
Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

268

POLICY-BASED APPROACH TO DETECT AND RESOLVE

POLICY CONFLICT FOR STATIC AND DYNAMIC
ARCHITECTURE

1
ABDELHAMID ABDELHADI MANSOR,

2
WAN M.N. WAN KADIR,

3
TONI ANWAR,

4
HIDAYAH ELIAS

1Department of Computer Sciences, Faculty of Mathematical Sciences, University of Khartoum, Sudan

2,3,4 Software Engineering Department, Faculty of Computer Science and Information System,

UniversitiTeknologi Malaysia, Malaysia

E-mail: 1abhamidhn@gmail.com, 2wnasir@cs.utm.my, 3tonianwar@utm.my,4shahlida@gmail.com

ABSTRACT

Current research efforts are being directed to commit with the long-term view of self-management

properties for wireless telecommunications. One of the key approaches that have been recognized as an

enabler of such a view is policy-based management. Policy-based management has been mostly

acknowledged as a methodology that provides flexibility, scalability, adaptability and support to

automatically assign network resources, control Quality of Service and security, by considering

administratively specified rules. The hype of policy-based management was to commit with these features

in run-time as a result of changeable network conditions resulting from the interactions of users,

applications and existing resources. To detect and resolve potential static and dynamic conflicts between
the rules and configurations from different administrative domains, a policy-based manager coordination

PobMC framework which is based on Event- Condition-Action (ECA) is proposed in this paper. The

framework is responsible of potential conflicts between applications included in the system. Furthermore,

the paper provides a guideline to avoid policy conflicts between different domains configurations, and

resolve the conflicts during runtime. PobMC depends on, static and dynamic analysis to reduce potential

conflicts. The paper briefly outlines some of the most prominent research issues that have been discussed

for large-scale adoption of policy-based systems. Then we present a description of the conflict detection

and resolution algorithms that achieves the automated enforcement of obligations for resource-handling

based on management policies.

Keywords—Policy-Based Management, Policy Conflict Analysis, Dynamic Conflict, Static Conflict,

Adaptive Software Architecture

1. INTRODUCTION

Policy-based management has been mostly
acknowledged as a methodology that provides

flexibility, scalability, adaptability and support to

automatically assign network resources, control

Quality of Service and security, by considering

administratively specified rules [1]. The wireless

connection must be kept from reaching the

congestion point, since it will cause an overall

channel quality to degrade and loss rates to rise,

leads to decrease of performance and some

disconnection problems [2]. Policy-based approach

has been recognized as a suitable approach to
manage and improve content distribution networks

and distributed systems. However, ubiquitous

computing systems and autonomic systems still

limited to determine the impact of policy changes
on system behavior, due to the complexity of

managed system scale. Furthermore, current policy-

based approaches still have some limitations to

adapt business and user level policies into

enforceable system level policies. The hype of

policy-based management was to commit with these

features in run-time as a result of changeable

network conditions resulting from the interactions

of users, applications and existing resources.

Obviously there is a limitation in developing

policy-based management models that do not
provide ensuing support for detecting and resolving

mailto:abhamidhn@gmail.com
mailto:2wnasir@cs.utm.my
mailto:3tonianwar@utm.my
mailto:shahlida@gmail.com

Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

269

conflicts. While a considerable attempt at static

conflict detection has been presented in [3].

Moreover, current research has revealed that there

is still a large class of policy conflict which simply

cannot be determined statically.

The term policy is referred to as either procedure
or protocol [4]. Policies can be used to

“dynamically regulate the behavior of system

components without changing code and requiring

the consent or components cooperation". Policy

also refers to the process of making important

organizational decisions [5].

According to [6] a policy is represented as a

means to control when a managed object moves to a

new state. The subject of a policy specifies the

human or automated managers to which the policies

apply and which interpret obligation policies. The

target of a policy specifies the objects and the
actions to be performed. Domains are a means of

grouping objects similar to file system directories

[7]. The subject or target of a policy is expressed as

a domain of objects and the policy applies to all

objects in the domain; so a single policy can be

specified for a group of policies. This helps to cater

for large-scale systems in that it is not necessary to

define separate policies for individual objects in the

system, but rather for groups of objects.

Sloman[8] classified policies into access-control,

obligation, goal-based and meta policies based on
their purpose. Access control policies specify what

actions entities can or cannot perform in a system.

This type is further classified into authorization,

delegation, and information filtering policies [9].

Authorization policies define what activities a

member of the subject domain can perform on the

set of objects in the target domain, delegation

policies transfer access rights from one entity to

another, and information filtering policies

implement privacy by data obfuscation. For

example, the location information of a mobile node

can be reported with lesser accuracy to prevent the
exact position from being revealed using

information filtering policies.

 Obligation policies specify what actions entities

must or must not perform in a system [8]. In

addition, they are used for fault, configuration and

file system management. Goal-based policies are

used to specify the final system state that should be

reached from a given state. Meta-policies guide the

behavior of the management system. Furthermore,

they are used to modify policies, resolve conflicts

dynamically and change various parameters of the
management system.

Human error is one of the obstacles to accurate

access-control policies; the policy authors who

assign and maintain these policies are prone to

make specification errors that lead to incorrect

policies. Access-control policies consist of a set of

rules that dictate the conditions under which users
will bellow access to resources. These rules may

conflict with each other.

Conflicts may arise within the set of policies or

during the refinement process i.e. between the high-

level goals and the implementable policies [3].For

example, an obligation policy may define an

activity a manager must perform but there is no

authorization policy to permit the manager to

perform the activity. The system must have to cater

for conflicts such as exceptions to normal

authorization policies. For instance, in a large

distributed system there will be multiple human
administrators specifying policies which are stored

on distributed policy servers. Conflict detection

between management policies can be performed

statically for set of policies in a policy server as part

of the policy specification process or at run-time

[10, 11].

Conflicts between policies can be classified into

four broad categories [12],they are: (i) Internal

Policy Conflict, which occurs when there is

incompatibility between policies assigned to a

single role, (ii) External Policy Conflict, which
occurs when combining of roles which in isolation

of each other present no conflict, but contain

policies which inco-existence are in conflict (iii)

Policy Space Conflict, which occurs when more

than one policy space manage the same set of

subjects and attempt to enforce various and

conflicting policies over them, and (iv) Role

Conflict, which is expected when a user obtains a

set of incompatible role assignments. Policy-based

approach uses policies to govern their behavioral

choices whilst satisfying the goals of the system, in

addition to specify and enforce QoS management in
distributed systems. Furthermore, it provides

flexibility, adaptability and support to automatically

assign network resources [13]. A policy-based

management system must provide guarantees when

multiple rules need to be concurrently enforced so

that the system behavior is predictable. However,

existing policy-based management systems based

on Event Condition Action (ECA) rules do not

contain specifications of actions required for

reasoning and consequently do not provide

guarantees which can lead to unpredictable system
states [14].

Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

270

Static and dynamic conflicts were considered as

two classes of conflict which need to be understood

and independently managed [12]. The distinction

between these two classes is important; as detecting

and resolving of conflict can be computationally

intensive, time consuming and hence, costly and is
most preferably done at compile-time. However,

dynamic conflict is quite unpredictable, in that it

may, or may not; proceed to a state of realized

conflict. This class of conflict must be detected at

run-time. To detect and resolve potential static and

dynamic conflicts between the rules and

configurations from different administrative

domains, policy-based manager coordination

(PobMC) framework, which is based on Event-

Condition-Action (ECA) is proposed in this paper.

The framework is responsible of potential conflicts

between applications included in the system.
Furthermore, the paper provides a guideline to

avoid policy conflicts between different domains

configurations, and resolve the conflicts during

runtime. PobMC depends on, static and dynamic

analysis to reduce potential conflicts.

Key questions that this paper will address are:

 How does the proposed algorithm compare

with the existing approaches?

 How to detect and resolve conflicting

policies during compile time and run time?

 What are the issues relating to detecting
and resolving conflicts which can arise in

the obligation policies and some ideas on

how to refine high level goals?

 What is the role of obligation management

and resource constraints in autonomous

systems?

 How to manage conflict of obligations

related to management of resource items

(data and device), for self-adaptive

systems?

This paper is organized as follows. Section two
briefly describes the prominent works on policy-

based approach. Section three presents the overview

of (PobMC), and the proposed algorithms. Finally

section four summarizes the paper and outline

directions for future work.

2. RELATED WORKS

Most of the published works to-date with regards

to policy conflict analysis and resolution concerns

their implementation within single domain

environments. There has been some works carried
out to-date using various techniques such as static

analysis to reduce potential errors [15-20], dynamic

analysis to detect and resolve potential conflicts

[16, 20-22], a verification of policy-conflict process

[16, 20, 22], and system scalability [17]. This

section presents an overview of this body of work.

Shiva [16] proposes an extended model of ECA

called ECA-Post-condition (ECA-P) to enable
developers and administrators to annotate actions

with their effects. The ECA-P model allows

deducing the action that may conflict based on

conflicting post-condition; the framework also uses

static and dynamic conflict detection techniques to

detect failure in policy execution by using post

condition to verify successful completion of policy

actions. However, policy actions may not execute to

completion due to various reasons such as changing

active space configuration, device and component

failure or software errors.

Wu et al [18] introduce dynamic analysis
mechanism to ensure consistency among the

enforced policies. They use Event Calculus (EC) in

their dynamic policy conflict analysis to detect and

control the dynamic conflicts in trust services.

However, their work does not take targets

constraints into account, while some of these

conflicts are caused by overlapped elements. Davy

et al. [15] present an efficient policy selection

process for policy conflict analysis to improve the

performance depend on the nature of the

relationships between deployed policies. Their
process targets pre-deployment identification of

potential conflicts between a modified or newly

created policy and already deployed policies. They

use a tree based data structure to reduce the number

of comparisons and therefore reduce runtime

complexity in subsequent iterations by maintaining

a history of previous policy comparisons. Their

conflict analysis algorithm initiates a relationship

pattern matrix between candidate and deployed

policies, and matches these patterns against a

conflict signature. However, this approach is not

intelligent and repeats over all deployed policies to
ensure that the deployed policy does not cause a

potential conflict. Also the algorithm is still limited

to detect only conflicts that can be represented as

relationships among policies.

In another related work [17] Davy et al. produce

a policy conflict analysis approach makes extensive

use of information models and ontologies to make it

a flexible tool to analyze for conflict in a range of

applications. Furthermore, they introduce a novel

pre-analysis policy selection to reduce the number

of more comprehensive policy analysis operations
required. Similar to their previous work, they use

heuristics and historical information from previous

Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

271

comparisons to eliminate group of policies from

analysis. Moreover, they separate the definition of a

policy conflict from the definition of the conflict

analysis algorithm; thereby the approach is

extensible and efficient. However, this algorithm

needs further improvement; because it eliminates
policies instead of refine them. Eliminating some

policies does not achieve the system goals and

reduce the scalability.

Ma et al. [23] propose conflict detection and

resolution in workflow management systems

(WFMSs) approaches to help workflow designers in

constructing a flexible, consistent workflow

authorization schema. In this work a new type of

constraint, context constraint, is proposed since

context constraints can meet the complicated

requirements of security policies in WFMSs.

Moreover, they define an effective set of rules to
detect and resolution of static and dynamic conflict

for authorization policies in WFMSs. Furthermore,

they classify conflicts into two broad categories (i)

policy-policy conflicts which occur when two or

more authorization policies are considered

incompatible, (ii) policy constraint conflicts which

occur when the performance of two or more

authorization policies will lead to situations that are

prohibited by other constraints (e.g., separation-of-

duty constraints) in the system. However, their

work do not put into account conflicts in
authorization policy itself, in addition to policies are

considered to assign by different administrators.

Mohan et al [19] propose an attribute-based

authorization framework that supports changing the

rules and policy combination algorithm

dynamically based on contextual information. The

framework eliminate the need to re-compose the

policies when the combination algorithm changes.

Moreover, it provides a method to add and remove

specialized policies dynamically, in addition to its

capability to reduce the set of potential target

matches, thus increasing the efficiency of the
evaluation mechanism. Furthermore, to resolve the

conflicts they use Policy Combination Algorithms

(PCA). These algorithms take the authorization

decision from each policy as input. However, in a

highly dynamic environment these algorithms will

lead to reduced performance.

Khakpour et al. [20] present analysis using

Rebeca[24] which is an actor-based language for

modeling concurrent asynchronous systems which

allows to model the system as a set of reactive

objects called rebecs interacting by message
passing. In order to introduce a new classification

of conflicts may occur during governing policies.

They also propose Linear Temporal Language LTL

[25], which express each type of conflicts and

enable to automate detection of conflicts patterns to

classify conflict types, thereby to automate a

significant portion of policy analysis process.

Moreover, they introduce a number of correctness
properties of the adaptation process in the context

of their models. Then, they use static analysis of

adaptation policies in addition to model checking

technique to verify those properties. Whenever an

event which requires adaptation occurs, relevant

managers are informed. However, the adaptation

cannot be done immediately and when the system

reaches a safe state, the manager switches to the

new configuration. While their system includes

many different managers each manager use set of

policies to govern system sensors and actors. There

may be more than event which are require
adaptation occur simultaneously, this will reduce

the system scalability.

Barron et al. [21] describe how conflicts between

newly specified (deployed or updated) federation-

level policies and previously deployed

local/federation policies can be detected. They

transformed the DEN-ng federated domain model

into an OWL-DL representation which allows for

additional domain specific semantics (entity

relationships) to be added to the model, and can

then be reasoned over to detect relationships and
potential conflicts between policy pairs. Moreover,

the main objective of this work is to apply the

policy selection and conflict analyses concepts to

federated domain environments. However, this

work is only concerned with conflict detection

aspects in both static and dynamic environments.

But it does not take target constraints into account;

while newly specified policies may restricted by

resource constraints. Furthermore, they use

information models while they are limited in the

type of information, and do not suitable to model

dynamic environment.

To the best of our knowledge, detecting conflicts

statically are resolved by the user before the

enforcement of policies. Few researchers

concentrate on static analysis to reduce the potential

errors. It is very important to use static analysis,

because after a policy is compiled detected conflicts

resolved by the user before generate the policy

object file. Detecting conflicts among rules by

matching these rules events and condition statically,

to determine matching it is required to compare

event symbols and types of the rules parameters.
Furthermore, dynamic analysis during runtime is

required since all rule conflicts cannot be detected

Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

272

during the static analysis done at the compilation

stage. After that rules must be combined to use

dynamic conflict technique to detect potential

conflicts during run time. Very few works decouple

the rule into policies but the classification of rules is

not included explicitly. Decoupling of rules helps
static detection technique to identify the conflicting

rules by classifying them into groups. There are

some approaches classify policies into groups, but

no decoupling technique is used. The above

bereaving shows that there are some works combine

policies before execution in order to evaluate and

resolve potential conflicts.

Furthermore, avoiding errors and conflicts

between policies, and addressing the scalability

issues when policies assign by more than one

application remain as the main challenges of current

research. Moreover, scalability of the system needs
to be checked when different types of policies

assigned by different administrators, to further

improve of system performance and adaptability.

Our framework in this paper can be used as a

flexible approach to detect and resolve errors and

conflicts during compilation time. The flexibility of

our approach can help us to handle conflicts

between policies at runtime. Moreover, we have

defined two algorithms to handle errors and

conflicts statically and dynamically.

3. POLICY-BASED MANAGER

COORDINATION FRAMEWORK

(PobMC)

3.1 OVERVIEW OF PobMC

PobMC framework is implemented as an active

area services. Figure 1 illustrates the architecture of

(PobMC) framework. The framework contains a

Self-coordinator component that coordinates the

interactions among various components of

(PobMC). Since policies created by the policy

author, stored in the Policy Repository which is a
simple database and the actions stored in the Action

Library to be called when an event occurs.

The proposed framework[26] provides support

for architectural adaptation for both behavioral and

structural changes based on the policies that govern

the system. In a conceptual perspective, the

framework includes various components; a brief

explanation of PobMC components is as follow:

Policy verification depends on decoupling of the

adaptation logic from its functional logic (its

business logic). Thus, adaptation layer can be

verified independently from the actor layer

provided. Policy verification verifies the action and

purpose specified by the user; in PobMC we assume

that what is stated by the user is correct.

The role of Context Monitor is to monitor

operating environment, checking for structural and

behavioral changes. The examples of operating

environments include sensor and actor states,

malfunction of devices or new devices, in addition
to the number of working sensors and the states of

non-working sensors. Collected information which

stores in the views helps managers to govern system

changes. Moreover, in this activity more

information about managers and their states

provided to help managers to coordinate their tasks.

The Context Monitor allows users to register and

log in and query the system for resources using

various APIs and receives requests. Moreover,

checks if the detected event is allowed or denied

based on the setup time information that it has
received from the policy analyzer. If allowed, it also

checks if there is an obligation mandated by the

relevant rule. If yes, then the Context Monitor

informs the Self-Coordinator (which is the

obligation enforcement component in PobMC) of

the obligation, the Self-Coordinator marks the

resource item in the corresponding file, based on

the resource type. Subsequently, the Self-

coordinator informs the request Context Monitor on

the „Allow‟ or „Deny‟ ruling, as applicable. The

Context monitor then displays the permitted results

to the user. In addition to the mentioned functions,
Context monitor monitoring the execution of

obligation over the runtime periods, since some

obligations could be defined to take effect much

later in time than the time of resource access.

Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

273

Figure 1. High level view of PobMC framework

Each policy checked first by Self-Coordinator

before triggering execution of processing. Self-

Coordinator represents the core of the system

coordinates and checks all the activities during

runtime. Moreover, any task taken by each process

must be checked in this process in order to take the
right decision. The self-coordinator determines the

triggered rules, and uses the ActionCondition

checker to test the action and rule condition

expressions. If a condition evaluates to true the rule

is added to the policy live list.

Once the static conflicts have been detected and

resolved, the policy compiler compiles the policies

including the resources constraints then generates a

policy object file. The policy loader loads the

generated object file into the Self-coordinator

component before evaluated to detect and resolve
potential dynamic conflicts.

A library of actions stored in Action Library that

can be invoked from the action part of the policy

rule. When an event occurs in a situation where

condition is true, then the action is a call to a

method in a library of actions where each action is

annotated with a post-condition by the programmer.

These post-conditions of the actions are used for

conflict detection. Event Receiver is responsible for

subscribing and receiving events since they

occurred and have been detected by the Context

Monitor. Then Event Receiver verifies the types of

the parameters in the events and notifies the self-

coordinator of the event occurrence along with the

parameters.

3.2 POLICY CONFLICT DETECTION

AND SOLUTION TECHNIQUES

Before we delve into finer details we declare

some of the definitions and notations that we will

use to define the proposed conflict management.

We use a description that is similar to XACML

standard. Each rule defines whether a resource

access is allowed or denied, based on the kind of

resource being accessed, the user role, the intent
and intended action. In addition, each obligation on

the system is mandated by a particular rule.

An event E is represented as
where u is the user category to which the user (who

is requesting to access the resource) belongs, each

user of the system is assigned to one or more user

categories, based on the user roles, d is a resource

category to which the resource item belongs, a is

the action that the user wants to perform on the

Self-Coordinator

Event receiver

Policy

Policy
Refinement

Dynamic

Resolver

Policy Compiler Policy Loader Action Library

Policy

Repository

ActionCondition

Checker

Evaluator

Policy Verification

Functional
Changes

Non-functional
Changes

Context
Monitor

Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

274

resource, users may access the resource items to

perform one or more of the specified set of actions.

A representative set of actions could be {„View‟,

„Access‟, „Modify‟, „Remove‟}. Each resource item

that is to be privacy protected is assigned to a

specific data category. The user and resource
categories could be hierarchical, and g is the

purpose for which the resource is being accessed, a

representative set of purposes could be

{„Shopping‟, ‟Searching‟, ‟Administrative‟}.

Note that where the user is mapped to the user

category and the data item is mapped the resource

category, the user request maps internally to an

event. The Condition is clause associated with some

rules, which needs to be true, for the rule to „Allow‟

access, the Permission is a binary predicate that can

take one of the two values {„Allow‟, „Deny‟},

identifying whether the user request is allowed or
denied, and the Obligation is a task that specifies

what action needs to be performed after the user

request is fulfilled. Besides introducing obligations

to safeguard the integrity of the system, it is

targeted to ensure that all the commitments with

respect to various business policies are fulfilled.

The nature of the tasks enables the classification of

obligations in the resource or data-handling domain

into the following types, (i) Notification-related,

which requires the system to inform or notify the

system when specific resource items are accessed.
No conflicting obligations are expected to arise,

when multiple notification-related obligations are

defined on a resource. (ii) Retention- related, which

specifies actions related to life-cycle of the resource

item accessed. Conflicts are expected to arise due to

specifying different requirements by different

obligations on the retention of the resource item.

i. Policy Refinement Process

A goal graph structure of the high-level goals that

the system can handle is elaborated in the process
of this component. The process of this component

depends on the application and is carried out by the

administrator or developer, and it is carried out

during the design and implementation of the

system. This may reduce the potential errors, but

during execution of policy this activity is intended

to check each type of conflict and use the priority of

rules execution, elimination rules or changing them

according to the request is a part of this activity

role. This process aims to score high degree in

scalability by avoiding conflicts between different

applications.

Conflicts arise, when more than one obligation

which cannot be executed together, enforced on a

resource item. Resolution of conflicts at static time

aims to identify which obligations must apply. As it

is clear in Figure 2 , the objective is to eliminate the

many-to-one map from obligations to resource

items, to a one-to-one map with respect to the

constraints on the resource item, where each

obligation applies to at most one data item, and not

inconsistent with the constraints. One way to select

the most relevant obligation is to assign priority
degree to each obligation, and select the one with

the highest or lowest degree; these degrees can be

assigned by the administrator.

Figure 2. Resolution of conflicts including the constraints

Resource

items

 C1

C2

C4

C3

 O1

O2

O4

O3

 d1

d2

d4

d3

Constraints Obligations

(b)

After resolution

Obligations Constraints

 C1

C2

C4

C3

 O1

O2

O4

O3

 d1

d2

d4

d3

Resource

items

(a)

Before resolution

Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

275

The algorithm of this process may now be

described as follows. Given a set of rules (the

policy) and a set of resources, the algorithm first

identifies, for each resource, based on the rules in

the policy the set of obligations that apply to that

resource. Subsequently, for each resource and
associated set of obligations, the algorithm

identifies if any of the obligations potentially

conflict with each other; then these obligations are

identified. Two or more obligations conflict with

each other if one or more of them has a temporal

components regarding when the task is to be carried

out. If none of the obligations associated with a

resource have a temporal component, then no

conflict is possible, in this situation, the set of

attributes are used to capture these requirements.

Using the object notation, the individual

components of task, predicate and attributes of an
obligation O may be referred to by O.tasks,

O.predicates and O.Attributes respectively, where

Attributes list the set of obligation attributes, the

task defines the action to be taken, and the predicate

associates the task with a resource item.

If there is a detected conflict, the algorithm

provides a way to solve conflicts at two levels. By

identifying the conflicting obligations and

constraints then redefining those rules which are

causes conflict. A feedback to policy authors is

required at some situations, due to the changes at
policy level. And by determining which rule of the

conflicting obligations to apply to a constrained

resource item, when more than one obligation

(which cannot be executed together) is defined on

the item. By using policy degree (the priority value

with respect to other policies).

The algorithm is formally defined as follows.

StaticDetectAndResolve()

1. Let r be a rule in the policy,

 refers to the set of obligations
mandated by r. Let n be the number of

resources in the system. Let

represents a set of obligations that apply on

that resource for r, initially .

2. For each resource which the rule r applies, if

 , then

 we have the mapping

M, where

 .

3. Let be the set of rules that conflict with

each other . can be detected

as follow:

a. , .
b. Let the notification related obligation

which does not contain conflicting rules,

and the retention-related obligation.

 .
c. if and only if ,

d. then for each ,

where . There is no conflict

between and if and only if

 .

Because two or more obligations conflict
with each other if one or more of them has

attributes that define temporal

components.

e. If conflict is detected goto 5

4. If there are any listed constraints on resource d

(

i. Let ,

(
ii. Let

iii. Goto step 3

5. , determine and which are trying

to access constrained resource item.

i. If then stop else proceed with

step (ii).

ii. Order the obligations using the policy
degree.

iii. Select the obligation with highest degree

to enforce from .

iv. Select those obligations which are trying

to access a constrained resource for

redefine.

6. The mapping

 defines each

resource d is mapped to a set of rules that

potentially causes the conflict. One-to-one
mapping for M is a sufficient condition for a

conflict-free system. In this situation, each

resource item maps to at most one obligation,

and no conflict is possible.

7. For each resource item, we have a list of

obligations that could potentially cause

conflicts when modified. Also the mapping

 defines each resource d is

mapped to a set of constraints that
potentially restricts some obligations.

End of algorithm

Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

276

ii. Dynamic Conflict Resolver Process

Other actions like policy composer and

evaluation must occur before this process a

combination and evaluation of policies, we

considered these activates as a part of this main

process. Since each policy gives a single decision,

the policy combination algorithms (PCAs) combine

these decisions into a single policy decision. PCAs

use to resolve conflicts during runtime. These

algorithms take the authorization decision from

each policy as input and apply some standard logic

to come up with a single decision. There is a need

to include algorithms such as these as PCAs in
authorization languages to provide more

functionality and flexibility in defining policies.

Resolution rules which are the rules that specify the

post-condition that the system can reach from a

given condition used to resolve conflicts, since they

determine the rule to be executed from a set of

conflicting rules. A resolution policy is a set of

resolution rules can be specified using if-then

statement.

if {condition} then {Action}

This means that: “if the system state satisfied by
the condition, then the system is preferred to reach

the state represented by post-condition”. The

resolution technique prioritizes one rule over

another by stating that if two conflicting post-

conditions can occur, then one of the post

conditions is preferred over the other.

Example

if {there is no users inside the range of Sensor i}

then {turn off Sensor i}

In this situation the system checks all working

sensors until finds the required sensor then executes

the related action. However, if the execution of the
above example occurred while the neighbor sensor

was failed at the same time, the system may stop

the execution of this policy. Because this may leads

to some network problems such as coverage,

interference or load balancing.

The algorithm of this component requires

monitoring user requests as they enter the system,

to ensure if they necessitate any obligations or not,

then checks and resolve conflicts as they arise.

While a request to access resource is entered the

system, if the request is allowed, and authorizes an
obligation in the resource, then add this request to

the set of live obligations for that resource.

When the set of live obligation is not empty a set of

steps take place to check for potential runtime

conflicts between obligations in the list. When more

than one obligation is mandated (which cannot be

executed together), conflicts arise and detected, a

set of steps must be called. Conflict resolution is the

set of steps to determine which one of the

conflicting obligations to execute on a resource
item. After successful execution of requests on the

resource, must be removed from live list. Conflict

detection during runtime performed when a new

obligation is added to the live obligation list.

Constraints of resource must be checked,

combined and detect for conflicts with resource

requests to avoid potential errors.

In the case of dynamic resolution, the system

does not have to plan for all potential obligations,

only the obligations that actually arise have to be
checked for conflicts. When none of the access

rules or constraints is violated, for every additional

request in the live list, a different view of the

resource associated with a set of obligations that

apply to the request, and used to serve that request.

In this sense, resolution of conflicts at runtime

provides the additional flexibility that the many-to-

one mapping of obligations to data items need not

be converted to a one-to-one mapping with respect

to the resource constraints. It may be sufficient to

create a view of a one-to-one mapping at runtime,
provided no rules are violated.

Any obligation could override another

obligation if and only if has a higher priority

degree than and both cannot be executed

together. For instance, if specifies that a resource

item is to be removed immediately on access, and if

 specifies that the resource item is to be turn on at

8 am “while it was off”, then we may decide, based

on the context that overrides . During the

dynamic resolution of conflicts, user requests must

be tracked as they arise and obligations, if any, are

associated with the respective resource items. When

a new obligation is defined on a resource item

which already has one or more live obligations

associated with it, the new obligation may/may not

override the current set of live obligations.

DynamicDetectAndResolve()

1. Initially ,

2. If nof (= nof(+ 1, (the number of

requests in increased by one new request)

then

a. If the new request is allowed and mandates on

obligation O on resource d then

 Let

Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

277

b. For (1 ≤ i ≤ n), can be detected as

follow:

i. , .
ii. .

iii. if and only if ,

iv. then for each ,

where , there is no conflict

between and if and only if

 ,

else goto step 3

c. If there are any constraints

(

i. Let ,
(

ii. Let

iii. goto step 2(b)

3. if a request on d is allowed then 3(i) else (5)

i. if then

 (.
ii. if overrides then

 .

iii. If overrides then

4. If and then

i. Update the live list

ii. If overrides either or then

 }.

iii. If either or override then

 .

iv. If 3(ii) , 3(iii), 4(ii) and 4(iii) are false then

create a view for the resource , and let

5. Any set of obligations that conflict with
each other, or conflict with a combination of

constraints for a resource d, are identified as

dynamic conflicts for that resource.

6. Remove obligations from the live list of

resource d.

7. Modify the constraints list if updated.

End of algorithm

4. CONCLUSION AND FUTURE WORK

This paper, proposes PobMC framework which is

based on Event-Condition-Action (ECA) rules for

policy-based management of autonomous

computing system. Furthermore, the paper covers

the issues relating to detecting and resolving

conflicts which can arise in the obligation policies

and some ideas on how to refine high level goals.

StaticDetectAndResolve() and

DynamicDetectAndResolve() algorithms have been

defined for detect and resolve conflicting policies

during compile time and run time. It is observed
that if the conflicts are detected statically or

dynamically, it is important to modify the effect of

some of the rules through the conflict resolution

mechanism.

Conflict detection and resolution has also been

studied in the case of business policies for

authorizing various activities. We believe our work

is one of the important to discuss the role of

obligation management and resource constraints in

autonomous systems and to present algorithms for

conflict management of obligations related to

management of resource items(data and device), for
self-adaptive systems.

The comparison of the most prominent

approaches that have been presented in this paper,

highlights some important issues have been that

have been discussed for large-scale adoption of

policy-based systems. Moreover, we show that

existing policy-based systems do not reason about

concurrent rule enforcements and define no

enforcement ordering. Furthermore, do not verify

action execution and assume that rule enforcement

was successful. In addition to all these drawbacks
most of previous works do not thoroughly

investigate the effects of different policy.

However, this work does not verify the proposed

algorithms. In the future, we plan to develop a static

and dynamic analysis for administrators to specify

policies easily.

ACKNOWLEDGEMENT

The authors would like to express their deepest

gratitude to UniversitiTeknologi Malaysia (UTM)

for their financial support under Research
University Grant Scheme (Vot number

Q.J130000.7128.02H13).

Journal of Theoretical and Applied Information Technology
31

st
 March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

278

REFERENCES

[1] A. A. Mansor and W. M. N. Wan-Kadir, A

Comparative Evaluation of State-of-the-Art

Approaches in the Design of an Adaptive

Software System. Kuala Lumpur, Malaysia,
ASME Press, 2011.

[2] O. O. A. Oyebisi T.O, "Developmentof

Congestion Control Schemefor Wireless

Mobile Network " Journal of Theoretical and

Applied Information Technology vol.

Vol4No10, p. 8, 2008.pp.965-972

[3] E. C. Lupu and M. Sloman, "Conflicts in

policy-based distributed systems management,"

Software Engineering, IEEE Transactions on,

vol. 25, pp. 852-869, 1999.

[4] J. Young and E. Mendizabal, "Helping

researchers become policy entrepreneurs,"
2009.

[5] G. Tonti, et al., "Semantic Web languages for

policy representation and reasoning: A

comparison of KAoS, Rei, and Ponder," The

SemanticWeb-ISWC 2003, pp. 419-437, 2003.

[6] J. Strassner and J. S. Strassner, Policy-based

network management: solutions for the next

generation: Morgan Kaufmann, 2004.

[7] M. Sloman and K. Twidle, "Domains: A

framework for structuring management

policy," Network and Distributed Systems
Management, pp. 433–453, 1994.

[8] M. Sloman, "Policy driven management for

distributed systems," Journal of Network and

Systems Management, vol. 2, pp. 333-360,

1994.

[9] N. C. Damianou, "A policy framework for

management of distributed systems," Citeseer,

2002.

[10] E. H. Sibley, et al., "The role of policy in

requirements definition," 1993, pp. 277-280.

[11] J. B. Michael, et al., "Integration of formal and

heuristic reasoning as a basis for testing and
debugging computer security policy," 1993, pp.

69-75.

[12] N. Dunlop, et al., "Dynamic conflict detection

in policy-based management systems," 2002,

pp. 15-26.

[13] C. Wang, et al., "A policy-based approach for

QoS specification and enforcement in

distributed service-oriented architecture," in

2005 IEEE International Conference on

Services Computing, SCC 2005, July 11, 2005

- July 15, 2005, Orlando, FL, United states,
2005, pp. 307-310.

[14] C. S. Shankar, "Policy-based pervasive systems

management using specification-enhanced

rules," vol. 67, ed, 2006.

[15] S. Davy, et al., "Efficient Policy Conflict

Analysis for Autonomic Network

Management," 2008, pp. 16-24.
[16] C. S. Shankar, et al., "An ECA-P policy-based

framework for managing ubiquitous computing

environments," 2005, pp. 33-42.

[17] S. Davy, et al., "On harnessing information

models and ontologies for policy conflict

analysis," 2009, pp. 821-826.

[18] Z. Wu, et al., "Dynamic policy conflict

analysis in operational intensive trust services

for cross-domain federations," 2009, pp. 1-6.

[19] A. Mohan and D. M. Blough, "An attribute-

based authorization policy framework with

dynamic conflict resolution," 2010, pp. 37-50.
[20] N. Khakpour, et al., "Formal analysis of

policy-based self-adaptive systems," in 25th

Annual ACM Symposium on Applied

Computing, SAC 2010, March 22, 2010 -

March 26, 2010, Sierre, Switzerland, 2010, pp.

2536-2543.

[21] J. Barron, et al., "Conflict analysis during

authoring of management policies for

federations," Dublin, Ireland, 2011, pp. 1180-

1187.

[22] Z. Wu and Y. Liu, "Automatic policy conflict
analysis for cross-domain collaborations using

semantic temporal logic," pp. 1-8.

[23] C. Ma, et al., "Conflict detection and resolution

for authorization policies in workflow

systems," Journal of Zhejiang University-

Science A, vol. 10, pp. 1082-1092, 2009.

[24] M. Sirjani, et al., "Modeling and verification of

reactive systems using Rebeca," Fundamenta

Informaticae, vol. 63, pp. 385-410, 2004.

[25] Z. Manna and A. Pnueli, The temporal logic of

reactive and concurrent systems: Specification

vol. 1: springer, 1992.
[26] A. A. Mansor, et al., " Policy-based Approach

for Dynamic Architectural Adaptation: A Case

Study on Location-Based System", in

MySec011, Johor Bahru, Malaysia, IEEE 12-

14 December 2011.

