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ABSTRACT 

The Constraint Satisfaction Problems (CSP) are proven more and more promising to model and solve a 
large number of real problems. A lot of approaches using constraint reasoning have been proposed to solve 
search problems. Our contributions here consist to propose a modeling of Capacity Allocation Problem of 
an airport (CAP) in the form of a CSP. This modeling produces a model which we call CSPAC. Then, we 
generalize this model to the fixes of the airport and call the new model GCSPAC. Thereafter, we describe 
an approach combining the branch-and-bound algorithm and local search to solve both CSPAC and 
GCSPAC. This method allows assisting the airport managers to regulate the arrival/departure predicted 
demands and to optimize the utilization of the available capacities of a terminal. Finally, we expose some 
experimental results showing the utility of our different approaches. 

Keywords: Constraint Optimization, Modeling, Solving, Capacity Allocation Problems. 

 

1.  INTRODUCTION  

Capacity allocation problems are the core of 
many real-world planning problems. The first step 
to solve a capacity allocation problem consists in 
formulating and modeling it. Modeling is one of the 
important themes of Artificial Intelligence (AI). A 
good model can generally facilitate the problem-
solving [12]. For our problem, different modeling 
techniques can be studied. Among these techniques 
one can find the constraint satisfaction problems 
[10]. 

The Constraint Satisfaction Problem (CSP) is 
proven more and more promising to model and 
solve a large number of real problems. A lot of 
approaches using constraint reasoning have been 
proposed to solve CSP. Formally, a CSP can be 
defined by the triplet (X, D, C), where X = {X1, ..., 
Xn}, is the set of n variables; D = {D1, ..., Dn}, is 
the set of n domains; Di is the domain of values of 
the variable Xi and C = {C1, ..., Cm}, is the set of m 
constraints of the problem, specifying compatible 
values or excluding incompatible values between 
variables. Solving a CSP consists of assigning a 
value to each variable such that all constraints are 

satisfied. In general, the CSPs are solved by 
traditional methods combining a mechanism of 
search and a mechanism of reinforcement of 
consistencies with each node of search. Various real 
problems can be represented in the form of a CSP. 
In this paper, we model the Capacity Allocation 
Problem of an airport and also of the fixes of this 
airport in the form of a CSP and apply CSP 
techniques to solve them. 

The present study has several objectives. The 
prime objective is to model the capacity allocation 
problem of an airport, on the one hand, and of its 
fixes, on the other hand, in the form of a CSP. For 
this purpose, it is enough to identify the variables, 
the domains of values which these variables can 
take and the constraints of the problem. 

The second objective is to solve those problems 
by using the resolution algorithms designed 
specifically for the CSP. These CSP resolution 
algorithms include the Branch and Bound algorithm 
and its alternatives, as presented in [7], [9], [11] and 
[12]. 

The third objective is to propose optimization 
approaches in order to assist the airport managers to 
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regulate the arrival and departure demands and to 
efficiently use the available capacities of a terminal. 
These approaches are based on combining the 
branch and bound algorithm with the local search 
under time limit constraint to deal with capacity 
allocation problems of an airport and its fixes. 

This paper’s organization begins with section 2 
which presents the airport capacity allocation 
problem. In section 3, we present a modeling of this 
problem in the form of a CSP which we called 
CSPAC. We generalize this model to several 
arrival/departure fixes of an airport in section 4. The 
general model is called GCSPAC. Thereafter, we 
propose an optimization approach for both CSPAC 
and GCSPAC and give two algorithms in section 5. 
In section 6, we expose some experimental results 
and conclude in section 7. 

2. CAPACITY ALLOCATION PROBLEMS 

In this paper, we define the airport capacity to be 
the maximum number of arrivals and departures that 
can be performed within a fixed time interval under 
given conditions. We note CT the total capacity of 
the airport. We define the fix capacity to be the 
maximum number of flights that can cross a fix in a 
fixed time interval under given conditions. Finally, 
the Airport capacity allocation problem consists in 
determining a balance between arrivals and 
departures, minimizing the total number of delayed 
flights for a given time period. 

The airport capacity allocation (CAP) is a key 
problem in aerial traffic. It will be crucial because 
aerial traffic will greatly increase in the next years 
and its regulation will become more and more 
difficult, given the limited capacities both in airports 
and in aerial sectors. Thus, it is necessary to solve 
this problem, especially in the case of congestion. 
The congestion occurs at an airport when the 
request of the traffic exceeds the available capacity.  

The capacity of the airports and the capacity of 
their fixes become more and more limited compared 
to the demands, and present real problems for the 
aerial transportation system in general and more 
particularly for airports managers. Various solutions 
can be used to remedy this problem including the 
construction of new airports, the extension of 
existing runway systems, the application of new 
technologies to increase capacity, and optimization 
of the use of existing capacity. The reader can be 
referred to [7] for some possible measures to 
increase airport capacity. Some aspects of the 
problem are presented in [3-6].  

In addition, aerial traffic regulation should be 
optimized and automated, especially when treating 
unforeseen events. In [8], we proposed a modeling 
and a resolution of the aerial conflicts problems by 
techniques of constraints network (CSP). This 
modeling and automatic resolution can be possibly 
introduced into project (FREER) [1] as developed 
by Eurocontrol following the concept “Free Flight” 
[2]. 

3. CSPAC: A CSP MODEL FOR THE 
AIRPORT CAPACITY ALLOCATION 
PROBLEM 

3.1. Problem Formulation 

Figure 1 presents a simplified scheme of an 
airport comprising the arrival and departure 
demands during a time interval ‘i’ (‘i’ is a period of 
15 minutes). The arrival demands are at the point 
‘A’. The departure demands are at the point ‘D’. 
The point ‘T’ represents a Terminal.  

The problem consists in satisfying the arrival and 
departure demands, within the limit of the total 
capacity of the terminal during the time interval ‘i’. 
We will note this limit as CTi. CTi is the sum of Pvi 
and of Poci. 

CTi = Pvi + Poci                                (1) 

Pvi is the number of empty places at the Terminal 
and Poci is the number of occupied places at the 
Terminal. If Xaai represents the entries (the actual 
planes which arrive) and Yadi the throughput (actual 
planes which leave) during a time interval ‘i’, then 
the number of empty places for the time interval 
‘i+1’ becomes: 

Pv i+1 = Pvi + Yadi − Xaai                (2) 

In the same way, the number of occupied places 
for the time interval ‘i+1’ becomes: 

Poci+1 = Poci + Xaai − Yadi            (3) 

For the sake of simplification and without loss of 
generality, let us admit in the sequel that CTi is a 
constant independent of time. We will note it as CT 
such that: 

CT = Pvi + Poci = Pvi+1 + Poci+1        (4) 

3.2. Problem Modeling 

We propose to model this problem of the 
arrivals/departures at an airport (figure 1) in the 
form of a CSP CSPACi = (Xi, Di, Ci) during a time 
interval ‘i’, where: 

- Xi = {Xai, Xaai, Ydi, Yadi, Cai, Cdi, Qai, Qdi, Xtai, 
Ytdi, Pvi, Poci} is the set of variables such that: 
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i 1 2 3 4 5 6 7 8 9 10 11 12 TT 

Xai 26 38 42 29 06 13 14 20 40 25 13 12 278 

Ydi 36 32 09 15 07 10 17 33 34 22 13 01 229 

Cai 18 24 26 28 17 20 

Cdi 29 24 19 15 30 27 

Xai is the number of predicted arrival demands at 
the point ‘A’ (Figure 1); Xaai is the number of 
actual arrivals at the point ‘A’; Ydi is the number of 
predicted departure demands at the point ‘D’ 
(Figure 1); Yadi is the number of actual departures 
at the point ‘D’; Cai is the arrival capacity at ‘A’; 
Cdi is the departure capacity at ‘D’; Qai is the 
number of arrivals delayed at the point ‘A’; Qdi is 
the number of departures delayed at the point ‘D’; 
Xtai is the total number of arrival demands for the 
time interval ‘i’; Ytdi is the total number of 
departure demands for the time interval ‘i’; Pvi and 
Poci are respectively the set of empty and occupied 
places of the terminal at the point ‘T’ of Figure 1 
during ‘i’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that for each value of ‘i’, we add the delay 
Qai−1 recorded in the previous interval ‘i-1’ to the 
predicted arrival demands Xai . We have Xtai = Xai 
+ Qai−1 and Xta1 = Xa1 since Qa0 = 0. In the same 
way, for each value of ‘i’, we add the delay Qdi−1 
recorded in the previous interval ‘i-1’ to the 
predicted departure demands Ydi. We have Ytdi = 
Ydi + Qdi−1 with Qd0 = 0. 

- Di = {DXai, DXaai, DYdi, DYadi, DCai, DCdi, 
DQai, DQdi, DXtai, DYtdi, DPvi, DPoci} is the set 
of variable domains. We consider that all the 
domains of these variables are a set of natural 
integers such as {0, 1, 2, ..., CT }, except D(Cai, 
Cdi) which is the set of pairs of natural integers. We 
assume that all domains are independent of i, i.e., 
D1=D2=D3... 

Note that the values of Cai and Cdi are dictated by 
the airport managers according to the predicted 
arrival and departure demands (see Table 1) to 
minimize the total delay. 

The values of Cai and Cdi are interdependent and 
generally should be chosen from a set of pairs such 
as D(Cai, Cdi) = {(18, 29), (24, 24), (26, 19), (28, 
15), (17, 30), (20, 27)} (see Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The first pair in the set means that if Cai = 18 
then Cdi = 29 and vice versa. The meaning of the 
other pairs is similar. The purpose of our approach 
is to assist the managers to efficiently determine the 
optimal values or accepted values of Cai and Cdi. 

- Ci is the set of constraints of the problem.  
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A = Arrival 
T = Terminal 
D = Departure 

    

     D   

Figure 1. Example of a simplified scheme of an airport

Table 1. Example of predicted number of arriving flights (Xai) and predicted number 
of departing flights (Ydi) per each i=15 minute time interval of a 3 hour period 
(extracted from [3-6]). 

Table 2. Example of pairs of capacities dictated by airport managers to use per each i=15 minute 
time interval of a 3 hour period. Cai is the arrival capacity, Cdi is the departure capacity (extracted 
from [3-6]). 
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We can formulate them as follows: 

0 ≤ Pvi ≤ CT                                             (5) 

0 ≤ Poci ≤ CT                                           (6) 

0 ≤ Pvi + Poci ≤ CT                                 (7) 

0 ≤ Pvi+1 + Poci+1 ≤ CT                         (8) 

0 ≤ Xaai ≤ Pvi                                          (9) 

0 ≤ Yadi ≤ Poci                                       (10) 

0 ≤ Xaai ≤ Xai                                         (11) 

0 ≤ Yadi ≤ Ydi                                        (12) 

0 ≤ Xaai + Yadi ≤ CT                              (13) 

Pvi+1 = Pvi + Yadi − Xaai                        (14) 

Poci+1 = Poci + Xaai − Yadi                    (15) 

Qai = Xai − Xaai + Qai−1                         (16) 

Qdi = Ydi − Yadi + Qdi−1                        (17) 

[Xaai + Yadi ] ≤ [Xai + Ydi ]                  (18) 

Qai−1 (in Relation (16)) and Qdi−1 (in Relation 
(17)) are respectively the number of arrival and 
departure planes delayed during the time interval ‘i-
1’. These two numbers should be added respectively 
to the arrival and departure predicted demands 
during the time interval ‘i’. So the total number of 
predicted arrival demands during ‘i’ is the sum of 
demands actually expressed Xai during ‘i’ increased 
by the number of planes Qai−1 which were waiting 
in the queue due to the fact that they were not been 
served during ‘i-1’. Similarly, the total number of 
predicted departure demand during ‘i’ is the sum of 
demands really expressed Ydi during ‘i’ increased 
by the number of planes Qdi−1 which were waiting 
in the queue due to the fact that they were not been 
served during the time interval ‘i-1’. The planes 
which were waiting in the queue during the time 
interval ‘i-1’ are served in priority during the time 
interval ‘i’. 

Relations (5)-(8) are evident and easy to 
understand. Relations (9) and (10) are explained 
above. Relations (14) and (15) are, respectively, the 
same as relations (2) and (3). Relations (11) and 
(12) mean that at each arrival/departure point, the 
number of flights actually served is less than or 
equal the number predicted to arrive/to leave at the 
same point.  

 

 

 

Relation (13) means that the total number of 
flights actually served over the arrival and departure 
points must not exceed the total capacity of the 
terminal. Relations (16) and (17) allow computing 
the delay at each arrival/departure point. Relation 
(18) means that only a part of the predicted 
demands is served. Other flights are delayed. 

The problem consists in assigning a value to each 
variable by respecting the constraints described 
above. Thus, our constraint network (CSP) is now 
well identified. In particular, the variables, the 
domains of value which these variables can take and 
the constraints of the problem are explicitly defined. 
Now it remains to apply one of the CSP resolution 
approaches to solve the capacity allocation problem. 
We think in particular to use the Branch and Bound 
algorithm and its alternatives, as presented in [7], 
[11] and [12]. 

4. GCSPAC: A GENERALIZED CSPAC FOR 
THE FIXES OF AN AIRPORT 

4.1. Problem Presentation 

In the previous section, we modeled the capacity 
allocation problem of an airport in form of a CSP 
called CSPACi. We considered that there was only 
one arrival way and only one departure way, this, 
because, the airport managers deliver the capacities 
only in form of pairs (arrival-capacity, departure-
capacity). However, there are really several arrival 
ways (called arrival “fixes”) at the point ‘A’ which 
will be noted now ‘AF’ (see Figure 2). In the same 
way, at the point ‘D’ which will be noted ‘DF’, 
there are several departure ways (called departure 
“fixes”). Let us note nafi the number of arrival 
‘fixes’ during ‘i’ and ndfi the number of departure 
‘fixes’ during ‘i’. 
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Thus, if the airport admits nafi (nafi > 1) arrival 
fixes and ndfi (ndfi > 1) departure fixes, then it is 
necessary to distribute these pairs of capacities over 
all the arrival/departure fixes. 

In the sequel, we will consider that there is ‘j’ 
arrival fixes AFaji with j = 1,..., nafi and ‘k’ 
departure fixes DFdki with k = 1,..., ndfi . Each fix 
‘j’ or ‘k’ admits its own capacity noted CFji or CFki 
during the same time interval ‘i’. 

The arrival and departure fixes have limited 
capacities which show the maximum number of 
flights that can cross a fix in a 15-minute interval 
(or other interval) under given conditions. These 
capacities are generally variable and interdependent. 

The traffic demands for an airport and for the 
fixes of this airport are given by the predicted 
number of arriving and departing flights per each 15 
minute time interval of a considered period (see 
Table 1). 

4.2. Problem Modeling 

We model the capacity allocation problem of the 
fixes of an airport (Figure 2) in form of a CSP 
GCSPACi = (Xi, Di, Ci) during a time interval ‘i’, 
where: 

- Xi = {Xai , Xaai , Ydi , Yadi , Qai , Qdi , Cai, Cdi, 
X1afi, ..., Xnafi, X1aafi, ..., Xnaafi, Y1dfi, ..., Yndfi, 
Y1adfi, ..., Ynadfi , C1afi, ..., Cnafi, C1dfi, ..., Cndfi, 
Q1afi, ..., Qnafi, Q1dfi, ..., Qndfi, Xtai, Ytdi, Pvi, 
Poci} is the set of variables. 

Xai, Xaai, Ydi, Yadi, Qai , Qdi, Pvi, Poci are the 
same variables than those described above in the 
CSPACi. 

Xjafi is the number of arrival demands at fix ‘j’ 
with j = 1, ..., naf. Xjaafi is the number of actual  

 

 

 

 

 

 

 

 

 

 

 

arrivals at fix ‘j’. Ykdfi is the number of 
departure demands at fix ‘k’ with k = 1, ..., ndf. 
Ykadfi is the number of actual departures at fix ‘k’. 
Qjafi is the number of arrivals delayed at fix ‘j’. 
Qkdfi is the number of departures delayed at fix ‘k’. 
Cjafi is the arrival capacity at fix ‘j’. Ckdfi is the 
departure capacity at fix ‘k’. 

- Di = {DXai, DXaai, DYdi, DYadi, D(Cai, Cdi), 
DQai, DQdi, DX1afi, ..., DXnafi, DX1aafi, ..., 
DXnaafi, DY1dfi, ..., DYndfi, DY1adfi, ..., DYnadfi, 
DC1afi, ..., DCnafi, DC1dfi, ..., DCndfi, DQ1afi, ..., 
DQnafi , DQ1dfi, ..., DQndfi , DXtdi, DYtdi} is the 
set of variable domains. 

We consider that all the domains of these 
variables are a set of natural integers such as {0, 1, 
2, ..., CT }, except D(Cai, Cdi) which is the set of 
pairs of natural integers. 

We assume that all domains are independent of i, 
i.e., D1=D2=D3... 

- Ci is the set of constraints of the problem. We can 
formulate them as follows: 

 afn ..., 1, j , 0  ii XjafXjaaf       (19) 

 dfn ..., 1,k  , 0  ii YkdfYkadf      (20) 

T

n

k

adf

n

j

aaf CYkXj ii  


    0
dfaf
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                    (21) 

     Yd and  
dfaf

1
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1




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df

n

j

af iii YkXjXa           (22) 





dfaf
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   Ytdi and  
n

k
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n

j

afi ii YtkXtjXta        (23) 
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…
… …

… 

Arrival Fixes: AF Departure Fixes: DF 
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…
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Fix 1 Queues 
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Terminal 

Flux via 
 

Fix ndf 

Flux via        
Fix naf 

Figure 2. Example of an airport system (inspired from [3-6]). 



Journal of Theoretical and Applied Information Technology 
31st March 2012. Vol. 37 No.2 

 © 2005 - 2012 JATIT & LLS. All rights reserved.                                                                                                   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
146 

 





dfaf
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   Yadi and  
n

k

adf

n

j

aaf iii YkXjXaa      (24) 





dfaf
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   Cdi and  
n
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df

n

j

af iii CkCjCa                (25) 





dfaf
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   Qdi and  
n

k

df

n

j

af iii QkQjQa               (26) 

 afn ..., 1, j , Q   iii jafXjafXtjaf (27) 

 dfn ..., 1,k  , Q  1  iii kdfYkafYtkdf (28) 

ii aXaa C                                                             (29) 

ii CdYad                                                               (30) 

 afn ..., 1, j ,  ii CjafXtjaf                       (31) 

 dfn ..., 1,k  ,  ii CkdfYtkdf                    (32) 

 afn ..., 1, j , X -  iii jaafXtjafQjaf      (33) 

 dfn ..., 1,k  , Q  iii YkadfYtkdfkdf    (34) 

iiiii YdXaYadXaa                                      (35) 

Relations (19) and (20) mean that at each 
arrival/departure fix (j or k), the number of flights 
actually served is less than or equal to the number 
predicted to arrive/to leave at the same fix. Relation 
(21) means that the total number of flights actually 
served over all the arrival and departure fixes must 
not exceed the total capacity of the terminal. 

Relations (22) and (23) mean that the sum of 
planes predicted to arrive/leave at all the 
arrival/departure fixes is equal to the total number 
predicted to arrive/leave at the airport. Relation (23) 
takes in account the number of flights delayed at the 
previous time interval. 

Relation (24) means that the sum of planes 
actually arrived (respectively left) at all arrival 
(respectively departure) fixes is equal to the total 
number actually arrived (respectively left) at the 
airport. Relation (25) means that the sum of 
capacities at all the arrival/departure fixes is equal 
to the total arrival/departure capacity of the airport. 

Relation (26) means that the sum of 
arrival/departure planes delayed at all the 
arrival/departure fixes is equal to the total number 
of planes delayed at the airport. Relations (27) and 
(28) are described above. Relations (29), (30), (31) 
and (32) mean that the numbers of served 

arrival/departure flights at each fix must be not 
larger than the capacity allocated to these fixes. 

Relations (33) and (34) allow computing the 
delay at each arrival/departure fix. Relation (35) 
means that only a part of the predicted demands is 
served. Other flights are delayed. 

Now our constraint network GCSPAC for Fixes 
is well identified. In order to optimize and automate 
the aerial traffic regulation, we propose in the next 
section an optimization model for the best use of 
airport and fixes capacities. 

5.  OPTIMIZATION OF THE UTILIZATION 
OF EXISTING CAPACITY 

We seek to optimize the utilization of existing 
capacity of an airport and of its fixes, during the 
congestion periods. For that, we must find the best 
allocation of capacities between arrivals and 
departures which can satisfy the predicted traffic 
demand for a time period and can also minimize the 
delay. 

5.1. Optimization of the use of existing airport 
capacity 

Let us note that in the case of congestion during a 
time interval ‘i’ the sum of numbers of actual 
arrivals (Xaai ) and of actual departures (Yadi ) is 
lower than the sum of numbers of arrival demands 
(Xai) and of departure demands (Ydi). In other 
words, only a part of the demands is served 
(equation (18)). When solving a CSP, a number of 
questions should be asked. For example: 

·- Is there any solution for this problem? In other 
words, is it the problem satisfiable? 

- How can we find a solution? 

- How can we find all solutions? 

- ... 

For our CSPAC, we are interested in the following 
questions: 

- Is it possible to serve all the requests without any 
delay? 

 ? 0    ]    [
1




ii d

N

i

a QQ  

Where Qai and Qdi are respectively the number of 
arrival and departure planes delayed during the time 
interval ‘i’ and N is the number of intervals 
constituting the given time period. 

- Is it possible to serve all the requests with the 
given delay ‘r’ (r = 1, 2, ...): 
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- Is it possible to serve all the requests without 
exceeding a certain given delay ‘rmax’: 

 ? r    ]    [ max
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a QQ  

Our objective is to minimize the sum of the 

numbers of arrival planes delayed  ][
1



N
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aiQ and to 

minimize the sum of the numbers of departure 

planes delayed  ][
1

id

N

i

Q


during a given time period 

(15*N minutes). In other words, we seek to 
minimize: 

 ]    [
1

ii d

N

i

a QQ 


                                              

(36) 

subject to constraints (5)-(18). 

We recall that at a time interval i:  

 X   iii aaXaQa   

 Y   iii adYdQd   

5.2. Optimization of the use of existing capacity 
of the fixes of an airport 

Given values of (Xai, Ydi) (arrival and departure 
demands for a time interval `i' and a number of 
possible values of (Cai, Cdi), the problem consists in 
assigning a value to each variable by respecting the 
constraints described above. The problem GCSPAC 
is a problem of decision. It is also an optimization 
problem. The question is to determine the real 
repartition of the arrival and departure demands 
among the fixes, and the real repartition of arrival 
and departure capacities among the fixes by 
respecting the constraints described above. 
Thereafter, it suffices to apply one of the CSP 
reasoning procedures (Branch and Bound, Local 
Search, Backtracking, etc.) to solve the capacity 
allocation problem. 

Unfortunately, in many cases, only a part of 
predicted demands, arrivals or departures, can be 
served. In order to deal with this problem, we 
propose below an optimization method able to give 
a best allocation of capacities of an airport and of its 
fixes between arrivals and departures. This 

optimization method under constraints also takes in 
account the time limit constraint, i.e., it is able to 
give an acceptable solution within a given time 
limit.  

In other words, for a period formed by N 
intervals we seek to minimize  
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These two relations numbered (38) and (39) are, 
respectively, the number of planes arriving and 
leaving which are delayed during a time interval 
‘i=15 min’. Note that  is the sum of flights 

delayed in all intervals. We equivalently have: 
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Our goal is to minimize  . For this goal, we propose 

an algorithm in the next section. 

5.3. BLSTL: An algorithm for capacity 
allocation problems 

We first describe an algorithm to distribute a 
given pair of arrival and departure capacities (Cai, 
Cdi) among all fixes for time interval i, in order to 
serve the flight demands in interval i. 

 

Algorithm 1: 

1. We first distribute the predicted arrival 
demands   (i.e. the values of Xai) of an airport for 
its arrival fixes and the predicted departure 
demands (i.e. the values of Ydi) for its departure 
fixes. This distribution takes into account the 
flights delayed at each fix in interval i-1, so that 
all fixes have almost the same number of flight 
demands. 

2. Secondly, we affect (Cai, Cdi) to predicted 
arrival and departure demands (Xai, Ydi) to 
obtain the actual arrival and departure demands 
(Xaai, Yadi) of the airport in interval i. 
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 3. Thirdly, we distribute (Xaai, Yadi) given 
above respectively to arrival fixes X1aafi,..., 
Xnaafi and to the departure fixes Y1adfi,..., 
Ynadfi. This distribution takes into account the 
number arrival/departure demands at each fix, so 
that there are almost the same numbers of 
delayed flights at each fix, and all constraints are 
satisfied. 

4. Finally, we compute the number of delayed 

flights )   (
dfaf

11




n

k

df

n

j

af ii QkQj for interval i and 

then the sum S of number of delayed flights for 
intervals 1,2,...,i. 

 

Algorithm 1: Distribution Algorithm 

   

Algorithm 2: Algorithm BLSTL 

We called this algorithm BLSTL for (Branch and 
Bound + Local Search + Time Limit constraint). 
Note that I is the instantiation for intervals 1,2,..., i-
1; a and b are values in (DXai, DYdi); (Xai, Ydi )l is the 
lth variable; (Xai, Ydi )n is the last variable and min is 
the best number of delayed flights found so far. 

The BLSTL algorithm consists in recursively 
testing all possible pairs of arrival and departure 
capacities in (DXai, DYdi) dictated by the airport 
manager to find the minimum delay. 

6.     IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

The Arrival/Departure predicted demands are 
those given in Table 1 and the available capacities 
values (domain) are given in Table 2. Note that the 
instances are extracted from [3-6]. The resolution 
and the optimization of a CSPAC and of GCSPAC 

problems use a branch and bound procedure. The 
capacity allocation is done in the order of time 
intervals. In other words, we allocate capacities for 
interval i, only after we have allocated capacities for 
all intervals j < i. 

In addition, the resolution and the optimization of 
a CSPAC problem is a particular case of GCSPAC. 
The difference is that in the CSPAC there is only 
one arrival fix and only one departure fix. So, for 
the CSPAC there is no need to use Algorithm 1, i.e. 
Algorithm 2 is applied directly. 

The branch and bound algorithm consists of 
recursively testing all possible pairs of arrival 
departure capacities in D(Cai, Cdi) in order to find 
the minimum number of delayed planes. 

Obviously, after the execution, I is the solution 
for the capacity allocation problem, giving the 
capacity allocation for each interval. We put a time 
cutoff Tfixed for the branch and bound algorithm. If 
the execution of the algorithm reaches Tfixed, we 
stop it and run a local search algorithm to find an 
acceptable solution satisfying all constraints. 

6.1. Experimental Results for Airport 

Table 3 presents an example of a CSPAC 
problem. We report in this table the predicted 
arrival and departure demands and available 
capacities of an airport as presented in Tables 1 and 
2.  

The first column of Table 3 presents the time 
intervals of 15 minutes. Columns 2 and 3 represent, 
respectively, the arrival and departure demands on 
these same time intervals. Columns 4 and 5 present, 
respectively, the arrival and departure flows that 
have been actually served. Columns 6 and 7 present 
the demands which were not served (these demands 
which were not served are queues which must be 
taken into account during the next time interval). 
Columns 8 and 9 are, respectively, the available 
arrival and departure capacities at the terminal. For 
our example, we notice that the period is 3 hours 
and that the number of intervals N forming this 
period is equal to 12. The predicted 
arrival/departure demands are those given in Table 
1 and the available arrival/departure capacity pairs 
are values given in Table 2.  

The resolution of the CSPAC consists in 
selecting and assigning values Cai (column 8) and 
Cdi (column 9) respectively to variables Xaai 
(column 4) and Yadi (column 5) so that constraints 

  Procedure BLSTL(I , (Xai , Ydi)l , a) 

   I = I  {((Xai , Ydi ) l  , a)} 
   If ((I checks all the constraints)  AND 
      ( =min) AND (Texecution < Tfixed)) then 

         If ((Xai  Ydi) l =  (Xai, Ydi) n)  then 
              I is an optimal solution 
         else 
               For all b  (DXai , DYdi) do 
                      BLSTL(I,(Xai, Ydi) l+1 , b) 
         end If 
   else 
          If (Texecution ≥ Tfixed ) then 

                    Perform Local Search Algorithm 
      end If 

   end If 
End 
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(5)-(18) are all satisfied and   
 ]    [

1

ii d

N

i

a QQ 
   is 

minimized.   

Table 3 shows a solution to the problem. The 
number of arrival delays is 143 and the number of 
departure delays is 77. The total number delayed is 
220 (see Table 4). It is an optimal value.  

We present another example in Tables 4, 5 and 6. 
In this example, the period is 7 hours and the 
number N of intervals (of 15 minutes) forming this 
period is equal to 28. The description of this table is 
similar to that given for Table 3. The available 
arrival/departure capacity pairs delivered by airport 
managers for this period are given in Table 4. They 
are values belonging in domain D(Cai, Cdi) where  
D(Cai, Cdi) = {(07, 14), (10, 12), (13, 10),   (14, 
08)}.  

The arrival/departure predicted demands are 
given in Table 5 and a solution of this problem is 
given in Table 6. 

We implemented this method with Java 
(JDK1.5) on an Athlon 1.67GHz with 512MB of 
RAM. We performed preliminary experiments of 
the proposed approach and the results obtained for 
the various instances of the problem are optimal.  

As mentioned previously, our method gives 
optimal solutions, but it takes enough time before to 
find it, especially when the number of time intervals 
is greater than or equal to 17. 

  Thus, local search can be used for example 
when the number of time slots becomes greater than 
or equal to 17. It can also be used in case of 
unexpected events or during an emergency. For i = 
16, the execution time is approximately 2 minutes. 
For i = 12, it is about 60 seconds and for i = 28, it is 
about an hour. 

We compared our approach to other methods 
proposed in the literature (especially [3-6]). The 
results for various instances of the problem show 
that our approach provides solutions at least as good 
as those found by other techniques. In our 
knowledge, the authors in [3-6] do not show how 
they proceed and do not describe any algorithm and 
do not give any information on the execution time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 1 2 3 4 5 6 7 8 9 10 11 12 TT 

Xai 26 38 42 29 06 13 14 20 40 25 13 12 278 

Ydi 36 32 09 15 07 10 17 33 34 22 13 01 229 

Table 1. Example of predicted number of arriving flights (Xai) and predicted number 
of departing flights (Ydi) per each i=15 minute time interval of a 3 hour period. 

Cai 18 24 26 28 17 20 

Cdi 29 24 19 15 30 27 

Table 2. Example of pairs of capacities dictated by airport managers to use per each i=15 minute 
time interval of a 3 hour period. Cai is the arrival capacity, Cdi is the departure capacity. 
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Table 3: A Solution of the CSPAC Problem (Airport capacity allocation problem). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

Table 4. Capacities delivered by airport managers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 
i Xai Ydi Xaai Yadi Qai Qdi Cai Cdi 
1 26 36 24 24 2 12 24 24 
2 38 32 24 24 16 20 24 24 
3 42 09 24 24 34 5 24 24 
4 29 15 26 19 37 1 26 19 
5 06 07 28 15 15 0 28 15 
6 13 10 28 15 0 0 28 15 
7 14 17 17 30 0 0 17 30 
8 20 33 20 27 0 6 20 27 
9 40 34 24 24 16 16 24 24 

10 25 22 24 24 17 14 24 24 
11 13 13 24 24 6 3 24 24 
12 12 01 18 29 0 0 18 29 
ToT 278 229 143 77   

8 9 
Cai Cdi 
07 14 
10 12 
13 10 
14 08 
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1 2 3 
i Xai Ydi 
1 17 09 
2 09 10 
3 09 03 
4 14 14 
5 15 11 
6 10 15 
7 09 10 
8 20 12 
9 10 09 

10 12 08 
11 06 14 
12 10 14 
13 09 08 
14 11 13 
15 09 16 
16 15 08 
17 06 09 
18 15 09 
19 08 12 
20 04 10 
21 13 05 
22 07 11 
23 10 13 
24 16 12 
25 05 12 
26 06 09 
27 05 11 
28 11 06 

ToT 291 293

4 5 6 7 8 9 
Xaai Yadi Qai Qdi Cai Cdi 
13 10 04 00 13 10 
13 10 00 00 13 10 
14 08 00 00 14 08 
13 10 01 04 13 10 
13 10 03 05 13 10 
13 10 00 10 13 10 
07 14 02 06 07 14 
13 10 09 08 13 10 
13 10 06 07 13 10 
13 10 05 05 13 10 
10 12 01 07 10 12 
10 12 01 09 10 12 
10 12 00 05 10 12 
10 12 01 06 10 12 
10 12 00 10 10 12 
13 10 02 08 13 10 
07 14 01 03 07 14 
13 10 03 02 13 10 
10 12 01 02 10 12 
07 14 00 00 07 14 
14 08 00 00 14 08 
07 14 00 00 07 14 
10 12 00 01 10 12 
13 10 03 03 13 10 
07 14 01 01 07 14 
07 14 00 00 07 14 
07 14 00 00 07 14 
14 08 00 00 14 08 
  44 102   

 Table 5. Arrival and Departure demands.      Table 6. A solution of the CSPAC presented in table 5.  
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6.2. Experimental Results for Fixes of Airport 

Given a time period composed of a number of 
time intervals, the predicted arrival and departure 
demands in each of these intervals, and a set of 
compatible distributions of airport capacity between 
arrival and departure flights, our goal is to 
determine the real distribution of the demands 
among fixes, and the real distribution of arrival and 
departure capacities among fixes, according to the 
actual demands of each fix. 

We give, below, an example to illustrate our 
approach, in which there are 4 arrival fixes noted 
af1, af2, af3 and af4 and 4 departure fixes noted df1, 
df2, df3 and df4 at the airport (Figure 2). The period 
is 3 hours and the number of intervals N forming 
this period is equal to 12. The predicted 
arrival/departure demands and the available 
arrival/departure capacity pairs are the same as 
those given in the preceding sub-section. We give a 
solution found using our approach in Table 7.  

Column 0 shows the time intervals of 15 minutes. 
For each interval, column 1 shows the number of 
predicted arrival/departure demands Xa/Yd of the 
airport. Columns 2, 3, 4 and 5 present respectively 
arrival/departure flows actually served (or number 
of planes actually arrived/leaved) X1/Y1, X2/Y2, 
X3/Y3 and X4/Y4 at the fixes af1/df1, af2/df2, 
af3/df3 and af4/df4. Columns 6, 7, 8 and 9 present 
respectively the arrival/departure demands which 
were not served (queues or delays) Q1a/Q1d, 
Q2a/Q2d, Q3a/Q3d and Q4a/Q4d at the 
arrival/departure fixes af1/df1, af2/df2, af3/df3 and 
af4/df4. The arrival/departure demands which were 
not served are queues which must be taken into 
account in the next time interval. 

The resolution of the problem proceeds as 
follows. We first distribute the values 26/36 
(column 1) of the predicted arrival/departure 
demands of the first interval to the arrival/departure 
fixes (we do not show explicitly this distribution 
because it is easy to understand). The optimal 
capacity allocation which we found for interval i=1 
(for (Ca1, Cd1)), using our approach, is 24/24 
(column 10). So the number of actual 
arrivals/departure is 24/24 in interval i=1. This pair 
(24/24) is distributed among all fixes (X1/Y1, 
X2/Y2, X3/Y3 and X4/Y4)) (columns 2, 3, 4 and 5). 
The total number of delayed flights is 14 (i.e 00/00 
+ 00/00 + 00/03 + 02/09 for, respectively, Q1a/Q1d, 
Q2a/Q2d, Q3a/Q3d and Q4a/Q4d) (columns 6, 7, 8 
and 9) in interval i=1. We verify that all constraints 
are satisfied. We then distribute the values 38/32 of 
the predicted arrival/departure demands (column 1) 

of the second interval i=2 to the arrival/departure 
fixes. This distribution takes into account the 
number of delayed flights in fixes Q1a/Q1d, 
Q2a/Q2d Q3a/Q3d and Q4a/Q4d (columns 6, 7, 8 
and 9) in interval i=1.  

The optimal capacity allocation Ca2/Cd2 for 
interval i=2 that we found after executing branch 
and bound is also 24/24, so the number of actual 
arrivals/departures is 24/24 in interval 2, which is 
distributed among all fixes. The number of delayed 
flights is 36 in interval 2. The total number of 
delayed flights until interval 2 is then 14+36=50 
(see Table 7).  

We proceed in the same manner for the other 
intervals. The total number of planes delayed is 220. 
It is an optimal value. Note that the distribution of 
predicted demands and capacity allocation Ca/Cd 
among the fixes is not determinist. We always find 
optimal solution if the distribution respect the 
balance between the fixes. In other words, in any 
interval we should not have a case where a fix has 
available capacity not used and another fix has 
demands not served.  

Table 8 shows a different distribution, for which 
we also find the same optimal solution. 

The resolution methods presented here allow 
finding the optimal solution, but spend much time 
before delivering it, especially when the number of 
time intervals is greater or equaling than 17. 

However, the optimization approaches presented 
give an optimal solution in about 2 minutes if the 
number of time intervals is 16, in about 60 seconds 
if the number of intervals is 12. Note that the local 
search can be used only if we introduce in advance 
the time limit Tfixed. 

6.3. Other GCSPAC problem 

We consider that the predicted arrival/departure 
demands and the available arrival/departure 
capacity pairs are the same as those given in the 
preceding sub-section. We always consider that 
there are 4 arrival fixes and 4 departure fixes at the 
airport (Figure 2) and the period considered is also 
3 hours.  

In Table 9, column 0 shows the time intervals of 
15 minutes. For each interval, columns 1 and 2, 
respectively, show the number of predicted arrival 
demands Xai and departure demands Ydi of the 
airport. These predicted demands will be distributed 
among the different fixes. The predicted arrival 
demands of the airport will be distributed among the 
arrival demands of its fixes X1afi, X2afi, X3afi and 
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X4afi  as indicated respectively in columns 3, 4, 5 
and 6 for arrival fixes af1, af2, af3 and af4 (see 
Table 9). In the same way, the predicted departure 
demands of the airport will be distributed among the 
departure demands of its fixes Y1dfi, Y2dfi, Y3dfi  
and Y4dfi  as indicated, respectively, in columns 7, 
8, 9 and 10 for departure fixes df1, df2, df3 and df4 
(Table 9). 

In Table 10, columns 13, 14, 15 and 16 present, 
respectively, arrival flows actually served X1aafi, 
X2aafi, X3aafi and X4aafi at the fixes af1, af2, af3 
and af4. Columns 17, 18, 19 and 20 of the same 
table present respectively departure flows actually 
served Y1adfi, Y2adfi, Y3adfi and Y4adfi at the 
fixes df1, df2, df3 and df4. 

In Table 11, columns 21, 22, 23 and 24 present, 
respectively, the arrival demands which were not 
served (queues or delays) Q1afi , Q2afi , Q3afi and 
Q4afi at the arrival fixes af1, af2, af3 and af4. 
Columns 25, 26, 27 and 28 of the same Table 11 
present, respectively, the departure demands which 
were not served Q1dfi, Q2dfi, Q3dfi and Q4dfi at the 
departure fixes df1, df2, df3 and df4. The 
arrival/departure demands which were not served 
are queues which must be taken into account during 
the next time interval. 

6.3. GCSPAC problem resolution 

The problem consists in distributing the values 
of column 1 over columns 3, 4, 5 and 6 (Table 9) of 
arrival fixes af1, af2, af3 and af4 and in distributing 
the values of column 2 on columns 7, 8, 9 and 10 of 
departure fixes df1, df2, df3 and df4. This 
distribution is arbitrary and is more or less 
equitable. Then, it acts of the distribution of the 
arrival capacities of the terminal (column 11 of 
table 10) on the capacities of arrival fixes which are 
in columns 13, 14, 15 and 16 (table 10) and also, the 
distribution of the departure capacities of the 
terminal (column 12 of table 10) on the capacities 
of departure fixes which are in columns 17, 18, 19 
and 20. But before that, let us notice, for each line, 
the choice of the capacity (value) among the various 
capacities to affect to arrival and departure demands 
(variables) of the different fixes. This choice is 
selected according to the heuristic which allows to 
respect all the constraints and to minimize the 
number of delayed planes. The resolution is done in 
an incremental way and follows the law of line per 
line. 

 

In columns 21, 22, 23 and 24 of Table 11, we 
add, at each time interval i, the number of the planes 
which had demanded to arrive at one of the arrival 
fixes af1, af2, af3 and af4 but which has not been 
served. These demands which have not been served 
will constitute, respectively, arrival queues for these 
same fixes for the next time interval i+1. 

In the same way, in columns 25, 26, 27 and 28 
(Table 11), we add, at each time interval i, the 
number of the planes which have required to leave 
at each departure fixes df1, df2, df3 and df4 but 
which has not been served. These demands which 
have not been served constitute, respectively, 
departure queues for these same fixes for the next 
time interval i+1. 

The objective of this study is to minimize the 
sum of planes delayed which are in columns 21, 22, 
23 and 24 for arrival fixes and in columns 25, 26, 
27 and 28 for departure fixes. In a general way, we 
seek to reduce the total sum of all delayed planes. 
For the example of the problem presented above, 
the objective function which is the sum of the 
columns 21, 22, 23 and 24 for arrival fixes and of 
the columns 25, 26, 27 and 28 for the departure 
fixes (table 11) will be written: 
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The number of the arrival planes delayed is:  
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 = 37 + 35 + 30 + 41 

=  143 

(columns 21, 22, 23 and 24), and the number of the 
departure planes delayed is:  
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 = 18 + 21 + 17 + 21 

= 77 

(columns 25, 26, 27 and 28).  

The total number of planes delayed is 143+77 = 220 
(see Table 11).  
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0 11 12 13 14 15 16 17 18 19 20 

i Cai Cdi X1aafi X2aafi X3aafi X4aafi Y1adfi Y2adfi Y3adfi Y4adfi

i = 1 24 24 9 10 1 4 6 6 6 6 

i = 2 24 24 9 10 1 4 6 6 6 6 

i = 3 24 24 8 10 2 4 6 6 6 6 

i = 4 26 19 8 10 3 5 5 5 5 4 

i = 5 28 15 10 10 4 4 2 2 2 2 

i = 6 28 15 5 5 9 9 1 3 3 3 

i = 7 17 30 4 0 4 6 4 4 4 5 

i = 8 20 27 2 3 7 8 7 7 7 6 

i = 9 24 24 3 1 10 10 6 5 7 6 

I = 10 24 24 3 1 10 10 6 6 6 6 

I = 11 24 24 2 5 7 10 6 6 6 6 

I = 12 18 29 4 9 1 4 1 2 0 1 

TOT   68 74 61 75 56 58 58 57 

 

 

0 1 2 3 4 5 6 7 8 9 10 

i Xai Ydi X1afi X2afi X3afi X4afi Y1dfi Y2dfi Y3dfi Y4dfi 

i = 1 26 36 6 7 6 7 9 9 9 9 

i = 2 38 32 10 9 10 9 8 8 8 8 

i = 3 42 9 10 11 10 11 2 2 2 3 

i = 4 29 15 8 7 7 7 4 4 4 3 

i = 5 6 7 1 2 1 2 1 2 2 2 

i = 6 13 10 4 3 3 3 3 2 3 2 

i = 7 14 17 3 4 3 4 4 4 4 5 

i = 8 20 33 5 5 5 5 9 8 8 8 

i = 9 40 34 10 10 10 10 9 8 9 8 

I = 10 25 22 6 6 6 7 5 6 5 6 

I = 11 13 13 3 4 3 3 4 3 3 3 

I = 12 12 1 3 3 3 3 0 1 0 0 

TOT 278 229 69 71 67 71 58 57 57 57 

Table 10: Arrival and Departure flows actually served 

Table 9: Distribution of predicted Arrival and Departure flows over Different Arrival and Departure 
Fi
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7. HOW TO CONTROL AND REGULATE 
THE CAPACITIES 

We saw in Relation (7) that: 

0 ≤ Pvi + Poci ≤ CTi 

Let us suppose that one wishes to reduce or 
increase the capacities of an airport for an 
unspecified reason or, more precisely, if one 
wishes to control and regulate these capacities. 
Then, in this case, it is necessary to introduce 
some control parameters. The formula, above, 
becomes: 

αiPoci + βiPvi = λiCTi                              (41) 

The parameters αi, βi and λi are parameters 
which control the capacities. They depend on the 
objectives expressed by the airport managers 
according to certain conditions on weather, 
priorities, authorities, rush hours, etc. They have 
values between 0 and 1. We are, thus, brought to 
introduce these parameters into all the formulas 
which we clarified, above. More precisely, we will 
have the following formulas: 

αiXaai ≤ λiCai ≤ βiPvi                              (42) 

αiYadi ≤ λiCdi ≤ βiPoci                            (43) 

Such that Cai and Cdi are the total capacities,  
respectively,  of arrival and departure fixes (Figure 2) 
during the time interval ‘i’ and αi, λi and βi are 
parameters of control. Over one period of (15*N) 
minutes, we will have: 

[αiXaai + αiYadi ] ≤ [λiCai + λiCdi ] ≤ [βiPvi + βiPoci]                 
(44) 

Concretely, if the capacity is rather large so that no 
congestion takes place, the problem would not arise. 
But,  if there are more arrival demands than departure 
demands during one time period, the problem of 
congestion appears. In this case, it is necessary to 
minimize the number of delayed planes or to 
maximize departure flows as much as possible. 

The following formula allows us to answer partly 
this problem of congestion, while ensuring a certain 
balance between arrivals and departures. 

i=1 
N [αiPoci − γiYadi + βiPvi − δiXaai ] 

N represents the number of intervals over one 
period of (15*N) minutes; Poci is the number of 
occupied places during the time interval ‘i’; Pvi is the 

0 11 12 21 22 23 24 25 26 27 28 

i Cai Cdi Q1afi X2afi Q3afi Q4afi Q1dfi Q2dfi Q3dfi Q4dfi 

i = 1 24 24 1 1 0 0 3 3 3 3 

i = 2 24 24 4 5 2 5 5 5 5 5 

i = 3 24 24 11 7 7 9 1 1 1 2 

i = 4 26 19 12 12 6 7 0 0 0 1 

i = 5 28 15 4 4 4 3 0 0 0 0 

i = 6 28 15 0 0 0 0 0 0 0 0 

i = 7 17 30 0 0 0 0 0 0 0 0 

i = 8 20 27 0 0 0 0 2 1 1 2 

i = 9 24 24 2 1 4 9 4 4 4 4 

I = 10 24 24 1 2 6 8 3 5 3 3 

I = 11 24 24 2 3 1 0 0 2 0 1 

I = 12 18 29 0 0 0 0 0 0 0 0 

TOT   37 35 30 41 18 21 17 21 

Table 11: Delayed Flows Recorded
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number of empty places during the time interval 
‘i’; Yadi is the number of actual departures during 
‘i’; Xaai is the number of actual arrivals during ‘i’; 
CTdi is the departure capacity at the terminal 
during ‘i’; CTai is the arrival capacity at the 
terminal during ‘i’; αi, βi, γi, δi, λi and µi are 
parameters of regulation. 

The response to this load balancing problem 
between arrivals and departures consists in 
minimizing the following function which we call 
the objective function. 

min i=1 
N {[αiPoci − γiYadi] + [βiPvi − δiXaai]}      

(46) 

8. CONCLUSION 

In this paper, we presented a modeling of the 
capacity allocation problem (CAP) of an airport 
and of its fixes in the form of a CSP which we 
called, respectively, CSPAC and GCSPAC. 
Thereafter, we proposed an optimization method 
under constraints for those problems. The method 
presented combines a branch and bound algorithm 
(BnB) with Local Search (LS). LS being called if 
BnB fails to find the optimal solution within a 
certain Time Limit constraint (TL) fixed by airport 
managers. Thus, we always have at least a solution 
which may not be optimal, but which is 
acceptable.  

We presented some examples illustrating our 
approach which can assist airport managers to 
monitor and regulate arrival/departure capacities 
to minimize the delay.  

We performed preliminary experiments of the 
proposed approaches and compared them to other 
methods proposed in the literature (especially [3-
6]). The results for various instances of the 
problem show that our approach provides 
solutions at least as good as those found by other 
techniques. 

Let us note that our approaches of modeling, 
resolution and optimization presented in this paper 
is valid not only for air traffic, but also for road 
traffic, railway and maritime. Another possible 
solution to reduce these problems of congestion of 
the airports (or any other system) is to carry out 
certain cooperation and complementarities 
between the various systems, such as air, 
maritime, road and rail transport. Each mode of 
transportation has its own advantages, e.g. 
potential capacity, high levels of safety, flexibility, 
low energy consumption, low environmental 
impact.  
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