
Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

177

A MICROKERNEL BASED SECURE OPERATING SYSTEM
USING GENODE FRAMEWORK

1B.PRUTHIVIRAJ, 2G.S.MADHUSUTHUN, 3S.VIJAYASARATHY, 4K.CHAKRAPANI.

1M.Tech., Embedded Systems, School of Computing (SOC), SASTRA UNIVERSITY, Thanjavur.

2 Senior Technical Consultant, 3 Senior Research Associate, Society for Electronic Transactions and
Security (SETS), Chennai-600021, India.

4 AssistantProfessor, School of Computing (SOC), SASTRA UNIVERSITY, Thanjavur-613401,India.

E-mail: pruthivi2010@gmail.com,madhu@setsindia.net,vijayasarathy@setsindia.net,kcp@core.sastra.edu

ABSTRACT

In a period when financial transactions have become substantially online, it is important from both security
and functional perspective to have a secure and robust operating environment where these transactions can
be performed. Although many operating systems can be configured to be reasonably secure, the problem
behind the approach is in the design of the operating system. For example, most Linux distributions
(including the acclaimed SELinux) execute a monolithic kernel approach, which essentially do not
differentiate between the basic kernel operations and the operating system functionality built over them.
This work discusses the advantages of a microkernel based approach to Operating System Design as given
by the Genode operating system framework, and proposes two test security applications – a) An OTS
Threat Management application which we build into the Genode framework; and b) A client-server based
security application using the PolarSSL library, which we build into the framework.

Keywords: Genode Operating System framework, Microkernel, Integrated Thread Management

Appliances (ITMA), PolarSSL.

1. INTRODUCTION

The modern world has predominantly moved
by conducting financial transactions online.
Example includes banking transactions, ticket
reservation and credit card payments etc.
Unfortunately, the applications which enable
these transactions are executed in an
environment which is susceptible to security
leaks or failure for some reason. For example,
browsers may store information in some form
(cookies for example), which may be stolen by a
malicious process running beside it. Another
weird situation is one when an application
crashes due to another application, which may
cause inconsistencies and hassles. It is important
from both security and functional perspective to
have a secure and robust operating environment
where these transactions can be performed. In
essence, a Trusted Computing Base (TCB) is
required for every application. Both these aspects
are related to the OS design approach.

Most Linux distributions follow a monolithic
kernel approach – where the kernel and the
operating system are seen together as an
integrated component. This brings forth the
problem of maintainability – the kernel
operations become unmanageable because of the
large number of lines of kernel code that have to
be managed. The extensibility support in such
kernels is also very limited due to the fact that
bug fixes in critical pieces of the kernel calls for
kernel recompilation, which is resource and time
consuming. Hence, the operating system design
should be modular in order to improve
maintainability and security.

Operating System has two parts, viz. kernel
space and user space. In monolithic kernel based
Operating System, each and every system service
(Process Manager, File system, Input Driver,
etc.,) runs in a kernel space. So all the process
runs in a single address space.

Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

178

Figure 1-A Typical Monolithic Kernel Based

Design
Another perspective of looking into the

problem is to look at kernel certification. In
critical applications, many organizations
consider it important to have the underlying
kernel certified for use with the applications. A
modular design will improve modeling the
interactions of entities with the kernel, which
will help in mathematically verifying if a kernel
is secure. The Operating System must maintain
strong code and data separation on a per-page
level. All code sections should be verifiable on a
per-page level. Usually this means some signing
or hashing scheme should be implemented.
Operating System must allow safely reading
physical memory by a third person application.

In summary, in order to maintain a trusted and
a reliable application environment, the operating
system design must be a) Modular; and b)
Verifiable.

2. MICROKERNEL BASED APPROACH
TO OS DESIGN

The solution to the above problems lies in a
micro-kernel based approach to OS design. A
microkernel is a bare minimum version of the
kernel which supports only essential kernel
functions. In Micro kernels, the kernel is broken
into separate processes .Some process runs in
kernel space and others in user-space.

All processes are kept separately and run with
different address spaces. The size of the kernel is
kept at a minimum and we can extend our
services, thereby making it easy to maintain our
system. If any bug is fixed, that process alone
gets affected, rest of the processes of the system
should work. It doesn't affect the whole system.

Figure2-A Typical Micro Kernel Based Design

By using micro kernels instead of monolithic
kernel to our operating system, we can ensure
that the critical applications running over the
system are provided access to a secure Operating
System environment.

2.1 Genode Operating System Framework

The Genode operating system framework
means to provide decoupling the kernel and the
operating system and make OS design modular.
This framework proposes a microkernel based 3-
tier approach. At the lowest tier is the
microkernel, which consists of bare minimum
kernel operations. On top of the microkernel is
the OS, which act as an intermediary between
microkernel and the Para virtualized Linux.

OS is the collection of programs that manage
hardware resources and it provides services for
application. While it is desirable to have all or
most applications running directly over the
operating system, it is desirable to have a
virtualized Linux environment to facilitate
backward compatibility. This is provided on the
top of the OS in the form of a Para-virtualized
Linux layer. Terminals, Audio player, PDF
viewer which are currently running are the native
Linux application. Although Running in a Para
virtualized Linux environment, they act like a
native Genode applications.

Genode is Secure Operating System
architecture. This framework supports various
Micro kernels like fiasco, pistachio and it has a
Para Virtualized Linux Layer (Tiny Core Linux)
itself. Genode is able to reduce the system
complexity for each security sensitive
applications individually.To minimize the
system complexity it uses a strict organizational
structure for all software components and
applications.

Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

179

Figure 3-Genode Operating System Framework

Stack
Genode maintains a tree of processes. The

arrow denotes child processes. The parent
process defines the virtual environment
whenever the new child process was executed. It
creates the arbitrarily structured subsystem.
When the child wants to create children from its
assigned resources and it shouldalso defines their
inter relationship.It gets isolated when a new
process is not allowed to communicate with its
immediate parent. The parent processprovides
the rights to communicate their child
subsystems. The attacker’s job is very easy
whenever they are having visible names or ids.
But Genode protects names, process
identification number etc., L4Linux kernel and
hypervisor is ported into the Genode Operating
system framework.

Figure 4- Organizational Structure of Genode

Each application only depends on the TCB
(Trusted Computing Base). TCB is
minimumwhen TCB of applications gets
executed completely, isolated and independent to
each other. We can use Genode framework as an
application over OS by using the Genode tool
chain and Genode source. Genode allows to
build an application directly communicate with

underlying OS and kernel, instead of using the
virtual Linux layer.

3. CONTRIBUTION OF THE WORK

Secure Operating System approach consists of
two modules.

a. Integration of standard applications.
b. Write a test application using PolarSSL

library.

Figure 5-Architecture of Microkernel Based

Secure Operating System

3.1.1. Integration ofStandard Applications

The first attempt was to build over the Genode
framework, a collection of network monitoring
and traffic handling tools, together known as a
Threat Management Appliance. Before
integrating these ITMA components, we need to
boot the Genode ISO into the Virtual box and
configure all the settings in the virtual box.

ITMA Components

 ITMA components are Firewall, IDS/IPS and
Antivirus. These security components are the
open sources which provide confidentiality,
integrity, availability to the operating system
environment. Get these sources and build it over
the Para-Virtualized Linux Layer.

Intrusion Detection System (IDS)-Snort

 Snort is an intrusion Detection system that is
used for performing real-time traffic analysis and
packet logging. Snort depends on m4, Flex,
Bison, Libpcap, PCRE, Libdnet, zlib, Barnyard2,
DAQ. We need to get these dependencies built it
over a Para-virtualized Linux Layer before
building a snort.

Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

180

Figure 6-Integration of Standard Applications

The following figure shows building of a snort

over a Para-virtualized Linux Layer.

Figure 7-Startup of a Snort
.

Similarly, firewall and antivirus were built.

Firewall

Firewall is mainly designed to prevent the

unauthorized access from a private network. By
using iPtables, the Firewall should be
implemented in open source environment. It
should be built it over a Para-virtualized Linux
Layerby getting the shoreline firewall source.

Antivirus

ClamAV is an antivirus engine used for
detecting the Viruses, Trojans and other
malicious threats. Get a ClamAV source and
built it over aPara-virtualized Linux Layer. Here
the Para virtualized Linux Layer is tiny core

Linux.It is running at the top of the Genode
Operating system Framework.

Figure 8-Running of a Snort

Based on the target hardware and target
environment, open source components were
customized and built by modifying the
configuration files.

3.1.2. Security Analysis

Security of our proposed platform is managed
by the several aspects.

i. Antivirus (clam AV), Intrusion Detection
System (Snort), Firewall (Shore wall) is
integrated over the Para virtualized Linux
Layer. Hence this Operating System has
these security components as default.

ii. The platform provides facility to run critical
applications, completely isolated from the
OS environment and independent from each
other. So even in the case of application gets
compromised it won’t affect the underlying
system.

iii. The platform offers to write a device driver
with high performance.

iv. One of the requirements to be a secure
Operating System its size of the microkernel
should be minimal. The code size of the
microkernel used is 20KLOC.This provides
easy code auditing.

v. The platform provides an encrypted secure
boot, which means it boots with several
encryption schemes.

Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

181

3.2. Write A Test Application Using PolarSSL
Library

Writing a security test application on the
Genode framework can be achieved by using a
standard PolarSSL library. PolarSSL is a crypto
library which is easily integrates with the
embedded applications. PolarSSL is written by c
language. Normally we are using TCP/IP Stack.
The PolarSSL SSL/TLS library is building on
the network-interface and it provides an
abstraction layer. This layer is used for secure
communication between client and server. Client
must use this PolarSSL and abstract a secure
communication from itself.

Now our goal is to secure our client-server
communication on the Genode using
PolarSSLlibrary. To achieve this objective first
we have to get an open source PolarSSL library
and port it into the Genode operating system
framework which acts as a server for our
communication. Server decides in which cipher
suite (MD5, RSA, and SHA-1 etc.) is used for
communication. We can implement this model
using socket programming or any other
programming techniques. It can be done by the
following steps.
i. Server runs an arbitrary port number, then

client starts with the hostname and server’s
port number. After which client can send
data to the server.

ii. After that the server performs cryptographic
functions like MD5 for a input data’s or
message by linking PolarSSL libraries and it
sends the result to the client.

iii. Client receives the data and it performs

MD5 function by linking PolarSSL libraries
in order to verify with the original data.

So the client-server communication is done
securely by using PolarSSL library. By porting
the PolarSSL library in the Genode Operating
System Framework, we can perform various
cryptography schemes likeAES, DES, Triple
DES,DSA,RSA,MD2,MD4,SHA-1,SHA-2 etc.

Figure 9-Write a Test Application on the Genode

4. CONCLUSION AND FUTUREWORK

Working in a Secure Operating System
Environment is achieved by integrating ITMA
components and built a test application on a
Genode Operating System framework. Process
communication is performed using a socket
programming .So the Operating System can be
used in any security conscious industries. As a
future work, we plan to run different security
components such as Firewall, IDS, and Antivirus
in different isolated Para virtualized Linux.. We
can also use it as a stand-alone Operating
System. And also, this operating system can be
ported into any supporting mobile devices.

REFERENCES

[1] Ihor Kuz, Yan Liu, Ian Gorton,
GernotHeiser, “ CAmkES:A Component
Model for Secure Microkernel-based
Embedded Systems” ,Journal of Systems
and Software Special Edition on
Component-Based Software Engineering of
Trustworthy Embedded Systems, 80(5),
687699, May 2007.

 [2] Hermann Härtig, Michael Hohmuth,
Norman Feske, Christian Helmuth, Adam
Lackorzynski, Frank Mehnert, Michael
Peter, “The Nizza Secure-System
Architecture”, Collaborative
Computing:Networking, Applications and
Worksharing ,1-4244-0030-9 ,December
2005.

[3] Christian Helmuth, Norman Feske, "Design
of the Genode OS Architecture", TU

Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

182

Dresden technical report TUD-FI06-07, Dresden, Germany,December 2006.

[4] N. Feske, H. Härtig, “DOpE — a Window

Server for Real-Time and Embedded
Systems”, Technical Report TUDFI03- 10-
September-2003, TU Dresden, 2003.

[5] M.Gasser, “Building a Secure Computer

System”, Van Nostrand Reinhold Co., 1988.

[6] T.Garfinkel, B.Pfaff, J.Chow, M. Rosenblum,

D.Boneh, “Terra: A Virtual Machine-based
Platform for Trusted Computing”, In
Proceedings of the nineteenth ACM
Symposium on Operating systems principles,
pages 193–206,ACM Press, 2003.

[7] M.Atighetchi, P.P.PaL, C.C. Jones, P. Rubel,

R.E.Schantz, J.P.Loyall, J.A Zinky,
“Building Auto-adaptive Distributed
Applications: the QuO-APOD Experience”,
Distributed Computing Systems Workshops,
Proceedings, 23rd International Conference
on 19-22 May .2003.

[8] J.Li, M.Krohn, D.Mazières, D.Shasha,

“Secure Untrusted Data Repository
(SUNDR)”, In Proceedings of the 6th
USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages
121–136, San Francisco, CA,Dec. 2004.

[9] Bernhard Kauer, “OSLO: Improving the

Security of Trusted Computing”,
Proceedings of 16th USENIX security
symposium, 2007.

[10] F.Al-Masalha, R.Hasimoto, A.Khokhar,

“Performance Evaluation of Different
Encryption Schemes on Portable and Mobile
Platforms”, Green Computing Conference
l5-18 Aug. 2010.

