
Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

125

RUN-LENGTH BASED COMPRESSION FOR SELECTIVE
UNSPECIFIED TEST PATTERN

1 S. SARAVANAN, 2 A. BALASUBRAMANIYAN

1Assistant Professor, School of Computing, SASTRA UNIVERSITY, Thanjavur, India -613402
2M.Tech- VLSI Design, School of Computing, SASTRA UNIVERSITY, Thanjavur.

E-mail: 1saran@core.sastra.edu , 2bala.balu123@gmail.com

ABSTRACT

In all System-on-a-Chip (SoC) designs, there is a necessity to reduce the large test data volume and this is
achieved by test data compression. One of the methods is the variable-to-variable length compression
method. A selective run-length based compression which comes under variable-to-variable method is
presented in this paper. The proposed work is based on threshold calculation on don’t cares (X). So
compression is not targeted for all the test patterns. Depending upon threshold value compression is
identified. The test patterns having large number of don’t-cares (X’s) are selected for compression. Also the
test vectors having less compression ratio is not considered for compression by calculating its threshold
value. The selected test patterns can be divided into number of blocks containing equal number of test
vectors. Each block is compared with the adjacent blocks bit-by-bit and it has to be merged. The number of
blocks merged can be given in the control code. The experiments are conducted on ISCAS’89 benchmark
circuits to know the effectiveness of the compression technique. The results show that the technique has a
reasonable effect on compression.

Keywords: Test Data Compression, Selective Run-Length Compression, Don’t-Cares (X’s), Threshold
Calculation, Block Merging, Control Code.

1. INTRODUCTION

Recent advances in the process technology

make more and more functions which are
crammed into a single device. In modern
devices Intellectual Property (IP) cores and
several modules are integrated on a single chip.
Billions of transistors are fabricated on a single
wafer. Although increasing integration of
transistors on a single chip produces robust
design, more defects are produced accordingly.
In this situation there is a need to test those
designs. As the technology advances, huge
volume of test data is needed to be tested.

Although the modern System-on-a-Chip (SoC)
incorporates many functions, they were affected
by several test challenges. Huge test data volume
is one of the major problems for the SoC
vendors. Because the huge test data volume not
only exceeds the commercial Automatic Test
Equipment (ATE) memory and I/O channel
capacity, it also increases the testing time and
test power. Increase in test time, memory and
power cause a direct impact on test cost and time

to market. So the vendors are in a situation to
reduce the volume of test data.

Reduction of test data gathers the attention of
all the SoC designers for the past several years.
The methods which are used to reduce the
amount of test data that is stored in the ATE
memory are test vector compaction and test data
compression. Many test data compression
techniques have been proposed so far to reduce
the test data volume and improve the
transmission efficiency between the ATE and
SoC. The compression technique is used to
condense the test data and is stored in ATE
memory. Through the test channels the
compressed data are transferred to SoC. An on-
chip decoder is used to retrieve the original test
data without any loss and is scanned serially.
Objective of this paper is to reduce test volume
by identifying unspecified test patterns. This is
achieved with help of calculating threshold value
in run-length based compression.

Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

126

2. PREVIOUS WORKS

All the test data compression techniques fell
into any one of this category: Code-based
schemes, Linear-decompression-based schemes
and Broadcast-scan-based schemes. Code-based
scheme compression involves partitioning the
original test data into symbols and replaces it by
a codeword according to its specific property to
encode the data. In the decompression area the
decoder simply replace the codeword by the
specific symbols [1]. A variable-to-variable
length GOLOMB coding is proposed [2] which
give a low cost, very high compression with a
scalable on-chip decoder. Another variable-to-
variable length compression technique called
frequency-directed run-length (FDR) codes [3]
distributes the runs of 0’s in the test sequence.
Testing time and area overhead can be reduced
by using a method called (VIHC) Variable-
length Input Huffman coding [4].

The maximum run-length can be limited to

tradeoff compression ratio by combining both
run-length and Huffman coding called RL-HC
[5]. A block merging technique is used to merge
many consecutive test blocks to reduce the test
data volume [6]. Both test data volume and
dictionary volume are reduced by having smaller
number of codeword for larger block size [7]. A
new horizontal compression technique is used
[8] for multiple cores. A new encoding technique
with more flexible control code to attain high
data compression is called scan slice encoding
[9]. A compression technique is proposed which
combines hamming Distance Based Reordering
(HDR), Column wise Bit Stuffing (CBS) and
Difference Vector (DV). The scheme pre-
processes the test data before applying any other
compression technique for giving better
compression [10]. Reducing test data volume
and test power by various techniques is
discussed in [11 - 14].

3. PROPOSED SCHEME

Selective pattern compression is a run-length-
based compression technique. In this method the
encoder encodes the test set by runs of
compatible pattern. The test patterns can be
selected for compression from the original test
data. The selected pattern must have large
number of don’t-care bits (X’s). In this technique
the selected pattern can be divided into number
of bit-patterns. Each bit-pattern is compared with

the adjacent one and the number of runs can be
denoted by a control code. The final codeword
has control code followed by encoded pattern.
The control code (C) denotes the number of
pattern runs of the encoded pattern (E) and the
merge of both is denoted by codeword.

Selective Compression

In this method the test pattern has to be
selected for doing compression. This is due to
the fact that the compression is easy and possible
if the don’t-cares (X’s) are higher in the test data.
If the rate of known values (0’s and 1’s) is
higher, it can’t able to achieve good
compression. So the compression technique can
be applied only for those test vectors having
larger number of X’s. By calculating a threshold
value (Th) it is possible to know the test vectors
which are giving good compression. The
threshold value is proportional to the rate of
compression. The threshold value is calculated
by using the equation (1) as,

Threshold (Th) = ((total number of bits) –
(known bits)) / (total number of bits)
….. (1)

For an example in Table 1, the input test
patterns P1, P2 and P3 have the following
threshold values (Th) as 0.43, 0.5 and 0.31. In
the above example the threshold value is kept as
Th = (0.4). So, there is no need to compress the
test vectors having threshold value lesser than
(0.4). So P3 can be neglected for achieving good
compression. The patterns having the threshold
value greater than (>0.4) is taken and it is
partitioned into number of bit-patterns according
to the control code. In Figure 1, the number of
pattern runs is fixed to 4 (i.e., a 2-bit control
code (C) is used to denote the number of pattern
runs as “00”, “01”, “10”, “11”). Here only 4-bit
patterns are used; where the length of the bit-
pattern is varied according to the length of the
test data.

For example, in Figure 1, the number of
patterns is fixed to 4 by using a 2-bit control
code(C). As shown in figure, the 16-bit test
pattern (P1) “10XXXX011001X0XX” can be
divided into 4 blocks each with 4-bit bit-patterns.
Now take two bit-patterns from left and compare
it bit-by-bit. The comparison result shows the
possibility of merging. If possible, merge those
bit-patterns and the merged data is compared
with third bit-pattern. It continues until the last

Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

127

pattern. For each and every merge the C is
incremented. Initially the C is “00”. While
merging most of the “X” can be replaced by
either “0” or “1”.

After merging all the bit-patterns, the final
encoded pattern for above example is “111001”.
Where the first 2 bits “11”from left is the C,
which denotes the number of blocks merged
(pattern runs) and the remaining 4 bits are the

encoded pattern of the original test data. If the
possibility for merging two bit-pattern is false,
then a codeword has to be generated before that
pattern and again a new process of merging is
done from the next pattern. Finally both the
codeword has to be placed is shown in Table 1 at
P2.

Table 1- Proposed Selective Compression

 C = Control Code, E= Encoded Pattern Codeword = C + E.

Figure 1- Proposed Block Diagram

Block Diagram

Figure 1, shows the block diagram of selective
pattern compression. The block diagram shows
the flow of the compression process. First the
test pattern is selected from test data for doing
compression by using the threshold value (Th).
Then the test pattern is partitioned into number
of bit-patterns of specified length. First two bit-
patterns has to be taken and have to compare bit-
by-bit. Depending upon the possibility of
merging, successive bit-patterns has to be
merged with the previous outputs and final
codeword has to be generated. If there is no

possibility of merging two bit strings, a
codeword has to be generated for the previous
outputs and new process of merging has to be
started from the next string.

State Diagram

Figure 2, shows the state diagram of selective
pattern compression. When RESET=‘1’, the
system will be in state 0, which initialize the
system. When RESET= ‘0’, the test data is
partitioned into bit-patterns in state 1. Again the
system goes to state 0, when condition (COND)
= ‘1’. If COND = ‘0’, it goes to state 2 where
comparison of bit-patterns are done to check the

Patterns
No

Input test patterns Threshold
(Th)

 C E C E C E C E

P1 10XXXX011001X0XX 0.43 11 1001

P2 1XXX110X10XXXX01 0.50 01 110X 01 1001

P3 10XX0XX1XX10XXX1 0.31 00 10XX 00 0XX1 00 XX10 00 XXX1

Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

128

possibility of merging two bit-patterns. If
possible goes to state 3 and if not goes to state 4.

At state 3, the two bit-patterns are merged into
one with the increment of control code and the
merged output going to state 2 for comparison
with the next bit-pattern for merging. The
process continues till the last bit-pattern was
merged. When all the bit-pattern was merged, the
present control code (C) with the encoded data
(merged pattern) gives the codeword. The final
codeword is the compressed data. At state 4, a
codeword for the present pattern continues its
process from the state 2 by taking next two bit-
patterns for merging. Finally the process resets
when all strings were merged.

4. EXPERIMENTAL RESULTS

The experiments are done on 4 large

ISCAS’89 benchmark circuits generated by
Mintest ATPG (Automatic Test Pattern
Generator). Here the test patterns are divided
into 8-Blocks. The compression ratio (CR) for
each and every method can be calculated by the
equation (2) as,
CR% = (((Total number of test data)-
(Compressed data)) / (Total number of test data))
× 100% ….. (2)

Figure 2- State Diagram

Table 2- Compression Ratio of the Proposed Method

In Table 2, the compression ratio of the
proposed method is compared with various
techniques. In 6-Block technique the system will
have at most 6-Blocks out of 8-Blocks after
compression. This means that the system can be
able to compress only 2-blocks at minimum. If it
comes under one or none, it can be eliminated

from compression by calculating its Th value.
This is called selective compression. In the same
way 5-Blocks and 4-Blocks are calculated.

Figure 3 shows the sample simulation
waveform of the selective compression. The
selected region in the waveform gives the

Compression Ratio (CR)

Existing Systems Proposed System

Circuits GOLOMB FDR VIHC RL-HC BM 6-BLOCK 5-BLOCK 4-BLOCK
s5378 37.11 47.98 51.52 53.75 54.98 45.28 48.43 53.13
s9273 42.25 43.61 54.84 47.59 51.19 44.39 53.27 59.16
s13207 79.74 81.3 83.21 82.51 84.89 71.88 72.85 73.09
s15850 62.82 66.21 60.68 67.34 69.49 68.48 72.41 75.75

Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

129

compressed output. The input taken has 16-bit
length with Th value of (0.43) and its
compressed output has 6-bit length. Figure 4
shows the comparison of 6, 5, 4-Block
techniques. It shows that the 4-Block technique
has higher compression ratio than others. Also
Figure 5 analyze compression ratio of various
techniques. Mostly the proposed technique
achieved better compression than many
techniques. If less number of unspecified test
pattern is used then this proposed technique will
limit the rate of compression.

5. CONCLUSION

A selective pattern run-length code is proposed
in this paper. Test pattern with larger number of

unknown values can be able to compress
efficiently. To identify more compression, proper
threshold value is observed. This will limit the
proposed method for achieving higher
compression ratio. Thus more number of known
values is not considered for compression due to
its larger amount of code words. So these test
patterns can be eliminated for compression.
These leads to allow only selected test patterns
for doing compression. This method can be
experimented on larger ISCAS’89 benchmark
circuits. Proposed results show more
compression was achieved by 4-block technique
about 6% to 9% than the existing method. It can
be further extended with proper new technique to
reduce the length of code words for achieving
more compression.

Figure 3- Simulation Waveform of Proposed Method

Figure 4- Comparison of 6, 5, 4-Blocks

Figure 5- Comparison of various compression
techniques

Journal of Theoretical and Applied Information Technology
30th April 2012. Vol. 38 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

130

REFERENCES

[1] Touba NA, “Survey of Test Vector

Compression Techniques”, IEEE Design
and Test of Computers., 2006, 23(4):294–
303.

[2] Chandra A, Chakrabarty K, “System-on-a-

chip Data Compression and
Decompression Architecture Based on
Golomb Codes”, IEEE Transactions
Computer-Aided Design of Integrated
Circuits & System., 2001, 20(3):355–368.

[3] Chandra A, Chakrabarty K, “Test Data

Compression and Test Resource
Partitioning for System-on-a-chip using
Frequency-directed run-length (FDR)
codes”, IEEE Transactions on Computer.,
2003, Vol-52 (8), pp:1076–1088.

[4] Gonciari PT, Al-Hashimi B and Nicolici N,

“Improving Compression Ratio, Area
Overhead, and Test Application Time for
System-on-a-chip Test Data
Compression/Decompression”, In Proc
design automation test in Europe, Paris.,
2002, pp:604–611.

[5] Nourani M and Tehranipour M, “RL-

Huffman Encoding for Test Compression
and Power Reduction in Scan Application”,
ACM Transactions on Design Automation
of Electronic Systems (TODAES)., 2005,
Vol-10(1), pp:91–115.

[6] El-Maleh AH, “An Effcient Test Vector

Compression Technique Based on Block
Merging”, IET Computer Digit Tech.,
2008, 2(5):327–335.

[7] Terumine Hayashi, Naohiro Hiraiwa,

Tsuyoshi Shinogi, Haruhiko Takase, and
Hidehiko Kita, “Test Modification and
Compression Technique for Reducing
Total Test Volume with Dictionary Data”,
ASICON 2005, 6th International
Conference, IEEE Transaction.

[8] Julien Dalmosso, Marie-Lise Flotters and

Bruno Rouzeyre, “Systems-on-Chip: Use
of Test Data Compression Technique for
Reducing Test Time”., Research in
Microelectronics and Electronics

Conference, PRIME 2007, IEEE
Transaction.

[9] Keun-Soo Lee, Hyuntae Park, Hyeonuk Son

and Sungho Kang, “A New Scan Slice
Encoding Scheme with Flexible Code for
Test Data Compression”, SoC Design
Conference (ISOCC), 2010 International
Conference, IEEE Transaction.

[10] Usha S. Mehta, Kankar S. Dasgupta and

Niranjan M. Devashrayee, “Hamming
Distance Based Reordering and
Columnwise Bit Stuffing with Difference
Vector: A Better Scheme for Test Data
Compression with Run Length Based
Codes”, VLSI Design, 2010. VLSID’10,
23rd International Conference.

[11] S. Saravanan and Har Narayan Upadhyay, “

Transition Vector Reduction using
Segmentation method based on
Compression Technique”, Australian
Journal of Basic and Applied Sciences,
5(9): 2147-2151, 2011.

[12] S. Saravanan, P. Selvakumar, A.

Balasubramaniyan and R. Silambamuthan,
“Achieving Higher Test Data Compression
using Pattern ”, IEEE International
Conference on Computational Intelligence
and Computing Research, ICCIC-2011.

[13] Chia-Yi Lin and Hung-Ming Chen, “A

Selective Pattern –Compression Scheme
for Power and Test-data Reduction”,
Computer-Aided Design (ICCAD),
IEEE/ACM International Conference,
2007.

[14] Chia-Yi Lin, Hsiu-Chuan Lin and Hung-

Ming Chen, “On Reducing Test Power and
Test Volume by Selective Pattern
Compression Schemes”, IEEE
Transactions on Very Large Scale
Integration (VLSI) Systems, 18(8) : 1220-
1224, 2010.

