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ABSTRACT 
  

World Wide Web is useful source of information. Websites contains many web pages which automatically 
occupied by common template with contents. In former system, TEXT template extraction technique is 
used for template detection and also extract template from dynamic web pages, but it extracts the entire site 
and stores in database. It provides the unnecessary information for further processing. To overcome this 
problem, Vertex based information extraction technique is used, which would improve the web search 
results quality and web integration for dynamic web pages. To operate at web scale, Vertex employs a host 
of novel algorithms for web page clustering, robust wrapper learning, detecting site changes, and rule 
relearning optimization. The system is deployed in production and currently extracts millions of records 
from many websites, in order to get high efficiency. Vertex is the first system to do high accuracy 
information mining at web scale. 

Keywords:  Clustering, Xpath Rule, Template Extraction. 

1. INTRODUCTION 

World Wide Web (WWW) is the most 
useful source of information.It is easy to access the 
information present in the World Wide Web. The 
unknown templates are considered to be harmful 
for the machines.The reason is they degrade the 
accuracy and performance due to irrelevant terms 
present in the template. To reduce this TEXT 
template extraction technique [2] is used. 
Templates can be detected and extracted 
automatically from heterogeneous WebPages.It 
extracts the entire site and stores in database for 
static WebPages.To prevent this we use vertex 
based template extraction technique. The vertex 
system extracts the index terms and works on the 
dynamic web pages and it would improve the web 
search quality and web integration etc. The system 
is deployed in production and currently extracts 
millions of records from many websites.Vertex is 
the first system to do high accuracy information 
extraction at web pages. 

Vertex [1] is a system developed at Yahoo 
for extracting structured records from template 
based WebPages.As an example, consider the page 
shown in Fig.1 for restaurant " Inn Kensington " 

from the aggregator web site www.yelp.com, the 
page contains wealth of information including 
details like restaurant name, water service, and 
delivery, has TV, parking, alcohol etc.Vertex 
extracts this information from such detail pages and 
stores the extracted data for each page as attribute 
of records.This is shown in table1. 

Table1. Attribute of Records 

Name Water 
service 

Parking Good 
for kids 

..... 

Inn 
Kensington 

Yes Street Yes ..... 

Paulie's 
pickling 

No Street Yes ..... 

Pie tisserie No No Yes  

Pie Fridays No Street Yes  
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Fig 1. Example Restaurant detail page  

Vertex brings together various technology 
components incorporating novel algorithms to 
handle the complete extraction lifecycle, from 
clustering pages within a websites, to learning 
extraction rules, to detecting site structure changes, 
and finally relearning broken rules.In this paper, we 
describe the architecture and implementation details 
of the vertex system.To operate at web scale, vertex 
relies on a host of algorithmic innovations, 
1) Clustering algorithm for grouping similar 
structured pages in a web site. Our algorithm makes 
only 3 passes over the data. 
2) Greedy algorithm for picking structurally diverse 
sample pages for annotation. 
3) Apriori style algorithm for learning very general 
XPath -based extraction rules that are robust to 
variations in site structure.        
4) Site changes detection scheme that monitors a 
few sample pages per site, and subjects the pages to 
different structural and content tests. 5) 
Algorithm for optimizing editorial costs by reusing 
rules. 
 
2.  RELATED WORK 

The process starts from template detection 
and then extraction will be done.The template 
extraction problem can be categorized into two 
broad areas. The first area is the site level template 
detection where the template is decided based on 
several pages from the same site. Previously only 
tags were considered to find templates [6] but any 
word can be a part of the template or contents.It 
considering document as trees but the operations on 
tree is usually too costly to be applied to a large 
number of documents.The other area is the page 
level template detection where template is 

computed within a single document. It represents 
web document as matrix and find cluster within the 
matrix. Bi clustering or co clustering is another 
clustering technique to deal with a matrix. [7], 
[8].Co clustering algorithm find synchronized 
clustering of the rows and columns of a matrix and 
need the number of columns and rows as input 
parameter.However, we cluster only documents not 
paths, and moreover, the number of clusters of 
columns and rows are unknown. 

 Early work on wrapper induction falls into 
two broad categories: global page description or 
local landmark-based approaches (e.g. [4], [5]) 
detect repeated patterns of tags within a page in an 
unsupervised manner, and use this to extract 
records from the page. 

The template extraction from the 
heterogeneous web pages [2] has two 
disadvantages. The first failure is, it considers only 
static web pages, for example the news web site is 
uploading daily but in this case we can access only 
the present day’s news. The second failure is it 
extracts the entire site, for example advertisements, 
navigation panels, headers, footers, and copyright 
information etc.., is also extracted. To prevent this 
we use vertex based template extraction technique. 
The vertex based technique extracts the index terms 
and works on the dynamic web pages. 

3.  VERTEX SYSTEM 

Learn                    sample pages              annotations 

Web site 

Sample pages 

 

 

 

 

Extract  

 

Website pages 

Fig 3. Vertex system architecture 

3.1. Learning Subsystem  
The learning subsystem is dependable for 

learning a new set of extraction rules for a specific 
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site. Rule learning occurs in two contexts :(1) 
initially, when rules are learnt for site for the first 
time, and (2) consequently, when rules are relearns 
for the site once a change in its structure is 
detected. In the afterwards relearning scenario, 
certain optimizations like leveraging existing rules 
to reduce editorial effort are applicable. The key 
components in the learning system are as follows:  

3.1.1 Page clustering 
A single website may contain pages 

compliant to multiple different templates. We 
identify these different groups of template based 
pages by clustering the pages within the sites.A 
sample of pages from each web site is first 
together.A shingle-based signature [3] is computed 
for each web page based on HTML tags (and not 
content) in the page, and the pages are clustered 
using the signatures.A single XSLT rule is learnt 
for each cluster containing pages with similar 
structure. The clustering component starts by 
collecting sample pages P from the Web site for 
which rules is to be learnt.Our purpose is to group 
structurally similar sample pages mutually. With 
each sample page in P, we associate an 8-byte 
shingle vector signature which is computed as 
follows.We refer to a nearby cycle of l tags within 
the page as a shingle. 

Let S be the set of all shingles in the page - 
this can be efficiently computed by sliding a 
window of length l over the tag sequence of the 
page. Observe that S captures the structure of the 
page. Further, if S and S' are the shingle sets for 
two pages p and p', then we can use the overlap 
between the shingle sets | S � S'| / | S � S'| as a 
measure of their structural similarity. Let h1, h8 be 
independent hash functions that map a shingle to a 
single byte. The value of the ith byte in vector v is 
computed by applying hi to each shingle in S and 
selecting the minimum 8-bit hash value among all 
the shingles for the pages.  More formally,    v[i] = 
min shεS {hi (sh)}.For two pages p and p' with 
shingle vectors v and v' and shingle set S and S'. it 
can be shown that v[i] = v'[i] with probability | S � 
S'| / | S � S'|. We use masked shingle vectors to 
group all pages with shingle vectors than match on 
k out of the 8 byte values. A k/8 masked shingle 
vector v contains hash values for k indices and the 
remaining 8 - k indices are wild cards " * " that 
match any value. A masked shingle vector v covers 
another vector v' if for all indices i either     v[i] = 
v'[i] or v[i] =  *.  

Vertex's novel clustering algorithm is 
described in algorithm 1.It makes three passes over 
the pages in P.  In the first pass, for each page p, 

counts of all candidates 6/8, 7/8, 8/8 masked 
shingle vectors that covering the page's shingle 
vector v are incremented by 1. 

 
Algorithm 1. Cluster pages 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 There are∑ .ଶ

௜ୀ଴ ൫଼
௜ ൯ candidate masked 

shingles vectors that cover each shingle vector v 
and these are obtained by masking 0, 1 or 2 values 
in v.Thus, at the end of the first pass, each 
candidate masked shingle vector in hash table H 
has a count equal to the number of page shingle 
vector it covers.In the second pass, for each 8/8 
shingle vector in increasing order of counts, a 

Input: sample pages P from web site to be 
clustered; 
Output: Set of clusters; 
/* First Pass */ 
Initialize hash table H to empty; 
for each page p ε P do 
Let v be the shingle vector for p, 
for each 6/8, 7/8, and 8/8 masked shingle 
vector v' 
covering v do 
if v' is in hash table H then 
Increment the count for v'; 
else 
Insert v' with count 1 into H; 
end if 
end for 
end for 
/* second pass */ 
for each 8/8 vector v in H in increasing order 
of counts 
do 
Let v' be the masked shingle vector in H with 
maximum count covering v, 
Decrement counts of all masked shingle 
vectors ≠ 
v' in 
H covering v (by v's count); 
end for 
Delete masked shingle vectors with countless 
than 
threshold from H; 
/* Third pass */ 
for each masked shingle vector v ε H, Cv= �, 
for each page p ε P with shingle vector in H 
with maximum count covering v, 
Add p to Cv ; 

end for 
return {( Cv, v, count for v) : v ε H}; 
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single candidate from the ∑ .ଶ
௜ୀ଴ ൫଼

௜ ൯ possible 
candidate that cover it is selected. The selected 
candidate is the one with the largest count in H, and 
the counts for the remaining candidates are 
decremented by the size of the 8/8 cluster. Thus the 
end of the second pass, each page shingle vector 
contributes to the count of only one masked vector 
in H. We delete all masked vector with negligible 
counts from H after all 8/8 clusters are 
assigned.Since candidate vectors counts 
continuously vary during the second pass, we 
perform a third pass to do the final assignments of 
pages to cluster without adjusting vector counts. In 
the third pass, each page p with shingle vector v is 
assigned to the cluster Cv' forthe masked shingle 
vector v' in H that covers v and has the maximum 
count. 
 

 
 

Fig 4. Cluster coverage 
 
3.1.2. Page Annotation 
 
 While pages within the cluster have 
similar structure for the most part, they may contain 
minor structural variations due to missing attribute 
values, HTML tags, etc. From each cluster, a few 
sample pages that are structurally varied are 
selected for annotation by human editors.For an 
XPath Xi, let F (Xi) denote the frequency of Xi; that 
is, the number of cluster pages that contain Xi.In 
order to differentiate between informative and 
noisy XPaths, we assign different weights to them. 
For this, we leverage the fact that, in a particular 
web site, noisy sections share common structure 
and content, while informative sections differ in 
their actual content. The informative of an XPath Xi 
is determined as:  
 

 
 
 

Where Ti denotes the set of content 
associated with XPath Xi, F (Xi , t) denotes the 
number of pages containing content t at the node 
matching  Xi , and M is the number of cluster 
pages.Spontaneouslyan XPath Xi in a noisy portion 
of the page will have repeating content across 
pages, thus will end up with a low informative 
score close to 0 since   |Ti| ≈ 1 and ∑ t א
TiFሺXi , tiሻ≈ M. On the other hand, we will assign a 
higher informative score to an XPath belonging to 
an informative region that has distinct content 
across pages, here the informativeness score will be 
close to 1 since ∑ t א TiFሺXi , tiሻ≤ M but |Ti| ≈ M.  
Since we are interested in covering frequently 
occurring XPaths belonging to informative regions, 
we assign each XPath Xi a weight w (Xi) = F (Xi). 
I(Xi). Ideally, we would like our annotation sample 
to contain pages with the high weight XPaths since 
these have the attributes that we wish to extract. 
Thus, for a K size sample, our problem is to select 
K pages such that the sum of the weights of the 
distinct XPaths contained in the page is maximized. 
This is identical to the maximum coverage problem 
which is known to be NP-hard, but can be 
approximated to within a factor of 1- 1/e using a 
simple greedy algorithm. We can achieve this 
approximation bound by modifying the 
approximate greedy solution to order pages based 
on uncovered XPaths as shown below. 
 
Algorithm 2: Weighted greedy algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1.3. XSLT Rule learning 
 

The annotations in the annotated sample 
pages AS of a cluster specify the location of nodes 
containing attribute values. These are used to learn 
an XSLT rule for extracting attribute values from 
new pages that map to the cluster. The XSLT rule 

Input: cluster C = { p1,.....,pn}, and sample size 
K; 
 
Output: K or less sample pages; 
 
Initialize the uncovered XPath set X to all 
distinct 
XPaths in C, and sample S to �; 
While X ≠ � and |s| ≤ K do 
Find Pi = max pjε(C-S) {Σܺ݅�݆݌∩ࣲ(ܺ݅)}; 
S = S � {pi}; 
x = x - {XPaths in pi}; 
end while 
return S; 

I(Xi) = I - ሺ∑ ሻሻ ܜ, ܑ܆۴ሺ ܑ܂ઽ ܜ
|ܑ܂|. ࡹ
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contains XPath expressions that identify the node in 
the new page corresponding to each attribute and 
other components that extract the actual text value 
of interest from the node.In order to extract the 
attribute, we first try to learn a rule that precisely 
extracts the node that contains the value of the 
attribute using a combination of strong features 
only. 
 
3.1.3.1. Robust XPath generation 

We are interested in generating a robust 
XPath query (called pXPath) that selects only the 
annotated nodes and none of the other nodes on 
annotated sample pages. An XPath is constructed 
using a combination of features, and our objective 
is to find the most general XPath (with few 
features) that will be robust to changes in page 
structure. We model robustness using two metrics: 
distance and support. We prefer XPaths with 
feature close to the annotated node over many 
distant features. Further, we use unannotated 
sample pages to define the support on unannotated 
pages over XPaths that do not. Giving an XPath X, 
we define prec(X) as the precision of the XPath, i.e. 
prec(X) is the ratio of the number of correct nodes 
selected by the XPath and the total number of nodes 
selected.We define dist(X) to be the maximum 
distance of the features of the XPath on 
unannotated pages.This is the fraction of 
unannotated pages in which the XPaths selects one 
or more candidates. We expect the XPaths we 
generate to select all annotated nodes; hence, 
support on annotated pages is 1.We generate an 
XPath that satisfies the followingproperties: 

1) The XPath selects all annotated nodes, recall is 
1. 
2) Among all XPaths satisfying (1), precision 
prec(X) is maximum.             3) Among all 
XPaths satisfying (1) and (2) dist(X) is minimum.
                                                                       
4) Among all XPathssatisfying (1), (2) and (3) 
above, sup(X) is maximum.    
 

We use an Apriori style algorithm to 
generate an XPath satisfying the above 4 properties. 
Let S be the set of features generated using the 
feature generation procedure described in the 
previous subsection. Algorithm 3 starts with XPath 
candidates C1, each of which has a single feature 
from S. In each subsequent iteration we combine 
features to generate a set of candidates Ck+1 that 
are more specific than the candidates Ck 
consideredin the previous iteration. Note that Ck 

contains candidate sets of features, each set with 
exactly k features 

 
Algorithm 3: Learn XSLT rule 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

Input: Sample pages (annotated and unannotated), 
feature 
set S, 
Output: Maximum precision XPath; 
C1= {{f} : f  ε S}; 
k=1; min dist =∞; max sup =0; max prec=0; 
bestXPath = max precXPath = NULL; 
while Ck /= � do 
Lk+1= � , 
for all XPaths X(F), F in Ckdo 
if  X selects all the positive nodes in P+ then 
if  X selects a negative node in P- or X matches 
more than one node in an un annotated page then 
Lk+1= Lk+1  U  {F}; 
if(prec(X)> max prec) or 
(prec(X) = max prec and 
dist(X) < min dist) or (prec (X) = max prec 
and dist(X) = min dist and 
sup(X) > max sup) then 
maxprec = prec (X); 
maxprecXPath = X; 
min dist = dist (X); 
max sup = sup(X); 
end if 
else if (dist(X) < min dist) or 
dist(X) = min dist and  (sup(X) > max sup)) 
then 
best XPath = X; 
min dist = dist(X); 
max sup = sup (X); 
maxprec =1; 
end if 
end if 
end for 
for allXPAth X(F), F ε Lk+1  do 
if best XPath /= NULL and 
((dist(X) > min dist) or 
(dist (X) = min dist and sup (X)≤ max sup)) 
then 
delete X from Lk+1; 
end if 
end for 
Ck+1 = { K+1-sets F: all K-subsets of F are in Lk+1}; 
k=k+1; 
end while 
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We evaluate our rule learning system over 
many large sites from across 4 different verticals 
namely product, business, news etc. Let P+ be the 
set of annotated nodes and p- be all other nodes on 
annotated pages. In the Kth iteration, we examine 
candidate XPaths X corresponding to feature sets in 
Ck, and prune the XPaths that do not cover all the 
annotated nodes in p+. We also keep track of the 
best XPath X seen so far - this XPath satisfies 
properties (1) through (4).   It has the minimum 
dist(X) from among XPaths satisfying properties 
(1) and (2), and the maximum support from the 
XPaths having distance dist (X). The best XPath is 
either stored in max_prec_XPath (if max_prec < 1) 
or best_XPath (if max_prec = 1).In order to 
generate the set of candidates Ck+1, we store in 
Lk+1 all the feature sets in Ck that can potentially 
lead to XPaths that are superior to the best XPath 
found so far. Observe that the distance of XPaths is 
non-decreasing and the support of XPaths in non-
increasing as they become more specific in 
subsequent iterations.  Thus, we only add to Lk+1 
feature sets whose corresponding XPaths have a 
precision less than 1. Further, we prune from Lk+1 
feature sets whose XPaths are inferior to the current 
best XPaths in terms of distance and support. The 
candidates in Ck+1 are then call sets of F 
containing k+1 features such that every k-subset of 
F belongs to Lk+1.  Further, we prune from Lk+1 
feature sets whose XPaths are inferior to the current 
best XPaths in terms of distance and support. The 
candidates in Ck+1 are then call sets of F 
containing k+1 features such that every k-subset of 
F belongs to Lk+1.  These sites typically are script 
generated and hence have good template structure. 
The clustering on these sites gave us a total of ≈ 
300 clusters. 
 
3.2. Extraction Subsystems  
  

The learning subsystem learns a single 
XSLT rules from sample of pages belonging to the 
cluster that are applied to the stream of crawled 
web pages to extract records from them.In the 
following subsections, we describe the algorithms 
employed by the key components of the extraction 
subsystem in detail. 

3.2.1. Rule matching   

For each crawled, we need to determine 
the matching rule and apply it to extract the record 
from the page. This is done in two steps. We first 
determine the set of matching rules for the page 
based on the page URL.The final rule is 
subsequently chosen based on the page shingle 

vector.To accomplish the first step, we associate a 
URL regex with each rule. The URL regex has a 
syntax similar to URLs but is allowed to contain 
wildcards, e.g., "http://domain-name/product/ 
(.*)/detail.html". During learning, we select the 
URL regexes for a rule to be the most specific 
regexes that matches all the URLs contained in the 
cluster for the rule.To prevent over fitting, we 
impose certain size restrictions on the URL 
regexes.In the first step, we filter out rules whose 
URL regexes does not match the page URL. Then, 
in the second step, we further narrow down the 
rules set to those whose shingle signatures math the 
page's shingle vector.For a page, there can be more 
than one matching rule base on the URL regexes 
and shingle pattern. In our experiments, we have 
found that on an average approximately 2 rules 
match each page. Note that using URL regexes 
helps to reduce the number of possible candidate 
rules for shingle comparisons. 

 

Fig 5.  Rule match 

Matching a URL to URL regexes is 
computationally much cheaper compared to 
computing the page shingle.  

3.2.2. Rule monitoring    

Web sites are dynamic with the content 
and structure of pages changing 
constantly.Examples of content changes are price 
changes, rating changes,etc. Page structure changes 
can happen due to products going on sale or out of 
stock, addition of reviews, variable number of ads, 
etc.Values ranging from 10% to 50%. Row i of the 
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table contains the number of sites that changes i 
times. It can be seen that several sites changed 
multiple times over this period. In fact, one site 
www.amazon.com changed 4 times in one 
month.The number of unique sites that changed 
over the 30 day period is 17(40%) and the number 
of site changes is 27 (63%).The above coverage-
based framework detects only structural changes. 
But a rule can fail in three different ways:Shingle 
changes:  Due to changes in the Web page structure, 
the rule might not apply to previously applicable 
pages, thus resulting in a potential reduction of 
coverage.   Null extraction: 
 If the structure of the XPath pointing to a 
particular attribute changes with the page's shingle 
still conforming to the rule's shingle signature, then 
the rule gets applied but the rule application can 
result in the attribute not getting extracted anymore.
   Incorrect extractions: 
This scenario is similar to the one above except that 
the rule application can result in incorrect 
extractions. Note that this impacts extraction 
precision.  

In order to identify rule breakage, the rule 
monitoring component identifies 10-20 sample 
URLs (called bellwether URLs) from each cluster 
within a site, and crawls them periodically.  

3.2.3. Rule reuse     

Two major findings from our rule 
breakage detection experiments in section 4 are:1) 
Even minor changes in page structure can cause 
pages shingles to change thereby flagging rule 
breakage. Approximately 2 % of web sites 
experience some sort of page structure change each 
day.2) Sites undergo partial and not complete 
changes. For example, for the false positives at the 
bottom of table 4, only a small fraction (≤ 10%) of 
rules breaks within each site. Hence a site change 
may be signalled even if only a small fraction of 
pages within the web site changes. Let C be anew 
cluster and C1, C2, Ck be the old clusters with 
which Chas non-empty URL overlap. Let U=Uri(C 
∩ Ci) be the URLs in the intersection of C and the 
old clusters Ci. The matching cluster Ci whose rule 
we reuse for C is selected using two tests: a shingle 
test and field test. Shingle tests for detecting 
matching cluster pairs C, Ci have two variants. 
Below, they are listed in decreasing order of 
strictness.Cluster match: Clusters C and Ci have the 
same masked shingle signature.Page match: The 
shingles of all the pages in C match the masked 
shingle signature of Ci. The perception here is 
that if Ci and C have similar shingles then we can 

reuse C is rule for the new cluster C. In case of ties, 
we select the cluster with the largest importance 
score. Let Cm be the matching cluster selected by 
one of the above two techniques.Then Rm, the rule 
for Cm, is subjected to the field test. The field test 
employs both the old and new versions of the page 
for every URL in U and is as follows: We apply Rm 
to the old and new versions of the pages in U. For 
the field test to be successful, we require that,the 
extracted values for constant attributes should 
match between the old and new versions of the 
pages, and (2) Rm should successfully extract all the 
mandatory attributes from the new version of the 
pages. If Rm passes the field test, it is associated 
with C. Otherwise C is scheduled for annotation. 

4.  EXPERIMENT ANALYSIS  

 The clustering algorithm and Apriori style 
algorithm are implemented in .NET.Vertex extracts 
the index terms and stores it as records and also it 
works on the dynamic web pages. Figure 8 is the 
extraction of URLs, Figure 9 is the spitting of 
URLs, Figure 10 is the rule matched sites, Figure 
11 represents extracting the contents, Figure 12 
showing the result as attribute of records.Vertex 
handles end to end extraction tasks and delivers 
close to 100% accuracy for most attributes. 

 
Fig 6.  Extraction of URLs. 
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Fig 7. Spitting the URLs 

 

Fig 8. Rule matched sites 

 

Fig 9. Extracting the contents 

 

Fig 10. Showing the result as records 
  

5.  CONCLUSION 

In this project, we described the design 
and performance of the vertex based information 
extraction platform. To work at Web scale, Vertex 
relies on a crowd of algorithmic innovations in 
Web page clustering, robust wrapper learning, 
detecting site changes, and rule relearning 
optimizations. Vertex handles end to end extraction 
tasks and delivers close to 100% accuracy for most 
attributes.Our current research focus is on reducing 
the editorial costs of rule learning and relearning 
without sacrificing accuracy. Vertex currently uses 
page-level shingles for clustering pages and 
detecting site changes. However, since structural 
shingles can be sensitive to minor variations in 
page structure, the total number of rules and rule 
breakages can be high. We are currently 
investigating XPath-based alternatives to page-level 
shingles to address both these issues. We are 
exploring ways of exploiting site -level structural 
constraints to boost extraction accuracy. 
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