Journal of Theoretical and Applied Information Technology

15" April 2012. Vol. 38 No.1

g

© 2005 - 2012 JATIT & LLS. All rights reserved-

FlaNill

ISSN: 1992-8645

Www.jatit.org

1
E-ISSN: 1817-3195

MODELING BIO INSPIRED SYSTEMS: TOWARD A NEW
VIEW BASED ON MDA

'SEIF EDDINE MILI ,’DJAMEL MESLATI
"“Department of Computer Science, LRI Laboratory, University Of Annaba Algeria

E-mail: 'seifmili@gmail.com, “meslati_djamel@yahoo.com

ABSTRACT

Biologically inspired complex systems are increasing. As the abstractions presented by biologically
inspired systems, systems architects will be required to include the abstractions in their architecture in order
to communicate the design to system implementers. The paper argues that in order to correctly present the
architectures of bio inspired system a need of bio inspired views will be required. The paper describes a
new formalism based on biology and Model Driven Architecture (MDA) in order to find a new and easy
way to design and understand (reverse engineering) a complex bio inspired system. The paper also
describes then a set of bio inspired views which are used when describing bio inspired system. Finally we
use the proposed approach to model Xor artificial neural network.

Keywords: Bio Inspired System, Model Driven Architecture, Architectural Units, Design Pattern, Neural

Network.

1. INTRODUCTION

In a perfect world, a good engineer builds a perfect
system, the customer is satisfied, and the maintainer
of the system has little to do to keep the system up
and running [1].

Artificial neural networks, multi-agent systems,
artificial immune system, swarm intelligence,
genetic algorithms, cellular system, artificial
ontogeny, and cognitive intelligent have one thing
in common. Each of them presents a biologically
inspired computing paradigm. These abstractions of
biological systems have provided much inspiration
in the development of complex systems [2].

As Bio inspired system move from research
laboratories into industry the need for
methodologies to describe their design arises [3].
The architects of industrial software systems will be
required to translate abstract concepts of biology
into concrete models that can be used by system
implementers. Many modelling and design
techniques have been proposed [4,5].

The purpose of the paper is to present a new
additional manner for describing bio inspired
system based on MDA and biology.

The paper is organised as follows. Section 2
provides background to the topics discussed in the
paper. In section 3 our framework description is
presented. In section 4 an overview of bio inspired

63

systems with our framework is presented in section
5 we present the transformation design in section 6
we present case of study upon xor representation in
neural network. Finally section 7 looks at related
and future work.

2. BACKGROUND

In the background section, the main concepts,
terminology, and ideas presented in the paper are
defined. The section first explores some concepts
relating to the field of biology than looks at MDA.

2.1. Biology: ontogeny, phylogeny, epigeny
Living multi-cellular organisms are not created in
the completely achieved form we usually know.
The organism begins life as a single cell, endowed
with a developmental program coded in its genome.
The latter is continuously processed by the cell,
which leads to its repeated division in a multitude
of identical cells that have the same genome. Then,
a form of communication appears between cells,
allowing each one to execute the part of the genome
corresponding to its position in the whole. In other
words ontogeny investigates the “developmental
model” of an individual organism from the earliest
embryonic stage to maturity.

Phylogeny is the study of phylogenesis within
given species; reproduction consists in transmitting
the genome of one or two parents to offspring. The
genome of the descendant first cell is obtained from
that/those of the parents, through mutations and

Journal of Theoretical and Applied Information Technology

15" April 2012. Vol. 38 No.1

B

© 2005 - 2012 JATIT & LLS. All rights reserved- ‘

A —
Smune

ISSN: 1992-8645

E-ISSN: 1817-3195

crossing over. Therefore, the living species evolves
by the combination of genes within a population of
individuals genetically compatible[6].

Epigenesis, relating to epigenetics, uses specific
structures to store and handle a huge number of
interactions with the environment. The epigenetic
process is supported by three systems: the nervous
system, the endocrine system and the immune
system [7]. The structures used in these systems are
easily alterable by the environment and allows the
complex living organisms to learn and achieve
symbolic processing of information.

The section has explored some of the biological
processes involved in shaping and guiding the
evolution and development of biological
individuals.

2.2. Model Driven Architecture

One of the most important principles to cope with
the complexity in software engineering is the
separation of concerns principle. This principle
states that a given problem involves different kinds
of concerns, which should be identified and
separated to cope with complexity, and to achieve
the required engineering quality factors such as
robustness, adaptability, maintainability, and
reusability [8].

In this context, Model-Driven Architecture (MDA
for more details see [9]) promotes the production of
models with sufficient detail so that they can be
used to generate or be transformed into executable
software, running on target systems [10].

Key to MDA is the importance of models in the
software development process. Within MDA the
software development process is driven by the
activity of modelling the business software system.
The MDA development process does not look very
different from a traditional lifecycle, containing the
same phases (requirements, analysis, low level
design, coding, testing, and deployment). One of
the major differences to traditional development
processes lies in the nature of the artefacts that are
created during the development process. These
artefacts are formal models, i.e. models that can be
understood by computers and finally be
transformed into a representation that lends itself to
execution [11].

In summary MDA is a framework defined that
separates the platform specific concerns from
platform independent concerns, which s
represented by different views of a system.

3. THE PROPOSED APPROACH

Our method is inspired from both: POE model (for
more details see [7,12]) and MDA approach, the

64

Architectural Units (AU) are the central points of
the method. Our purpose is to define several
Architectural Units to describe the ontogenetic,
epigenetic and phylogenetic views.

The AU consists of a number n of input models
and a transformation that produces the k output
models. Transformations can have attributes and
operators that are applied to produce the output
models (see figure 1). Models as well as
transformations can be of various types. The
environment supplies diverse stimuli such as events

that help in triggering or stopping the
transformation [1].
101 | Tranfomiaon | | 1 *
InPut Model | ; | OufPut Mode
Al 4
Ht peling) | Hpoie ¢
Figure 1. This figure show the description of the

architectural unit

We can formulate the Architectural Unit like a
function as show below:

Name_of AU(IM1,IM2,...,.IMn)~>
OM1,0M2,...,0Mk.

This form of description will be used below to
describe the phelogenetic view of evolutionary
systems.

There are three parts involved in all bio-inspired
systems: the processes, the structures and the
environment where the system is designed to
operate [6]. Therefore, characterizing a system
comes to characterize each part. The structure
consists of all the models available in a system. We
show in table 1, the derived criteria set.

TABLE L. The model criteria set

Role: A model can play two possible roles for
each transformation where it is involved. The
individual role or the species role. That is, a
model can be involved simultaneously as a
species in a process and as an individual in
another.

Description type: A model can be a genome,
a phenotype or any other description. Genome
models are often coded using low level
symbols such as a sequence of bits, while the
phenotype is more abstract. Models can be
implemented in hardware or stored in some
memory. All models are interpretable.

Journal of Theoretical and Applied Information Technology

15" April 2012. Vol. 38 No.1

B

© 2005 - 2012 JATIT & LLS. All rights reserved-

‘ % o
SATiE

ISSN: 1992-8645

E-ISSN: 1817-3195

Element/Set: The model can be a single
element or a set of elements.

Granularity: Characterizes the item available
to transformations. Models range from fine
grained to coarse grained. When we use
phylogenesis to adjust a neural network, the
grain is the weight attached to each
connection. In other cases, the grain can be a
symbol, a rule, an instruction or a function in
a program. The finest grain is the bit.
Alterability: Defines how easy the model is
alterable. Models can be highly alterable
when they are stored in a soft memory. They
are less alterable or reconfigurable when
implemented in hardware. Furthermore
alterability can be manual or fully/partially
automated.

Composition: A model can be simple or

composed. A composed model can be
decomposed into sub-models and
transformations.

3.1. The Ontogenetic View

The Ontogenetic view is constructed using one AU:
the development AU. Formally, the development
unit can be written using the functional notation:
Develop(D, M) — M’ Which means that M’ is
obtained from M by a modification according to
some description in D. M, D and M’ are models.
The Phelogenetic View

The phylogenetic view process is constructed using
two types of AU: the Reproduction AU and the
Selection AU. The reproduction AU allows
combination of input models using genetic
operators (i.e. crossover and mutation) to produce
output models. The transformation attributes
include the mutation rates, the crossover type.
Formally, the reproduction is written: Reproduce
(RM,S) — S’ Where RM is a model containing the
description of the reproduction, S and S’ are sets of
models. Each element in S’ is obtained (according
to RM) from one or more elements of S using
mutation and crossover operators. The abstraction
levels of S and S’ are the same.

The selection unit allows the selection of one or
more models for the set of input models (i.e. output
models are a subset of the input models). Models
themselves are not altered. The transformation
operators include the fitness functions and
attributes, the selection threshold. Formally, the
selection is written: Select(SM, S) — S’ Where SM
is a model containing the description of the
selection, S’ is a subset of S containing elements
selected according to SM. The abstraction levels of
S and S’ are the same

65

3.2. The Epegenetic View

The epigenetic view is constructed using two AUs:
the interpretation AU and the adjustment AU. The
interpretation AU accepts executable models and
data models as inputs and produces a data model as
output. The adjustment unit adjusts one model
according to another input model. The
interpretation can be written: Interpret (P, I) — O.
O is obtained by transforming the I model
according to some description in P. The abstraction
levels of T and O are the same. However, compared
to P, they may have greater or lesser abstraction
level. The adjustment can be written: ~Adjust (M,
P) —P’.

3.3. Characterization of Biological Process

In this section, we characterized the biological
processes using the functional expressions:
Ontogenesis

Iterate (C, Assign(Ph, Develop(G,Ph)))
Phylogenesis

Iterate (C,
Reproduce(RM,S))))
Epigenesis

(Assign(M, Null),
Iterate (C,(Iterate(SC, Assign(M, Develop(D, M))),
Assign(D, Adjust(Interpret(M,IDM), D))

),

From the previous, we remark that the three
processes are similar since they all aim to deal with
evolution, but in the same time there is some
differences such as :

* The degree of alterability of the used models

* The abstraction levels of the used models

* The process cycle frequency

* The intervention of the environment on the
processes

In figure 2 we summarize our vision of the
relationship between the three biological processes.

Evolution through Ontoganosis 4
A2 High kvel

Alarability ¥
Abstraction level ¥

® A Medium level
N Low level

Frequancy A

Assign(S, Select(FM,

A bio-inspired
software

Environment & system

Evolution through Epigenasis

Alterability 22 Evolution through
Abstraction level A2 Phylogenasis
Fraquency A Altarability A
Environment A2 Abstraction level A
Frequancy N
Environment A

Figure 2. Relationship between the biological
processes

Journal of Theoretical and Applied Information Technology

15" April 2012. Vol. 38 No.1

B

© 2005 - 2012 JATIT & LLS. All rights reserved-

‘ % &
ST

ISSN: 1992-8645

E-ISSN: 1817-3195

4. DESCRIPTION OF BIO INSPIRED
SYSTEMS

Regarding to [13] there are different types of bio
inspired system, in this paper we will discuss some

types:

4.1. Artificial Neural Network

Artificial neural networks are computational
models implemented that attempt to capture the
behavioural and adaptive features of biological
nervous systems. An artificial neural network is
composed of several interconnected units, or
neurons. Some of these units receive information
directly from the environment (input units), some
have a direct effect on the environment (output
units), and others communicate only with units
within the network (internal, or hidden, units)[13].
Each unit implements a simple operation that
consists in becoming active if the total incoming
signal is larger than its threshold. An active unit
emits a signal that reaches all units to which it is
connected. The connection, or synaptic point,
operates like a filter that multiplies the signal by a
signed weight, also known as synaptic strength. The
behaviour aspect was given by the expression
below:

Iterate(C,Assign(M, Adjust(AJ,
E))

Where C: is the condition of end of learning.

E: the model that define the desirable solution that
the network must deliver (supervised learning).

M: the model that define neural network.

AlJ: is the model which gives to the link of network
the adjustment for adapt the network according to
the problem result, like retro propagation of error.

I. the model that define the convergence or
divergence of the network

Below is the structural aspect of Neural Network
Role: Neural Network model play role
Individual.

Description type: the neural is described with array
of one or more dimensions.

Element/Set: a Neural network system is a set of
two classes’ network and layer, which second one
is composed of two other class which are neural
and link.

Granularity: the granularity of phenotype is a set of
slot in the array that represents the change of
weight.

Alterability: the phenotype is alterable.
Composition: a neural network systems are a
succession of two transformations the first is
interpretation and second is adjustment.

Interpret(I,M,E),

of

66

We describe below the meta model of neural
network (structural aspect) using UML 2.0.

Hn L

K]

System 1 ! _Narmlk
: +5y5 et =

»
+Hink

Figure 3. A view of generic meta model of Artificial
Neural Network

System: class system define our system and it’s the
evolution of the network through the change incur
in layer, neural and link class. We need to use
singleton pattern to represent system because they
are one instance of object system.

Network: define the features of the network like
number of layer , the network evolve according
neural and link changes (adjustment process).
Layer: define the characteristic of each layer of the
network like number of neural, number of links,
type of layer: input, output, hidden.

Neural: define the feature of neural like bias

Link: define the characteristic of link like weight
The Network class evolves from initial state to final
state crossing transitional state according the adjust
transformation and interpret transformation, the
iteration transformation make refinement.

4.2. Negative Selection

The negative selection algorithm assumes that there
is a collection P of fixed-length strings of symbols
which must be protected from unauthorized change.
For example, this collection could be the patterns of
operation of a machine. In the absence of
unauthorized changes P corresponds to a collection
S which is called the self[13]. The goal of the
algorithm is to generate a set of detectors that can
signal the appearance in P of any string that does
not belong to S, that is, the appearance in P of any
nonself string. Nonself strings could be generated,
for example, by the presence in the system of a
virus or a network intrusion. The behaviour aspect
was given by the expression below:

Iterate(C, assign (M, Select (SM, Interpret (IM ,
M,E),E)))

C: the condition of end of transformation
mechanism and it’s until all detectors or antibody
was compared.

Journal of Theoretical and Applied Information Technology

15" April 2012. Vol. 38 No.1

B

© 2005 - 2012 JATIT & LLS. All rights reserved-

‘ % o
SATiE

ISSN: 1992-8645

E-ISSN: 1817-3195

M : define the model of detector that represent the
population of antibody.

SM : define the selection model here the selection
means the feature of good detectors.

IM : represent the interpretation model who
compare the affinity between antibody and antigen.
E : the model that define the antigen.

Below is the structural aspect of Negative selection
Role: Negative selection model play role of
Population.

Description type: the antibody can be described
with several manner, in high level representation or
in low level representation.

Element/Set: a negative selection system is a set of

three classes’ antibody, cell population and
antigen.
Granularity: the granularity of phenotype is

variable due to the several manner of antibody
description.
Alterability: the phenotype is alterable.
Composition: a negative selection systems are a
succession of two transformations the first is
interpretation and second is selection.

We describe below the meta model of negative
selection (structural aspect) using UML 2.0.

40t &b
1.2 | 5

| |
cell Population

|_Anfigen

| arlibody Haligens

1 1
TN

Hys

0

Figure 4. A view of generic meta model of Negative
Selection

System: class system define our system and it’s the
filtering of population of antibody from initial state
to final state. We need to use singleton pattern to
represent system because they are one instance of
object system.
Cell Population: define the features of population
like seize and individual, the population changes
according antibody (selected one).
Antibody: define the characteristic of individual
like representation, seize of individual...
Antigen: define the feature of the individual that
represent the non self.

The Antibody class evolves from initial state to
final state crossing transitional state according the

67

selection transformation and interpret
transformation, the iteration transformation make
refinement.

4.3. Genetic Algorithm

Operate on binary representations of the individuals
and emphasize the role of building blocks and
crossover [13]. Genetic programming operates on
tree-based representations of computer programs
and circuits. Evolutionary programming often relies
on tournament-based selection with gradual
population replacement and does not use crossover
[13]. The behaviour aspect was given by the
expression below:

Iterate(C, assign (S, Select (SM, Reproduce (OM ,
S))))

Where C : is the convergence condition as an
example in optimisation the satisfaction of
objective function

S: is the solution model that satisfies our problem
SM: is the selection model in this case we can have
the proportionate selection model, generational
replacement selection model, Truncated rank-based
selection model or Tournament selection model
OM: is the reproduction model, and can be of two
types, either by mutation or cross-over and both of
them have their own mode, in this case it is more
the cross over model that is used.

The expression function means that the system is
reproduced according to the model OM this process
with the selection one tune up the system with new
population

Below is the structural aspect of genetic algorithm
Role: genetic algorithm model play role of
Population.

Description type: the genome is describe in several
manner as chromosome form in genetic algorithm,
as tree in genetic programming..

Element/Set: a genetic algorithm system is a set of
two classes’ individual and population.

Granularity: the granularity of phenotype is a set of
bit that represents words

Alterability: the phenotype is alterable and it’s the
main principal of genetic algorithm.

Composition: a genetic algorithm systems are a
succession of two transformations the first is
reproduction and second is selection.

We describe below the meta model of genetic
algorithm using UML 2.0.

Journal of Theoretical and Applied Information Technology

15" April 2012. Vol. 38 No.1

B

© 2005 - 2012 JATIT & LLS. All rights reserved-

‘ % o
SATiE

ISSN: 1992-8645

E-ISSN: 1817-3195

Hit_pop

siansi pop 1

System Population

ina_gop

Hepre_ind +nil_ind

H3elet jnd
1

“ Individual

Figure 5. A view of generic meta model of Genetic
Algorithm

System: class system define our system and it’s the
evolution of a population from initial state to final
state. We need to use singleton pattern to represent
system because they are one instance of object
system.

Population: define the features of population like

seize and individual, the population evolve
according individual (selected one, reproduced
one).

Individual: define the characteristic of individual

like representation, seize of individual...[14].

4.4. Simulated Annealing

Is a function optimization procedure based on
random perturbations of a candidate solution and a
probabilistic decision to retain the mutated solution.
Simulated annealing takes inspiration from the
process of shaping hot metals into stable forms
through a gradual cooling process whereby the
material transits from a disordered, unstable, high-
energy state to an ordered, stable, low-energy state.
In simulated annealing, the material is a candidate
solution (equivalent to the individual phenotype of
an evolutionary algorithm) whose parameters are
randomly initialized. The solution undergoes a
mutation and, if its energy (equivalent to the
inverse of the fitness) is lower than that at the
previous stage, the mutated solution replaces the
old one. The procedure stops when the annealing
temperature approaches the zero value [13]. The
behaviour aspect was given by the expression
below:

Select (SM, Iterate(C, assign (S, Adjust (OM ,
S)))

C: is the condition of convergence, it is the
temperature

S: is the solution model that satisfies our problem

68

SM: is the selection model, in this case we choose a
random initial solution.
OM: is the adjustment model supporting only the

mutation using mathematical methods like
metropolis criterion.

Below is the structural aspect of simulated
annealing

Role: simulated annealing model play role of
individual.

Description type: the genome can be described in
several manners as chromosome form, as tree
form...

Element/Set: a simulated annealing system is an
element that’s representing by class named
individual.

Granularity: the granularity of phenotype is a set of
bit that represents words

Alterability: the phenotype is alterable and it’s the
main principal of simulated annealing

Composition: a simulated annealing systems are a
succession of two transformations the first is
selection and second is adjustment.

Figure 6 show the meta model of simulated
annealing using UML 2.0 [14].

| |
. System P

Population

Hil_ind _
+selc_ind

Individual

)

+adju_ind

#fina_ind

Figure 6. A view of generic meta model of Simulated
Annealing

System: class system define our system and it’s the
evolution of a individual from initial state to final
state. We need to use singleton pattern to represent
system because they are one instance of object
system.

Population: define the features of population like
seize and individual, the population is used to
select one individual for the evolution.

Individual: define the characteristic of individual
like representation, seize of individual. The
individual evolve according adjustment.

Journal of Theoretical and Applied Information Technology

15" April 2012. Vol. 38 No.1

B

© 2005 - 2012 JATIT & LLS. All rights reserved-

e
S 118

ISSN: 1992-8645

wWww jatit.org

E-ISSN: 1817-3195

5. TRANSFORMATION DESIGN

We describe in this section some of the
transformations implies in bio inspired system
listed above.

5.1. Selection Transformation

Figure 7 shows the representation in UML 2.0 of
the selected transformation, witch take population
model like input and provide new population model
like output. We use a strategy pattern to design
selected transformation model

Selection
+1d_individual
+ Selection_m - Selacted method
+Evaluation_ind ()
+F_function()
+5e1_selec_behav ()

+0pert_method ()

«eintarfatens
Selected_method
|t s]
I +3 method () !
[[
I ‘ 1
[Sl e N - !
[I : i
] I L I
[I] [
1 I i |
Proportionate salection| | Roulstte selaction |Ihnk selection] | Tournament selection
+5_method () +5_method () |+S methed () | +5_methad (§

Figure 7. A view of generic meta model of selection
transformation

A selection class has two attribute: Id individual
that identify the individual and Selection m. the
last one is used in Set selec_behav method to
describe the selection behaviour. Operat method is
used to encapsulate the behaviour of selection and
use S method for each behaviour type (roulette,
rank...).S method define an algorithm for each
selection behaviour.

5.2. Adjustment Transformation
We present below the Adjust transformation

The figure 8 shows the representation in UML
2.0 of the adjustment transformation, witch take
individual model like input and provide new
individual model like output. We use a strategy
pattern to design adjustment transformation model.

69

Adju
+ld_indimdual
+Adjust_m - Adjust Method
+F_function ()
+5et_adj_behaw ()
+Operat_method ()

< <interface ==
Adjust_MMethisd
- — —[—Adiust Method L,
: +4_method () !
I L
1 L]
I r]
I 1 L]
| | |
Metrop law Retro_eme porpg | Stat law
+& method) +4_ method) +4 method ()

Figure 8. A view of generic meta model of
adjustment transformation

An Adjustment class has two attribute:
Id individual that identify the individual and
Adjust m. the last one is used in Set adj behav
method to describe the adjustment behaviour.
Operat method is used to encapsulate the
behaviour of adjustment and use S_method for each
behaviour type (metropolis, retropropagation of
error...).S_method define an algorithm for each
adjustment behaviour.

5.3. Reproduction Transformation

The figure 9 shows the representation in UML
2.0 of the reproduction transformation, which take
individual model like input and provide new
individual model like output. We use a strategy
pattern to design reproduction transformation
model.

Reproduction
+d_indiidual
+Repruduce_m : Reproduce_Method
<<interfare > > +Mutate_m : Mutat_method
Mutat_method | +Cross_m : Cross Method
oM ot +F_function ()
7 T +Rep-Rate ()
! N +Set_rep_behav ()
1 | +Qperat_R_method ()
_Stoch muta | | One hit mut | f+Qperat M_method ()
+Operat_C_method ()
M_method =i
W weled) | [#H mathod +Sel_mul_behay ()
<<nterface>> +3el_cros_behav ()
Eae bM <dnterfaed>
|_Reproduce Method |
! +C_mathod R s
| 1 |*R_method () |
| A I |
| | | l |
| | | | 1
(One point cross| |M|MH Deter Rep | [Statio Rep | |_Elesit Rep |
+C_method { |+C_me1hnd 0 | |+R_me1hnd 0 | [+Rmethod g | [+R_method ()

Figure 9. A view of generic meta model of
reproduction transformation

Journal of Theoretical and Applied Information Technology

15" April 2012. Vol. 38 No.1

B

© 2005 - 2012 JATIT & LLS. All rights reserved- ‘

A —
Smune

ISSN: 1992-8645

E-ISSN: 1817-3195

A reproduction class has four attribute:
Id_individual that identify the individual
repruduce m which is used in Set rep behav
method to describe the reproduction behaviour,
Mutate m and Cross_m. are used respectively in
Set mut behav and Set cros behav methods to
describe the mutation and crossover behaviour.
Operat R method, Operat M_method,
Operat C_method are wused respectively to
encapsulate the behaviours of reproduction,
mutation and crossover.

The population class evolves from initial state to
final state crossing transitional state according the
selection transformation and reproduced
transformation, the iteration transformation make
refinement.

6. CASE OF STUDY AND
IMPLEMENTATION

To illustrate our formalism we choose to solve Xor
problem using neural network, below we describe
the evolution of Xor Artificial Neural Network
using MDA. The Xor function is non-linearly
separable, we can’t separate out in class 0 of those
in Class 1 by using a simple perceptron consists of
one in layer and one out layer. For this, the system
we describe consists of an input layer, a hidden
layer and an output layer.

In this context, the learning phase is not taken
into account, and the system is considered valid.
We focus on the functioning of the system, the
propagation of data from one layer to another. The
figure below describe the simplified meta model of
neural network and here relation among initial state
of Xor system.

70

System
Hame

Layer
+function
+activated

Node
+name
4DIgS gerrsnisfers
sativation |

Sysinlayer IniLayer §

SysHiayer Hayer «

o SOy ~ Outiaywr 4|

LevelMz oo

+d

+weight

Level M1

Figure 10. View of relationship between initial state
Xor system model and here meta model

The model described above is a graphical
representation of the Xor function system in its
initial state (the system is found in its initial state
when all layers are turned off except the input layer,
and is found in the final state when all layers are
turned on). We use the standard XMI [9] to
expressed the system. Below some listing of XMI
representation.

<?xml version="1.0" encoding="1S0-8859-1"?>
<xmi:XMI xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmIns="MMSystem" >
<System name="XOR function">
<InLayer tfunction="linear" activated="true" >
<node name="N1" bias="1" activation="1"
outL="/0/@link.0 /0/@link.1"/>
<node name="N2" bias="1" activation="1"
outL="/0/@link.2 /0/@link.3"/>
</InLayer>
<HLayer
activated="false">
<node name="N3" bias="-1.5" activation="-1"
inL="/0/@link.0 /0/@link.2" outL="/0/@link.4" />
<node name="N4" bias="-0.5" activation="-1"
inL="/0/@link.1 /0/@link.3" outL="/0/@link.5" />
</HLayer>
<OutLayer
activated="false">
<node name="N5" bias="-0.5" activation="0.0"

tfunction="threshold"

tfunction="threshold"

Journal of Theoretical and Applied Information Technology

15" April 2012. Vol. 38 No.1

B

© 2005 - 2012 JATIT & LLS. All rights reserved- ‘

A —
Smiis

ISSN: 1992-8645

E-ISSN: 1817-3195

inL="/0/@link.4 /0/@link.5" />

</OutLayer>
<link id="0" weight="1.0"
src="/0/@InLayer/@node.0"
trg="/0/@HLayer.0/@node.0"/>

<link id="1" weight="1.0"

src="/0/@InLayer/@node.0"
trg="/0/@HLayer.0/@node.1"/>
<link id="2"
src="/0/@InLayer/@node.1"
trg="/0/@HLayer.0/@node.0"/>

weight="1.0"

<link id="3" weight="1.0"
src="/0/@InLayer/@node.1"
trg="/0/@HLayer.0/@node.1"/>

<link id="4" weight="-2"
src="/0/@HLayer.0/@node.0"
trg="/0/@OutLayer/@node.0"/>

<link id="5" weight="1.0"

src="/0/@HLayer.0/@node.1"
trg="/0/@OutLayer/@node.0"/>
</System>

</xmi:XMI>

The transformations that we propose consist of a set
of deals that will be applied to source model ie
(level M1 in figure above) in purpose to achieve
target model (in our state source model and target
model blong to the same metamodel ie level M2 in
figure above). The transformations are listed below:
e Determination of the state of the system (if
it is in final state we stop refining)
e Propagation of data from previous layer to
next layer
e For each propagation, the nods that
compose the layer situated after the last
layer activated in the system do the sum
pondered of their input and apply the
function of transfer to this layer. After the
propagation the non activated layer becomes
activated.
The figure below shows one of the transformation
representation listed above in ATL language[15].

module Propagation;

WA

ceeate O0Mcyster » Misysten refining INEyster + MiSystan:

TN

helper context M3jstenlayer def actyvatadlpdater) Booleans
if self LaTelnlager |

A

then true

A

else 3f self, LoThel:rsfHlayer |

s B

then rue

I

else if self.tode, f-ret () pravicustaye:Tshctivated|
then toie

A

else false

s

acif

endif

I

endif;

WM,

Figure 11. This figure show transformation model in
ATL language

we uses the environment eclipse from Java to make
this system realizable the figure below show the
system represented in Eclipse Platform with plug in
Kernel Metametamodel (KM3)[9].

53

Fle Edt Moviete Sewch Prokect ATLERor Run Windw Feb

witd S AU O ST dk R R aff SR
m [gt 11 = B 52 oute 12
LB 7| package MSysten A | Anouting s not avalable,
A eniaration Trarelie {
= (2 40 Fucton Reralivex;
| projeet kadthedﬁd‘
-
dass Systen {
rbute name : Sting;

reference InLayer rantainer :Layer opposteCt Syslnlayer;
reference Hlayer [*ontainer :ayer opposteOf SyeHlayer;
reference Outlaye: contanar :Laver coposteOf SysOutlayer;
_reference ik [1+*] crdared conkainer: Link oppasteOF systeny;

s Laer { ¥
¢)
(4 Probiers 5 Froperbes EmorLog Console
0 errors, O wams, 0 infos
| Desrgtion | Resoce | InFolr Locatan
¢ p
“XOR Function MMSystem, kM3

Figure 12. This figure show Xor system in KM3

7. RELATED WORK

The majority of research in the domain of the
software engineering aims the process of software
development. This current of research is explained

Journal of Theoretical and Applied Information Technology

15" April 2012. Vol. 38 No.1

g

© 2005 - 2012 JATIT & LLS. All rights reserved-

FlaNill

ISSN: 1992-8645

Www.jatit.org

1
E-ISSN: 1817-3195

by needs of enterprises. These needs summarize to
the productivity, the everlastingness of the
knowledge and the consideration of the platform.
We saw in literature that the transformations
languages currently used are at a time some
declarative and imperative languages. They don't
provide easiness for transformations that only aim
the development of software but, in addition, they
can be used, as we showed, to describe the running
of systems. The imperative expressions permit the
extremely complex dealing description while the
declarative expressions are ignoring some details of
transformations. These languages can be evolved in
this context while introducing flexible techniques
allowed the integration of useful concept for the
description of all dealing type that can be done by
systems.

The field of software engineering has until now
focused more on actual architectural solutions,
analyses and designs and less on architectural
description as put forward in the paper. We hope by
developing this formalism to:

e Facilitating the study of bio-inspired
systems

e Finding new promising inspiration
directions

o Unifying bio-inspired systems terminology

Elicitation of system requirements.
8. CONCLUSION

The paper highlights the need for a new formalism
and mechanisms to describe bio inspired systems.
The paper argues that the need of biological
inspired point view is the best opportunity to
describe bio inspired systems. The benefit of using
biologically inspired view is, for example, to cover
the lack of naturalness. In other words, while some
biological mechanisms are being intensively used,
it seems difficult to maintain a correspondence
between the designed systems and their
counterparts in the nature. Even if this has no effect
on the system effectiveness, it can be a helpful
quality in its comprehension. For example, when
using an evolutionary process within a robot, it is
not obvious to identify what is the individual and
what is the species. The robot is what corresponds,
at first glance, to an individual, but, within one
individual, phylogeny is meaningless.

The paper shows the contribution of Model
Driven Architecture to the bio inspired systems
modelling. For example the models provide an
advantage for artificial neural to have a flexible
(adaptable) behaviour. We hope with the
combination of MDA and bio inspired views to

72

make the development of complex bio inspired
system an easier task

REFRENCES:

[1]. S. Demeyer, S. Ducasse and O. Nierstrasz.
Object-Oriented Reengineering: Patterns and
Techniques. In Proceedings of the 21st IEEE
International ~ Conference on Software
Maintenance (ICSM’05), pages 723-724,
Budapest (Hungary), 25-30 September 2005.

T.L. van Zyl and E.M. Ehlers. A Need for
Biologically Inspired Architectural
Description: The Agent Ontogenesis Case.
10th Pacific Rim International Conference on

[2].

Multi-Agents (PRIMA 2007), Bangkok
(Thailan), 21-23 November, 2007. Lecture
Notes in Computer Science, Springer,

Vol. 5044, Agent Computing and Multi-Agent
Systems, pages 146-157, April 2009.

M. Luck, P. McBurney, O. Shehory and S.
Willmott. Agent technology: Computing as
interaction (A roadmap for agent based
computing), University of Southampton,
January 2005.

J. Li, X. Mao and Y. Shu. An OO-based
Design Model of Software Agent. In
Proceedings of the 6th International
Conference on Parallel and Distributed
Computing Applications and Technologies
(PDCAT'05), pages434-440, Dalian (China), 5-
8 December2005.

F. Pagliarecci, L. Spalazzi and G. Capuzzi.
Formal Definition of an Agent-Object
Programming Language. In Proceedings of
International Symposium on Collaborative
Technologies and Systems (CTS'06), pages
298-305, Las Vegas, NV (USA), 14-17 May
2006.

D. Meslati, L. Souici-Meslati and S.E Mili.
Software Evolution and Natural Processes: A
Taxonomy of Approaches. 3rd International
Symposium on Innovation and Information and
Communication Technology (ISIICT 2009),
pages 48-57, Philadelphia University, Amman
(Jordan), 15-17 December 2009.

M. Sipper, E. Sanche, D. Mange, M.
Tomassini, A. Pérez-Uribe and A. Stauffer. A
Phylogenetic, Ontogenetic, and Epigenetic
View of Bio-Inspired Hardware Systems. IEEE
Transactions on Evolutionary Computation,
Vol. 1, No. 1, pages 83-97, April 1997.

B. Tekinerdogan, M. Aksit and F. Henninger.
Impact of Evolution of Concerns in the Model-
Driven Architecture Design Approach. 2sd

[3].

[4].

[3].

[6].

(7.

[8].

Journal of Theoretical and Applied Information Technology
15" April 2012. Vol. 38 No.1 B

© 2005 - 2012 JATIT & LLS. All rights reserved: ‘ i

FlaNill

1
ISSN: 1992-8645 Www.jatit.org E-ISSN: 1817-3195

International Workshop on Aspect-Based and
Model-Based Separation of Concerns in
Software Systems, Bilbao (Spain), 10 July
2006. Electronic Notes in Theoretical
Computer Science, Elsevier, Vol. 163, No. 2,
pages 45-64, April 2007.

[9]. X. Blanc. MDA en action: Ingénierie logicielle
guidée par les modeles. Ed, Eyrolles, April
2005 (in french).

[10]. L. Xiao and D. Greer. Adaptive Agent
Model: Software Adaptivity using an Agent-
oriented Model-Driven Architecture. Journal of
Information and Software Technology,
Elsevier, Vol.51, No. 1, pages 109-137,
January 2009.

[11]. B. Bauer and J. Odell. UML 2.0 and
agents: how to build agent-based systems with
the new UML standard. Journal of Engineering
Applications of Artificial Intelligence,
Elsevier, Vol. 18, No. 2, Special issue on
Agent-oriented Software Development, pages
141-157, March 2005.

[12]. E. Sanchez, Phylogeny, Ontogeny, and
Epigenesis. From Biology to Hardware,
Volume 1259 de LCNS, pages 33-54 Springer,
Berlin 1997.

[13]. Dario Floreano,Claudio Mattiussi, Bio-
Inspired Artificial Intelligence Theories,
Methods, and Technologies, The MIT Press
Cambridge, Massachusetts London, England,
2008.

[14]. Seif Eddine Mili, Djamel Meslati ,
Modeling the phylogenetic dimension of bio-
inspired systems: Toward a New Taxonomy Of
Bio-inspired Systems, 3rd International
conferece On Computer Science And Its
Aplications, CIIA 2011 Univesity Of Saida
Algeria proceedings pl15-121, December 13-
152011

[15]. F. Allilaire, T. Idrissi, ADT: Eclipse
development tools for ATL , In: Proceedings of
the second European workshop on Model
Driven Architecture (MDA) with an emphasis
on methodologies and transformations
(EWMDA-2). Computing laboratory,
University of Kent, Canterbury, UK. England
2004, p. 171-178.

73

