
Journal of Theoretical and Applied Information Technology
15 May 2012. Vol. 39 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

104

DOUBLE COMPRESSION OF TEST DATA USING
HUFFMAN CODE

1R.S.AARTHI, 2D. MURALIDHARAN, 3P. SWAMINATHAN

1 School of Computing, SASTRA University, Thanjavur, Tamil Nadu, India
2Assistant professor, School of Computing, SASTRA University, Thanjavur

3Dean, School of Computing, SASTRA University, Thanjavur

 E-Mail: 1aarthirs@ymail.com , 2murali@core.sastra.edu , 3deanpsw@sastra.edu

ABSTRACT

Increase in design complexity and fabrication technology results in high test data volume. As test size
increases memory capacity also increases, which becomes the major difficulty in testing System-on-Chip
(SoC). To reduce the test data volume, several compression techniques have been proposed. Code based
schemes is one among those compression techniques. Run length coding is one of the most popular coding
methodology in code based compression. Run length codes like Golomb code, Frequency directed run
Length Code (FDR code), Extended FDR, Modified FDR, Shifted Alternate FDR and OLEL coding
compress the test data and the compression ratio increases drastically. For further reduction of test data,
double compression technique is proposed using Huffman code. Compression ratio using Double
compression technique is presented and compared with the compression ratio obtained by other Run length
codes.

Keywords:– Test Data Compression, Run Length Codes, Golomb Code, OLEL Code, Huffman Code

1. INTRODUCTION

Compression is possible for data that are

redundant or repeated in a given test set.
Compression method is broadly divided into
lossless and lossy methods, lossless method which
can reconstruct the original data exactly from the
compressed data and lossy method which can only
reconstruct an approximation of the original data.
Lossless methods are commonly used for text and
lossy methods used for images and sound where a
little bit of loss in resolution is often undetectable
or at least acceptable.

Test data volume is a major problem encountered

in the testing for System-on-Chip (SoC) design.
The volume of test data for a SoC is increasing
rapidly. The clock rate of the channel, number of
channels, amount of test data of the channel are
some of the important parameters for the Automatic
Test Equipment (ATE) to function. Since all these
parameters are large in number, the test time is also
high and low on the other case. Therefore, to
mitigate the test time, the amount of test data must

be decreased. One way to achieve it is to compress
the test data.

Test time≥

Test data compression tells about, compressing

the test data to reduce the test volume and
increasing the compression ratio. Test data
compression is divided into three categories: 1.
Code-based schemes, 2. Linear-decompression-
based schemes, 3. Broadcast-scan-based schemes.
Code based schemes use data compression codes to
encode the test data. This performs partitioning the
original data into groups, and each group is
replaced with a codeword to produce the
compressed data. Linear - Decompression - based
schemes decompress the data using only linear
operations with wires, LFSR and XOR networks.
Broadcast - scan - based schemes are based on the
idea of broadcasting the same value for multiple
scan chains, i.e., a single channel drives multiple
scan chains [1].

Journal of Theoretical and Applied Information Technology
15 May 2012. Vol. 39 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

105

Among the code-based techniques, run length
coding is an important methodology. Run length
coding is one of the lossless type data compressions
like Huffman and Arithmetic coding technique that
is based on a statistical model (occurrence
probabilities). Universal coding consists of
Fibonacci coding, Elias coding, Levenstein coding.
Elias coding has Elias Delta, Elias Gamma, and
Elias Omega coding. Dictionary based compression
also involves LZW coding. More number of
efficient compression techniques have been
proposed, such as Golomb code [16] [17] [18]
Variable-length Input code codes (VIHC)15,
Frequency Directed run length code (FDR) [19]
[20], Extended FDR [21], Modified FDR [22],
Shifted Alternate FDR [23] [24], which will reduce
the total number of test data and also increases the
compression ratio.

2. RUN LENGTH BASED CODES

Run length code is a very simple form of data
compression technique, in which sequences or runs
of consecutive repeated data values are replaced by
a single data value. There are several run length
based codes like Golomb code, Frequency Directed
run length code (FDR), Extended FDR, Modified
FDR, and Shifted Alternate FDR. Other than this,
we have an OLEL coding methodology. From these
techniques, better compression ratio is achieved. To
find out the compression ratio the equation is
formulated as,

%compression=

3. HUFFMAN CODING

Huffman code is mapped to the fixed length
symbols to variable length codes. Huffman
algorithm begins, based on the list of all the
symbols or data which are arranged in descending
order of probabilities. Next it generates a binary
tree, by the bottom-up approach with a symbol at
every leaf. This has some steps, in each step two
symbols with the smallest frequencies are chosen,
added to the top of the partial tree. The selected
smallest frequencies symbols are deleted from the
list, which are replaced by a secondary symbol
denoting the two original symbols. Therefore, the
list is reduced to one secondary symbol, which
denotes the tree is complete. Finally, assign a
codeword for each leaf or symbol based on the path
from the root node to symbols in the list [3] [4].

4. SHANON-FANO CODING

The procedure is done by a more frequently
occurring string which is encoded by a shorter
encoding vector and a less frequently occurring
string is encoded by a longer encoding vector.
Shannon-Fano coding relied on the occurrence of
each character or symbol with their frequencies in a
list and is also called as a variable length coding.
According to their frequency, the list of symbols is
sorted, by the most frequently occurring symbols at
the left side and the least most is takes place at the
right. Divide the symbols into two sets, with the
total frequency of the left set being as close to the
total of the right set as possible and assign 0 in the
left set of the list whereas assign 1 in right set of the
list . Repeatedly divide the sets and assigning 0 and
1 to the left and right set of the lists until each
symbol has a unique coding [5].

5. DICTIONARY BASED COMPRESSION

Lempel-Ziv-Welch (LZW) is a category of a
dictionary–based compression method [6] [7] [8]. It
maps a variable number of symbols to a fixed
length code. LZW places longer and longer
repeated entries into a dictionary. It emits the code
for an element, rather than the string itself, if the
element has already been placed in the dictionary.

In a dictionary-based data compression

technique, a symbol or a string of symbols
generated from a source alphabet is represented by
an index to a dictionary constructed from the source
alphabet. In a dictionary based coding to build a
dictionary that has frequently occurring symbols
and string of symbols. When a new symbol or
string is found and that is contained in the
dictionary, it is encoded with an index to the
dictionary. Or else, the new symbol is not in the
dictionary, the symbol or strings of symbols are
encoded in a less efficient manner.

6. ARITHMETIC CODING

One of the powerful techniques is called arithmetic
coding [9]. This converts the entire input data into a
single floating point number. Between source
symbols and code word, there is no one-to-one
correspondence. Here a single arithmetic code word
is assigned for an entire sequence of symbols. The
interval of real numbers between 0 and 1 is defined
by the codeword. The interval denoting it become
smaller and the number of bits which are required
to represent the interval become larger. According

Journal of Theoretical and Applied Information Technology
15 May 2012. Vol. 39 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

106

to the probability of occurrence, each bit symbol
reduces the interval size.

7. UNIVERSAL CODING

Elias Gamma code, Elias Delta code, Elias
Omega code [11] [12] the positive integers are
encoded by the universal code, developed by Peter
Elias. Levenstein code is also a universal code that
encodes the non negative integers by Vladimir
Levenshtein. An advantage of universal code is
behalf of Huffman codes. It is not mandatory to
find the probabilities of the source string exactly.

7.1. Elias Gamma coding:

In Elias Gamma coding, binary values are always

expressed as x, and it will
begin with 1, in this, few bits as possible. From
this, the result will be the decodable code; when the
number of zeros in the prefix is doubled, it gives
the total code word length that is exactly greater
than it by one. After completion of an encoder, the
first 1 of codeword length is known. Hence the
code is not repeated for minimum number of times.
The codeword length will keep on increasing;
hence, the entropy approach goes to infinity [12].

7.2. Elias Delta Coding:

 Then Elias Delta coding will divide the integer

into the highest power of 2. The highest power of 2
contains (2N’). And the remaining N’ denotes the
binary digits of the integer. Encode function where
N= N’ + 1 is used to encode the data with Elias
Gamma coding. Finally combine the remaining N’
binary digits to the N. With the representation of its
order of magnitude in a universal code, it works by
prefixing the integer like Gamma and Delta coding
[12].

7.3. Elias Omega Coding:

Other than the two codes, Elias Omega code

encodes the prefix recursively. Sometimes it is also
called as a recursive Elias code. Omega coding is
used to compress the data in which smaller values
are much more frequent than larger values. To
encode a number, first place a zero at the end of the
binary code representation.

Secondly, if the code contains one, stop at that

point .Otherwise we need to include the binary code
representation of the number as group to the
beginning of the code representation. Finally,

repeat the second step, and then subtract one from
the number of previously calculated digits, after the
new encoded number is found.

Fibonacci code is a one type of universal code

that converts positive integer numbers into binary
code words. Each binary code word ends with 11
and it doesn’t have other instances of “11” before
the end of the binary codeword [13] [14].

8. GOLOMB CODE [16]

Golomb code was invented by Solomon W.
Golomb in 1960. Golomb code is variable-variable
length code. The main advantage of Golomb code
is the very high compression ratio. Encoding
procedure has two steps, in first step a test set TD is
to produce its difference vector test set Tdiff. So the
pre-computed test set is TD = {t1, t2, t3. . . tn}. Its
difference vector is then given by,

 Tdiff = {t1, t1 t2, t2 t3,…tn-1 tn }.

Another step in encoding procedure is to select
the Golomb code parameter m, this indicates the
group size.

Once group size m is concluded, the runs of 0s in
Tdiff is mapped to groups of size m whereas each
group corresponding to a run length. The numbers
of such groups are determined by the length of the
longest runs of 0s in Tdiff.

Finally, the code words are separated into equal
sized groups m (m=2N, any power of 2). Each group
Ak is assigned a group prefix (k-1) runs of 0s ended
with 1 and as each group symbols which are
unique. The group prefix and a tail of N bit which
identifies the members in a group comes under the
final code word.

The Table 1 shows the encoding process of
Golomb code by the test data. A simple example is
explained, the test data Tdiff is

0000000100000001
0000000100100000
0010000000100000
1000000010000000
1000001000000010
0000001000000011
0000000100000001

Table 1- Golomb Code

Journal of Theoretical and Applied Information Technology
15 May 2012. Vol. 39 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

107

Grouped test data: 00000001 00000001 00000001
001 00000001 00000001 000001 00000001
00000001 000001 00000001 00000001
00000001 1 00000001 00000001 – 112 bits

Compressed data: 1011 1011 1011 010 1011
1011 1001 1011 1011 1001 1011 1011 1011
000 1011 1011 – 62 bits.

% compression = ((112-62)/62) * 100 = 44.6%

Therefore, the compression ratio increases and
test data will be reduced.

9. FREQUENCY DIRECTED RUN LENGTH

CODE

An FDR code is a variable-to-variable length
code which is mapped as variable-length runs of 0s
to codeword of variable length. A run length l is
defined as a runs of 0s terminating with a 1. Hence,
00000001 is run length of seven (l=7) and a single
1 is a run length of zero (l=0). Each codeword
consists of two parts, a group prefix and a tail.
Group prefix is used to identify the group to which
the run belongs. Tail is used to identify the
members within the group [19].

FDR code has some characteristics:
1. The prefix and tail should have equal length in
codeword. So, each prefix and the tail are one bit
long for group A1, two bits long for A2 etc.
2. The length of the prefix for group Ai equals i. For
example, the prefix length is two bits for group A2,
three bits for group A3.
3. For any codeword, the prefix is similar to the
binary representation of the run length
corresponding to the first element of the group. For
example, run length 8 belongs to group A3 and the

first element of this same group has run length 6.
So the prefix of the codeword for run length 8 is
110 and also run length 6 has the prefix value 110.
4. The codeword size increases by two bits, one bit
for the prefix and one bit for the tail. As we move
from group Ai to group Ai+1. The Table 2 tells the
encoding process of FDR.

Table 2 – FDR Code

Grouped test data: 00000001 00000001 00000001
001 00000001 00000001 000001 00000001
00000001 000001 00000001 00000001
00000001 1 00000001 00000001 – 112 bits

Compressed data: 110001 110001 110001 1000
110001 110001 1011 110001 110001 1011
110001 110001 110001 00 110001 110001 – 86
bits

%compression = ((112-86)/112)*100 = 23.20%

10. EXTENDED FDR

The extended form of FDR is EFDR, which is
used to compress the data as efficient as FDR. So to
encode both runs of 0s which ends with bit 1 and
runs of 1s which ends with bit 0 are encoded like
FDR but an extra bit is included at the beginning of
the code word. If the test data encodes runs of 0s,
then add ‘0’ bit at the beginning of the code word
whereas runs of 1s, then add ‘1’ bit at the beginning
of the code word. So that the appended bit of the
codeword is 0, then the run is of 0 type and if the
appended bit of the codeword is 1, then the run is of
1 type. However, in this code there is no run length
of size zero, because we encode both runs of 0s and
1s. In this code when moving from group Ai to
group Ai+1, the length of the codeword increases
by two bits, one for the prefix and one for the tail.
In EFDR, the codeword which has one extra bit is

Journal of Theoretical and Applied Information Technology
15 May 2012. Vol. 39 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

108

included, when compared to FDR [21]. The Table 3
shows an encoding procedure for extended form of
FDR. This will reduce the given test data and
named as compressed data.

Table 3 - EFDR Code

Grouped test data: 00000001 00000001 00000001
001 00000001 00000001 000001 00000001
00000001 000001 00000001 00000001
00000001 10 0000001 00000001 – 112 bits

Compressed data: 0110000 0110000 0110000
001 0110000 0110000 01010 0110000 0110000
01010 0110000 0110000 0110000 100 01011
0110000 – 98 bits

% compression = ((112-98)/112)*100 = 12.5%

10. MODIFIED FDR

The Modified FDR code is a class of variable-to-
variable length encoding method, which maps
variable-length runs of zeros to code words of
variable length. MFDR code can acquire better
compression efficiency than FDR code. On the
basis of analysis, when the probability of 0s in the
test set is greater than 0.856, a better compression
ratio than FDR is obtained [22].

MFDR code has some properties:
1. MFDR codes are separated into groups A1, A2,
and so on. Each code word is combined with the
group prefix and tail.
2. A parameter is denoted as r (≥1), is given to
promote the flexibility and the compression ratio.
3. MFDR codes consist of three class,

a) First class represents the group A1, which
consists of set of run length L, where 0≤L≤2r+1 -1.
The prefix is set as 01 and the tail length is r+1.
b) Second class represents the group as A2, A4,
A6, A8…A2k, where k≥1. The group prefix can
be indicated as pkpk-1…p0, where pm = 1when
1≤m≤k and p0 = 0. The tail part of a codeword
contains k+r bits.
c) Third class includes the groups as A3, A5, A7,
A9…A2k+1, where k≥1. The group prefix can be
denoted as pk+1 pk pk-1…p0, where pm = 0when
1≤m≤k+1 and p0 = 1. The tail part contains k+r
bits.

Table 4 - MFDR Code

Thereby, the encoding procedure is illustrated in
the Table 4. The given test data is compressed by
the codeword and hence reduced bits are acquired.

 Grouped test data: 00000001 00000001 00000001
001 00000001 00000001 000001 00000001
00000001 000001 00000001 00000001
00000001 1 00000001 00000001 – 112 bits

Compressed data: 1011 1011 1011 0110 1011
1011 1001 1011 1011 1001 1011 1011 1011
0100 1011 1011 - 64 bits

 % compression = ((112-64)/112)*100 = 42.8%

11. SAFDR

Shifted alternate FDR is an evolution of
Alternating run length. It consists of alternate runs
of zeroes or runs of ones. In shifted alternate FDR,
only one bit will be added i.e., add ‘0’ or ‘1’ at the

Journal of Theoretical and Applied Information Technology
15 May 2012. Vol. 39 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

109

beginning to indicate the type of first run length.
Then the successive run lengths are automatically
allocated.

In SAFDR, there is no run length of size ‘0’. So
code word starts with the run length as 1 and so on.
From the alternating run length coding, the run
length is shifted upward by one position. This
SAFDR performs higher compression compared to
alternate FDR. It is also a variable-to-variable
length encoding method and comprise of two parts,
group prefix and tail. The prefix identifies the
group in which the run length occurs, and the tail
denotes the member in the group. Prefix and tail are
of equal length [23] [24].

Table 5 – SAFDR

Normally, this SAFDR is same as the FDR
codeword, but the difference is to start from the run
length 1. The Table 5 shows an encoding procedure
for compressing the test data and the original test
data is reduced to form a compressed data.

Grouped test data: 0000000 1 0000000 1
0000000 1 00 1 0000000 1 0000000 1 00000
1 0000000 1 0000000 1 00000 1 0000000 1
0000000 1 0000000 11 0000000 1 0000000 1 –
112 bits

Compressed data: 0 110000 00 110000 00
110000 00 01 00 110000 00 110000 00 1010
00 110000 00 110000 00 1010 00 110000 00
110000 110000 01 110000 00 110000 00 – 110
bits

% compression = ((112-110)/112)*100 = 1.7%

12. OLEL CODING

OLEL coding is also a variable-to-variable length
encoding method. The codeword is divided into
two parts according to the position, odd bits and
even bits. The odd bits of codeword represent the
length of the runs and the even bits of codeword
represents whether a run is finished.

The encoding procedure for OLEL coding as, the
column 1 specifies the length of the runs and the
column 2 has the number of groups. The column 3
indicates codes for corresponding runs and the
column 4 has improved codes for corresponding
runs.

The every value of column 3 is greater than the

length of the corresponding runs. The Codes
(Column 3) are calculated by adding two to the run
length. For example, the run length 5 is added with
number 2 and converting it to the binary number
(5+2)10 = (7)10 = (111)2. In the column 3 in the
Table VI, every code has the highest bit in the
codes that is 1, so to reduce the 1 bit from the codes
and to form improved codes; the eliminating 1 is
no need to be encoded.

The last column is codeword; all odd bits of the

codeword are corresponding improved codes. And
all even bits of the codeword are labels, which
indicate whether the codeword ends. When the
label is 1, the corresponding codeword ends.
Otherwise it represents that the corresponding
codeword continues [25].

Finally, the Table 6 gives an encoding procedure

for OLEL coding and produces the compressed
bits.

Grouped test data: 00000001 00000001 00000001
001 00000001 00000001 000001 00000001
00000001 000001 00000001 00000001
00000001 1 00000001 00000001 – 112 bits.

Compressed test data: 000011 000011 000011
0001 000011 000011 1011 000011 000011
1011 000011 000011 000011 01 000011
000011 – 86 bits.

Journal of Theoretical and Applied Information Technology
15 May 2012. Vol. 39 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

110

16

12 4

2 2

1 1

010 000

1001

1011

0

0

0

1

1

1

Table 6 – OLEL Code

%compression = ((112-86)/112)*100 = 23.21%

13. PROPOSED DOUBLE COMPRESSION

USING HUFFMAN CODE TECHNIQUE

In this method, we perform a double compression
method. First, the data is compressed by any one of
the run length based codes like Golomb code, FDR
code, EFDR, MFDR, SAFDR, and OLEL coding.

From the compressed data, make another

compression by Huffman code. Huffman code is
constructed by the frequency of more number of
repeated data values from the first compressed data.
Based on the frequency to make a Huffman tree and
form a variable length code word. The second
compressed data is obtained by Huffman code and
the first compressed data is obtained by Golomb
code or any other run length codes are tailored
together and the final double compression is
performed. Golomb gives the highest compression
ratio compared to other run length codes, so we
choose Golomb code for the double compression
technique. While adding Golomb code word, we
must add a flag. This flag will separate the Golomb
code word and Huffman code word in second
compressed data. This flag should not be available
in either Golomb code word or Huffman code
word.

The first compressed data is normally generated
by Golomb code.

Grouped test data: 00000001 00000001 00000001
001 00000001 00000001 000001 00000001

00000001 000001 00000001 00000001
00000001 1 00000001 00000001 – 112 bits

First Compressed data: 1011 1011 1011 010
1011 1011 1001 1011 1011 1001 1011 1011
1011 000 1011 1011 – 62 bits

Table 7 – Frequency of each symbol

The repeated codeword data value of Golomb

compressed data that is, first compressed data is
assigned in an above Table 7 with their
probabilities, which represents the redundancy of
the each value. Based on this probability, a
Huffman tree and a new codeword for double
compression technique are constructed.

Figure 1 - Huffman Tree

The Huffman code word is generating from the
above tree Figure.1. Tree is traversed in a bottom
up approach. The smallest probability symbols are
selected and are summed up to the top of partial
tree. Then the smallest possibility symbols are
deleted from list and the partial tree top node is
replaced by the sum of the smallest possible
symbols. If the list is reduced to just one symbol,

Journal of Theoretical and Applied Information Technology
15 May 2012. Vol. 39 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

111

then the tree is complete. Then the tree is travelled
across to determine code word of the symbols.

Codeword is formed by the tree, the left side path
of the tree is assigned as 0 and right side path of the
tree is assigned as 1. The codeword is written by
the path from root node to specified symbol in the
list.

Table 8 – Huffman codeword and their frequency

Finally the second compressed data of double
compression is formulated by the Table 8,

Compressed data: 1 1 1 000 1 1 01 1 1 01 1
1 1 001 1 1 00000
1011 1001 010 000 00000
1 01 000 001 - 55 bits

The second compressed data should be the
combination of Huffman codeword and also
Golomb codeword. The flag is assigned as five
zeroes (00000), in order to differentiate the Golomb
codeword and Huffman codeword. This double
compression method will reduce the test data.

%compression= ((112-55)/112) * 100 = 50.8%

14. COMPARISON RESULTS

The comparison results of various run length based
codes and double compression technique using
Huffman code.

Table 9 – Comparison of run length codes and double
compression using Huffman code

Figure 2 – compression ratio of run length codes
and double compression technique

15. RECOMMENDATION

From the above-mentioned compression
techniques, the test data compression can be
achieved in a better way using all the run length
based code technique. The main aim of the double
compression technique proposed is to reduce the
test data volume and area even further. When the
data set has redundant data then compression will
be better when compared to the other sets. To give
better compression ratio and reduce the volume of
test data the number of redundant data should be
high for the proposed compression technique. This
can be further enhanced by improvising the
compression technique.

Journal of Theoretical and Applied Information Technology
15 May 2012. Vol. 39 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

112

REFERENCES

[1] Usha S. Mehta, Kankar S. Dasgupta, Niranjan
M. Devashrayee, “Hamming Distance Based
Reordering and Columnwise Bit Stuffing with
Difference Vector: A Better Scheme for Test
Data Compression with Run Length Based
Codes”, IEEE Computer Society 2010, 23rd
International Conference on VLSI Design.

[2] N. A. Tauba, “Survey of Test Vector

Compression Techniques”, IEEE transaction
Design & Test of Computers, 2006.

[3] David a. Huffman, Associate, IRE “A

Method for the Construction of Minimum-
Redundancy Codes”, Proceedings of the I.R.E.

[4] Reza Hashemian, Senior Member, IEEE,

“Memory Efficient and High-speed Search
Huffman Coding”, IEEE Transactions on
Communications, October 1995, VOL. 43. NO.
IO.

[5] Luis g. Rueda and b. John oommen,

“Enhanced Static Fano Coding” IEEE 2001.

[6] P. Sismanoglou and D. Nikolos, “Test Data

Compression based on the Reuse of Parts of the
Dictionary Entries”, IEEE 2011.

[7] S. Kwong and Y. F. Ho, “A Statistical Lempel-

Ziv Compression Algorithm for Personal
Digital Assistant (PDA)” IEEE Transactions on
Consumer Electronics, Vol. 47, No. 1, February
2001.

[8] Lei Li and Krishnan Chakrabarty, “Test Data
Compression Using Dictionaries with Fixed-
Length Indices”, Proceedings of the 21st IEEE
VLSI Test Symposium (VTS.03).

[9] Paul G. Howard and Jeffrey Scott Vitter,

“Practical Implementations of Arithmetic
Coding” Providence, R.I. 02912{1910.

[10] Shengtian Yang, Member, IEEE, and Peiliang

Qiu, Member, IEEE, “ Efficient Integer Coding
for Arbitrary Probability Distributions” , IEEE
Transactions On Information Theory, VOL. 52,
NO. 8, August 2006.

[11] P. Elias, Universal codeword sets and

representations of the integers." IEEE

Transactions on Information Theory, vol. 21,
no. 2, pp. 194-203, March 1975.

[12] Jiri Walder, Michal Kratky, and Jan Platos,

“Fast Fibonacci Encoding Algorithm”, Dateso
2010, pp. 72{83, ISBN 978-80-7378-116-3.

[13] Shmuel T. Klein, Miri Kopel Ben-Nissan, “On

the Usefulness of Fibonacci Compression
Codes”, the Computer Journal, 2005.

[14] X. Kavousianos, E. Kalligeros and D. Nikolos,

“Multilevel-Huffman test-data compression for
IP cores with multiple scan chains”, IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems , Volume 16 Issue 7, July 2008.

[15] Jas and N.A. Touba, “Test Vector Compression
via Cyclical Scan Chains and Its Application to
Testing Core-Based Designs,” Proc. Int’l Test
Conf. (ITC 98), IEEE CS Press, 1998, pp. 458-
464.

[16] Chandra and K. Chakrabarty, “Test Data

Compression for System-on-Chip Using
Golomb Codes” VTS '00: Proceedings of the
18th IEEE VLSI Test Symposium, 2000.

[17] Chandra and K. Chakrabarty, “System-on-
a-Chip Test-Data Compression and
Decompression Architectures Based on Golomb
Codes”, IEEE transaction on Computer –Aided
Design of Integrated Circuits and Systems, Vol.
20, No. 3, March 2001.

[18] Chandra and K. Chakrabarty, “Efficient test

data compression and decompression for
system-on-a-chip using internal scan chains and
Golomb coding”, DATE '01: Proceedings of the
conference on Design, automation and test in
Europe, March 2001.

[19] Chandra and K. Chakrabarty, “Frequency-

Directed Run-Length (FDR) Codes with
Application to System-on-a-Chip Test Data
Compression” in the Proceedings of the 19th
IEEE VLSI Test Symposium, March 2001.

[20] Chandra and K. Chakrabarty, “Test Data

Compression and Test Resource Partitioning for
System-on-a-Chip Using Frequency-Directed
Run-Length (FDR) Codes” IEEE Transactions

Journal of Theoretical and Applied Information Technology
15 May 2012. Vol. 39 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

113

on Computers, Volume 52 Issue 8, August
2003.

[21] El-Maleh and R. Al-Abaji., “Extended

frequency-directed run-length code with
improved application to system-on-a-chip test
data compression”, Proc. Int. Conf: on
Electronics, Circuits and Systems, 2:449-452,
Sep 2002.

[22] J. Feng and G. Li, “A Test Data Compression

Method for System-on-a- Chip” 4th IEEE
International Symposium on Electronic Design,
Test and Applications, 2008. DELTA 2008.

[23] Chandra and K. Chakrabarty, “Reduction of

SOC test data volume, scan power and testing
time using alternating run-length codes”, DAC
'02: Proceedings of the 39th conference on
Design automation, June 2002.

[24] S. Hellebrand and A. Würtenberger,

“Alternating Run-Length Coding – A
Technique for Improved Test Data
Compression”, Handouts 3rd IEEE
International Workshop on Test Resource
Partitioning, Baltimore, MD, USA, October 10
– 11, 2002.

[25] Wenfa Zhan. “An Efficient Collaborative Test

Data Compression Scheme Based on OLEL
Coding” IEEE 2008.

