization techniques. 
    TSP is considered to be NP-Hard problem, 
whose computational complexity rises 
exponentially by increasing the number of cities, 
making it impossible to solve very large instances 

in reasonable times. For a symmetric problem with 
n cities there are (n-1)!/2 possible tours. The time 
complexity of TSP problem is O(n!). Assuming that 
the time required to evaluate a path is 1µs, Table 1 
shows the combinatorial explosion of the TSP.  
 

Table 1. Number of possible paths, and             
computation  time estimated 

 
Number 
of cities 

Number of 
possibilities 

Computational 
time 

5 12 12 µ 
10 181440 0,18 s 
12 19958400 5,54 hours 
15 43 billions 12 hours 
20 60 E+15 1928 years 

   
     The proposed methods in the literature for 
solving the TSP can be classed into two classes: 
exact methods and approximated methods (or 
heuristics). The exact methods are guaranteed to 
find the optimal solution in a bounded number of 
steps, but with a limited number of cities. These 
methods provide the optimal solution but they are 
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very greedy in term of computation time required to 
reach the optimal solution. The time complexity of 
the proposed exact methods in the literature grows 
exponentially with n (the number of cities). For 
example, the exact solution of a symmetric problem 
with 2392 cities was determined over a period of 
more than 27 hours on powerful super computer 
[2]. The most effective algorithms in this class are 
"cutting-plane" and "branch and bound" [3]. 
However, approximated methods (heuristics and 
metaheuristics) have the advantage of finding a 
near optimal solution in a reasonable time. In fact, 
several heuristics are proposed in the literature. 
These heuristics can be classed in three classes: 

construction heuristics, improvement heuristics and 
composite algorithms. The construction heuristics 
built a cities tour by adding a new city at each step. 
They stop when the solution is found and do not try 
to improve it. In this category we can cite the 
nearest neighbor heuristic and the greedy algorithm. 
The improvement heuristics try to enhance the tour 
that has been generated by a construction heuristic, 
in the aim to obtain better tour quality. The local 
search algorithms 2-opt and 3-opt [2] are examples 
of the most used. In the same class, we find also 
Lin-Kernighan [2] algorithm, Tabu Search [4], and 
Simulated Annealing [5]. In the same class, we can 
cite other metaheuristics such as: genetic algorithm 
[6]-[7], ant colony algorithms [8] and particle 
swarm optimization [15]. Several approaches based 
particle swarm optimization algorithm are proposed 
in the literature as in [9]-[10]-[11]-[12]-[13]-[14]. 
     In this contribution, we proposed a new hybrid 
Particle Swarm Optimization (MHPSO) algorithm 
in which we combine some principles of Particle 
Swarm Optimization (PSO), the Crossover 
operation of the Genetic Algorithm and 2-opt 
improvement heuristic. The main feature of the 
proposed algorithm is that it allows avoiding a 
major problem of metaheuristics: the parameters 
setting. In fact it requires few parameters to be set.    
     The remainder of this paper is organized as 
follows. The PSO principle is described in section 
2. In the third section we describe the proposed 
algorithm. Experimental results are provided in 
section 4 and a conclusion is provided in the fifth 
section of this paper. 
 
2.  PSO PRINCIPLE 

     Particle Swarm Optimization (PSO) is a recent 
metaheuristic. It was developed by Kennedy and 
Eberhart  in 1995 for solving optimization problems 
[15]. It mimics the collective behavior of animals 
living in groups such as bird flocking and fish 

schooling. The PSO method involves a set of agents 
for solving a given problem. This set is called 
swarm, each swarm is composed of a set of 
members called particles. Each particle is 
characterized by position xid= (xi1, xi2,…, xid,…, 
xiD) and velocity vid= (vi1, vi2,…, vid,…, viD) in a 
search space of D-dimension. During the search 
procedure, the particle tends to move towards the 
best position (solution) found. At each iteration of 
the search procedure, the particle moves and 
updates its velocity and its position in the swarm 
based on experience and the results found by the 
particle itself, its neighbors and the swarm. It 
therefore combines three components (Fig 1): its 
own current velocity, its best position pbestid= (pbesti1, 
pbesti2,…, pbestid,…, pbestiD) and the best position 
obtained by its informants or by the swarm gbest = 
(gbest1, gbest2,…, gbestd,…, gbestD).  

The research process is based on two rules: 
- Each particle has a memory which can store the 
best position in which it has already passed and it 
tends to return to that position. 
- Each particle is informed by the best known 
position within its neighborhood and it will tend to 
move towards this position. 
Each particle will move depending on its velocity 
and the two best positions she know (his own and 
that of the swarm) according to the following two 
equations [16]:  

vid(t)= ω vid (t-1) + c1 r1 (pbestid (t-1) - xid (t-1)) + 

 c2 r2 (gbestd (t-1) - xid (t-1))                               (1)  

xid (t)= xid (t-1) + vid (t)                                    (2)   

 
ω is an inertia coefficient. (xid (t), xid (t-1)), (vid (t), 
vid (t-1)): position and velocity of particle i in 
dimension d at times t and t-1, respectively. pbestid 
(t-1), gbestd(t-1) : the best position obtained by the 
particle i and the best position obtained by the 
swarm in dimension d at time t-1, respectively. c1, 
c2: two constants representing the acceleration 
coefficients. r1, r2: random numbers drawn from the 
interval [0,1[. vid (t-1), c1 r1 (pbestid (t-1) - xid (t-1)), 
c2 r2 (gbestd(t-1) - xid (t-1)): the three components 
mentioned above, respectively.  
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                      Figure 1.  A particle displacement 
 
The position of particle i indicates the possible 
solution in the multidimensional space of the 
addressed problem, and the velocity indicates the 
amount of change between the current position and 
the previous one. We could calculate the particle’s 
fitness by putting its position into a designated 
objective function f (xid).. When the fitness is 
higher, the corresponding position is better. A 
pseudo code of PSO algorithm is shown in 
Algorithm 1[17].  

 

 

       The PSO was originally developed for 
continuous valued spaces but many problems are, 
however, defined for discrete valued spaces where 
the domain of the variables is finite. Kennedy and 
Eberhart introduced a discrete binary version of 
PSO in 1997 for discrete optimization problems 
[18]. In binary PSO, each particle represents its 
position in binary values which are 0 or 1. The 
velocity vid of the particle i is calculated from 
equation (1). vid is a set of real numbers that must 
be transformed into a set of probabilities, using the 
sigmoid function as follows: 

 

   
)exp(1

1
)(

id
id

v
vsig

−+
=                          (3)     

Where sig(vid) represents the probability of bit xid 
takes the value 1. The position xid of particle i is 
updated as follows: 

 
          1 If   r < sig (vid) 

 xid =       0 Otherwise                      (4) 

 
Where, r is a random number taken from the 
interval [0, 1[. 
To avoid the problem of the divergence of the 
swarm, the velocity vid is generally limited by a 
maximum value Vmax and a minimum value          
-Vmax, i.e. vid ∈ [-Vmax, Vmax] 

 
3.   THE PROPOSED ALGORITHM (MHPSO) 
 

    PSO is a recent metaheuristic that has proved its 
simplicity of implementation, its effectiveness and 
its very fast convergence [17]. However, the 
selection and adaptation of the large number of 
PSO parameters such as: swarm size, inertia 
coefficient ω, acceleration coefficients c1 and c2, 
play a crucial role for good and efficient operation 
of PSO. On the other hand, PSO may be easily 
trapped into local optima if the global best and local 
best positions are equal to the position of particle 
over a number of iterations.  
     In the aim to benefit from all these advantages 
and escape all these shortcomings, we are inspired 
by the PSO principle, the crossover operation of the 
Genetic algorithm which allows a good exploration 
of the search space and the 2-opt heuristic that has 
proved its efficiency in dealing with TSP. Our 
objective is to propose a New Hybrid Particle 
Swarm Optimization algorithm that is characterized 
by its simplicity, few parameters to be set and 
which provides a good balance between 

Algorithm 1 : pseudo code for basic PSO 
1. Initialization : 

• Parameters and size of the swarm (S); 

• Randomly initialize particles positions 
and velocities; 

• For each particle, let pbestid = xid;  

• Calculate f (xid) of each particle;  

• Calculate gbestd; //  the best of pbestid  
2. While (termination criterion is not met) { 

  For (i = 1 to S) { 

• Calculate the new velocity using 
equation (1); 

• Calculate the new position using 
equation (2); 

• Calculate f (xid) of each particle;  

• If (f (x id) < f (pbestid)) 
           pbestid = xid;  // Minimization case                           

• If (f (pbestid) < f (gbestd))  
            gbestd = pbestid;                          

     } 
} 

3. Show the best solution found gbestd;   
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exploitation and exploration of the search space. 
The proposed algorithm is described below. 

 
3.1.  The problem formulation  
 
     The Traveling Salesmen Problem can be 
formulated as follows: assuming n the number of 
cities to visit, C=(cij) the matrix of distances (costs), 
where cij is the distance between city i and city j (i, 
j = 1, ... n). The problem that we want to resolve is 
to find a permutation (i1,i2,i3,…,in) of integers from 
1 to n which minimize the expression: 
ci1i2+ci2i3+ci3i4+…..+cini1. If cij  = cji for all i and j, the 
problem is symmetric, otherwise it is asymmetric. 
 
3.2.  The 2-opt method 
 

    2-opt is a local search method. It is a well-known 
method for solving TSP. It provides feasible results 
within a reasonable time. 2-opt is used primarily to 
improve a solution in hybrid approaches. The 2-opt 
algorithm starts with a given tour and then searches 
in the neighborhood of the current solution all 
round improving the current configuration. 
 

 
                    
                       Figure 2.  2-opt move 
 
    During the improvement process, the algorithm 
examines whether the exchange of two edges 
produces a shorter tour. The algorithm continues 
until no improvement is possible (Figure 2). The 
steps of the algorithm are presented below: 
1.  Take two pairs of consecutive nodes, pairs (A,B) 
and (C,D) from a tour. 
2.  Check if the distance (AB + CD) is higher than 
(AD + BC) 
3.  If that is the case, swap A and C, resulting in 
reversing the tour between the two nodes. 
4. If improvement of the tour, then go to 1, 
otherwise stop. 
The time complexity for 2-opt algorithm is O (n2).     

 
 
 
 

3.1.   Crossover Operation 
 

          The Crossover operation is one of the genetic 
algorithm operations which has introduced by John 
Holland in 1960 [21. The main role of the crossover 
operation is to produce a new population (a set of 
individuals). It consists in combining the 
characteristics of two individuals (parents) to 
produce one or two new individuals (childs). In the 
proposed algorithm, we have introduced the 
crossover operator in the aim to produce a new 
population. We have used the crossover operation 
between the best position pbestid of particle i and its 
current position xid to produce a new particle. Then, 
we apply the crossover operator between the best 
position obtained by the swarm gbestd and the current 
position xid of the particle i to produce another 
particle. Afterward, we choose the best solution 
(child) to represent the new particle. A variety of 
crossover operators has been proposed in the 
literature to solve the traveling salesman problem. 
We cite as example: the ERX (Edge Recombination 
Crossover, the PMX (Partially Mapped Crossover), 
the OBX (Order-Based Crossover), the DPX 
(Distance Preserving Crossover), the MPX 
(Maximal Preservative Crossover) and the ECH 
(Exchange Crossover Heuristic) [6]. For our part 
we inspired by the ECH algorithm and we proposed 
a modified version, which is more suited to the 
traveling salesmen problem. It allows the 
generation of feasible solutions that meet strict 
constraints of the traveling salesman problem. 
Assuming that we have two particles (solutions) x1, 
x2 and we want to cross them together to get a new 
particle. We first choose randomly a city v from the 
n cities to visit. Next, we generate two new 
particles by moving the city v in the beginning of x1 
and x2. After this, we initialize the new particle x 
(the child or the new solution) by the city v. And 
we continue the construction of x, by concatenating 
the cities one after another. 
At each iteration of the construction procedure of x, 
we are faced with two cities to choose. The city v1 
of the first parent (x1) and the city v2 of the second 
parent (x2). To opt for one of the cities v1 and v2, 
we choose the city closest to the last city of x. 
During the construction process of x, we must 
ensure that the two candidate cities (v1 and v2) are 
not included in the new solution x because we must 
respect the principal the constraint of the traveling 
salesman problem (every city must be visited only 
once). The proposed crossover algorithm is noted 
by MECH (Modified ECH). A pseudo code of the 
MECH algorithm is presented in Algorithm 2 and 
its principle is explained by an example in Figure 3. 
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  v=1  
x1= 6 2 1 5 4 3              
x1= 1 6 2 5 4 3   
x2= 1 3 4 5 2 6              
x2= 1 3 4 5 2 6 
x=1 
Choose 1-6 or 1-3 : 
x=1 6 
Choose 6-2 or 6-3 : 
x=1 6 3 
Choose 3-2 or 3-4 : x=1 6 3 4 
Choose 4-2 or 4-5 : x=1 6 3 4 2 
Choose 2-5 or 2-5 : x=1 6 3 4 2 5 
Choose 5-4 or 5-2 : x=1 6 3 4 2 5              
Choose 5-3 or 5-6 : x=1 6 3 4 2 5 
                                                                   x=1 6 3 4 2 5 

0  13   12 
 0     
 13 0 9   
 8  0 9  
    0  
 11 10   0 

 
Distance Matrix 

Figure 3.  An example of the MECH crossover 
 

3.4.  The MHPSO Algorithm 
     

    As any algorithm, the first step in the MHPSO 
algorithm is to initialize some necessary parameters 
for good and efficient operation of the algorithm. 
The main characteristic of the MHPSO algorithm is 
its simplicity. In fact, comparing with other 
population metaheuristics such as PSO and GA, in 
the proposed algorithm there are few parameters to 
be set. Steps of the proposed algorithm (MHPSO) 
are presented below. 
Step1:  

          - Initialize a swarm size S 
          - Random position of each particle. 
          - For each particle, let pbestid = xid 

  Step 2: Calculate the fitness of each particle 
  Step 3: Calculate gbestd 

Step 4: Four each particle, calculate her new 
position using the following equation (5): 

       xid= Max[(pbestid�xid),( gbestd�xid )]                (5)   

       Where «�» is the MECH crossover. 

Step 5: Improving 10% of particles positions  
 (solutions) using 2-opt method. 
 
Step 6: Update pbestid and gbestd as follows: 
        If (f (xid) < f(pbestid))   
                pbestid = xid;                                      (6) 
        If (f (pbestid) <f (gbestd))    
               gbestd = pbestid; for i=1,…,n     (7) 
 
Step 7: Stop iterations if stop condition is verified. 
Return to Step 4, otherwise. 

The solution of the problem is the last gbestd. Figure 
4 shows the flowchart of the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4.  Flowchart of the proposed algorithm    

                                     (MHPSO) 

 Algorithm 2: MECH 
   
   Input: Two solutions x1 and x2  
   Output: One solution x 

   Choose a random city v; 
   moving the city v in the beginning of x1 and x2; 
   Initialize x by v : x=v; 
   i=2; j=2; 
  While  [(i&j) <= n]{ 
     If [(x1(i) & x2(j))∈x]{ 
         i++; j++; 
     Otherwise-if [x1(i) ∈x] 
         concatenate x2 (j) to x; 
          j++;  
     Otherwise-if [x2 (j) ∈x] 
        concatenate x1 (i) to x; 
         i++ ;  
     Otherwise-if [(x1 (i) & x2 (j))∉ x] 
        u= the last city in x; 
        If  distance [u,x1 (i)] <  distance[u,x2 (j)]{   
                concatenate x1 (i) to x; i++;   
        Otherwise 
                 concatenate x2 (j) to x; j++;  
        } 
      } 

    }                

Initialization of S, xid, pbestid 

Calculate gbestd 

Upload pbestid and gbestd using equations 
(6) and (7) 

Calculate xid  using equation (5) 

Stop and print gbestd 

Termination 
criterion is met 

Improving 10% of positions with     
2-opt 

Calculate the fitness of each particle 
particule             

Yes 
No 
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4.  EXPERIMENTAL RESULTS 

    To validate the feasibility and effectiveness of 
the proposed approach, we have applied it on some 
TSP instances taken from TSPLIB [22]. The 
proposed algorithm was implemented in Matlab 7 
with the following parameters: 50 particles, 200 
iterations in maximum. Two parts of experiments 
were performed. First, we have tested the MHPSO 
algorithm on some TSP instances from TSPLIB. In 
the second part of experiments, we have compared 
the obtained results in terms of best solution with 
the exact solution (The best known), the obtained 
solution by the DPSO [9] and the obtained solution 
by the CDPSO [14].  
Table 2 shows the experimental results of our 
MHPSO algorithm with some instances taken from 
TSPLIB. The first column, indicates the instance 
name, the second column indicates the problem size 
i.e. number of cities. The third column indicates the 
best known solution from TSPLIB. The fourth 
column indicates the best results obtained by the 
MHPSO. Table 2 shows that the proposed 
algorithm is able to find the best known result of 
the major instances.  
 

 
Table 2.  MHPSO results 

 
Table 3 shows a comparison in terms of best 
solution between the exact solution (best known), 
our MHPSO algorithm, the DPSO [9] algorithm 
and the CDPSO [14] algorithm. The first column 

indicates the instance name. The second column 
indicates exact solution as declared in TSPLIB. The 
third fourth and fifth columns record the best 
results obtained by the MHPSO, the DPSO and the 
CDPSO. N/A in Table 3 means “Not Available” 
result in paper reference. 
Table 3 shows that the proposed algorithm 
outperforms the DPSO and the CDPSO algorithms. 
In fact, the MHPSO is able to find the best result of 
all instances. 
The obtained results are very encouraging; they 
prove the effectiveness of the proposed algorithm. 
 

 
Table 3.  Comparative results between MHPSO,   
                     DPSO and  CDPSO. 
 
5.  CONCLUSION 

 
    In this paper, we proposed a new hybrid 
algorithm based on particle swarm optimization to 
solve the traveling salesman problem. In this 
algorithm, we were inspired by the PSO principle, 
the crossover operation of the genetic algorithm and 
also the improvement heuristic 2OPT. The 
proposed algorithm is characterized by its 
simplicity and a good balance between exploitation 
and exploration of the search space. It requires few 
parameters to be set. In the aim to testing and 
proving the efficiency of the proposed algorithm in 
dealing with the combinatorial optimization 
problems, we have used it to solve the well known 
NP-Hard combinatorial optimization problem of 
traveling salesmen problem  .The obtained results 
are very encouraging, they prove the effectiveness 
of the proposed algorithm. Based on these 
promising results, our fundamental outlook moving 
towards the application of the proposed algorithm 
on large instances and using it to resolve other NP-
Hard combinatorial optimization problems.   
 
 

Instance 
Proble
m size 

Best 
Known 

MHPSO 
result 

bays29 29 2020 2020 
berlin52 52 7542 7542 

dantzig42 42 699 699 
eil51 51 426 426 
eil76 76 538 538 
eil101 101 629 629 
fri26 26 937 937 

kroA100 100 21282 21282 
kroB100 100 22141 22141 
kroC100 100 20749 20749 
kroD100 100 21294 21309 
kroE100 100 22068 22068 
kroB150 150 26130 26130 

pr107 107 44303 44391 
Pr124 124 59030 59030 
Pr76 76 108159 108159 
Rat99 99 1211 1212 
Pr144 144 58537 58537 

Suiss42 42 1273 1273 
St70 70 675 675 

Instance Best 
Known 

MHPSO 
Best 

solution 

DPSO 
Best 

solution 

CDPSO 
Best 

solution 
eil51 426 426 427 426 

berlin52 7542 7542 7542 7542 
st70 675 675 675 675 
eil76 538 538 546 538 
Pr76 108159 108159 108280 108159 

kroA100 21282 21282 N/D 21282 
kroE100 22068 22068 N/D 22068 
Pr124 59030 59030 N/D 59030 
Pr144 58537 58537 N/D 58537 

kroB150 26130 26130 N/D 26141 
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