
Journal of Theoretical and Applied Information Technology
31st March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645www.jatit.org E-ISSN: 1817-3195

252

DEVELOPMENT OF AN EFFICIENT VERTEX BASED
TEMPLATE EXTRACTION TECHNIQUE FOR WEB PAGES

1N.P.K. GANESH KUMAR, 2Dr.N.K. SAKTHIVEL

1PG Student, School of Computing, SASTRA University, Tamil Nadu, India.

2Professor,School of Computing, SASTRA University,Tamil Nadu, India.

Email: 1npkganesh@gmail.com,2sakthi@cse.sastra.edu

ABSTRACT

World Wide Web is useful source of information. Websites contains many web pages which automatically
occupied by common template with contents. In former system, TEXT template extraction technique is
used for template detection and also extract template from dynamic web pages, but it extracts the entire site
and stores in database. It provides the unnecessary information for further processing. To overcome this
problem, Vertex based information extraction technique is used, which would improve the web search
results quality and web integration for dynamic web pages. To operate at web scale, Vertex employs a host
of novel algorithms for web page clustering, robust wrapper learning, detecting site changes, and rule
relearning optimization. The system is deployed in production and currently extracts millions of records
from many websites, in order to get high efficiency. Vertex is the first system to do high accuracy
information mining at web scale.

Keywords: Clustering, Xpath Rule, Template Extraction.

1. INTRODUCTION

World Wide Web (WWW) is the most
useful source of information.It is easy to access the
information present in the World Wide Web. The
unknown templates are considered to be harmful
for the machines.The reason is they degrade the
accuracy and performance due to irrelevant terms
present in the template. To reduce this TEXT
template extraction technique [2] is used.
Templates can be detected and extracted
automatically from heterogeneous WebPages.It
extracts the entire site and stores in database for
static WebPages.To prevent this we use vertex
based template extraction technique. The vertex
system extracts the index terms and works on the
dynamic web pages and it would improve the web
search quality and web integration etc. The system
is deployed in production and currently extracts
millions of records from many websites.Vertex is
the first system to do high accuracy information
extraction at web pages.

Vertex [1] is a system developed at Yahoo
for extracting structured records from template
based WebPages.As an example, consider the page
shown in Fig.1 for restaurant " Inn Kensington "

from the aggregator web site www.yelp.com, the
page contains wealth of information including
details like restaurant name, water service, and
delivery, has TV, parking, alcohol etc.Vertex
extracts this information from such detail pages and
stores the extracted data for each page as attribute
of records.This is shown in table1.

Table1. Attribute of Records

Name Water
service

Parking Good
for kids

.....

Inn
Kensington

Yes Street Yes

Paulie's
pickling

No Street Yes

Pie tisserie No No Yes

Pie Fridays No Street Yes

Journal of Theoretical and Applied Information Technology
31st March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645www.jatit.org E-ISSN: 1817-3195

253

Fig 1. Example Restaurant detail page

Vertex brings together various technology
components incorporating novel algorithms to
handle the complete extraction lifecycle, from
clustering pages within a websites, to learning
extraction rules, to detecting site structure changes,
and finally relearning broken rules.In this paper, we
describe the architecture and implementation details
of the vertex system.To operate at web scale, vertex
relies on a host of algorithmic innovations,
1) Clustering algorithm for grouping similar
structured pages in a web site. Our algorithm makes
only 3 passes over the data.
2) Greedy algorithm for picking structurally diverse
sample pages for annotation.
3) Apriori style algorithm for learning very general
XPath -based extraction rules that are robust to
variations in site structure.
4) Site changes detection scheme that monitors a
few sample pages per site, and subjects the pages to
different structural and content tests. 5)
Algorithm for optimizing editorial costs by reusing
rules.

2. RELATED WORK

The process starts from template detection
and then extraction will be done.The template
extraction problem can be categorized into two
broad areas. The first area is the site level template
detection where the template is decided based on
several pages from the same site. Previously only
tags were considered to find templates [6] but any
word can be a part of the template or contents.It
considering document as trees but the operations on
tree is usually too costly to be applied to a large
number of documents.The other area is the page
level template detection where template is

computed within a single document. It represents
web document as matrix and find cluster within the
matrix. Bi clustering or co clustering is another
clustering technique to deal with a matrix. [7],
[8].Co clustering algorithm find synchronized
clustering of the rows and columns of a matrix and
need the number of columns and rows as input
parameter.However, we cluster only documents not
paths, and moreover, the number of clusters of
columns and rows are unknown.

 Early work on wrapper induction falls into
two broad categories: global page description or
local landmark-based approaches (e.g. [4], [5])
detect repeated patterns of tags within a page in an
unsupervised manner, and use this to extract
records from the page.

The template extraction from the
heterogeneous web pages [2] has two
disadvantages. The first failure is, it considers only
static web pages, for example the news web site is
uploading daily but in this case we can access only
the present day’s news. The second failure is it
extracts the entire site, for example advertisements,
navigation panels, headers, footers, and copyright
information etc.., is also extracted. To prevent this
we use vertex based template extraction technique.
The vertex based technique extracts the index terms
and works on the dynamic web pages.

3. VERTEX SYSTEM

Learn sample pages annotations

Web site

Sample pages

Extract

Website pages

Fig 3. Vertex system architecture

3.1. Learning Subsystem
The learning subsystem is dependable for

learning a new set of extraction rules for a specific

Learn XSLT
Rules

Cluster
pages

Annotate
pages

Monitor
Rules

XSLT Rules

Records
Extract

Journal of Theoretical and Applied Information Technology
31st March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645www.jatit.org E-ISSN: 1817-3195

254

site. Rule learning occurs in two contexts :(1)
initially, when rules are learnt for site for the first
time, and (2) consequently, when rules are relearns
for the site once a change in its structure is
detected. In the afterwards relearning scenario,
certain optimizations like leveraging existing rules
to reduce editorial effort are applicable. The key
components in the learning system are as follows:

3.1.1 Page clustering
A single website may contain pages

compliant to multiple different templates. We
identify these different groups of template based
pages by clustering the pages within the sites.A
sample of pages from each web site is first
together.A shingle-based signature [3] is computed
for each web page based on HTML tags (and not
content) in the page, and the pages are clustered
using the signatures.A single XSLT rule is learnt
for each cluster containing pages with similar
structure. The clustering component starts by
collecting sample pages P from the Web site for
which rules is to be learnt.Our purpose is to group
structurally similar sample pages mutually. With
each sample page in P, we associate an 8-byte
shingle vector signature which is computed as
follows.We refer to a nearby cycle of l tags within
the page as a shingle.

Let S be the set of all shingles in the page -
this can be efficiently computed by sliding a
window of length l over the tag sequence of the
page. Observe that S captures the structure of the
page. Further, if S and S' are the shingle sets for
two pages p and p', then we can use the overlap
between the shingle sets | S � S'| / | S � S'| as a
measure of their structural similarity. Let h1, h8 be
independent hash functions that map a shingle to a
single byte. The value of the ith byte in vector v is
computed by applying hi to each shingle in S and
selecting the minimum 8-bit hash value among all
the shingles for the pages. More formally, v[i] =
min shεS {hi (sh)}.For two pages p and p' with
shingle vectors v and v' and shingle set S and S'. it
can be shown that v[i] = v'[i] with probability | S �
S'| / | S � S'|. We use masked shingle vectors to
group all pages with shingle vectors than match on
k out of the 8 byte values. A k/8 masked shingle
vector v contains hash values for k indices and the
remaining 8 - k indices are wild cards " * " that
match any value. A masked shingle vector v covers
another vector v' if for all indices i either v[i] =
v'[i] or v[i] = *.

Vertex's novel clustering algorithm is
described in algorithm 1.It makes three passes over
the pages in P. In the first pass, for each page p,

counts of all candidates 6/8, 7/8, 8/8 masked
shingle vectors that covering the page's shingle
vector v are incremented by 1.

Algorithm 1. Cluster pages

 There are∑ .ଶ

௜ୀ଴ ൫଼
௜ ൯ candidate masked

shingles vectors that cover each shingle vector v
and these are obtained by masking 0, 1 or 2 values
in v.Thus, at the end of the first pass, each
candidate masked shingle vector in hash table H
has a count equal to the number of page shingle
vector it covers.In the second pass, for each 8/8
shingle vector in increasing order of counts, a

Input: sample pages P from web site to be
clustered;
Output: Set of clusters;
/* First Pass */
Initialize hash table H to empty;
for each page p ε P do
Let v be the shingle vector for p,
for each 6/8, 7/8, and 8/8 masked shingle
vector v'
covering v do
if v' is in hash table H then
Increment the count for v';
else
Insert v' with count 1 into H;
end if
end for
end for
/* second pass */
for each 8/8 vector v in H in increasing order
of counts
do
Let v' be the masked shingle vector in H with
maximum count covering v,
Decrement counts of all masked shingle
vectors ≠
v' in
H covering v (by v's count);
end for
Delete masked shingle vectors with countless
than
threshold from H;
/* Third pass */
for each masked shingle vector v ε H, Cv= �,
for each page p ε P with shingle vector in H
with maximum count covering v,
Add p to Cv ;

end for
return {(Cv, v, count for v) : v ε H};

Journal of Theoretical and Applied Information Technology
31st March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645www.jatit.org E-ISSN: 1817-3195

255

single candidate from the ∑ .ଶ
௜ୀ଴ ൫଼

௜ ൯ possible
candidate that cover it is selected. The selected
candidate is the one with the largest count in H, and
the counts for the remaining candidates are
decremented by the size of the 8/8 cluster. Thus the
end of the second pass, each page shingle vector
contributes to the count of only one masked vector
in H. We delete all masked vector with negligible
counts from H after all 8/8 clusters are
assigned.Since candidate vectors counts
continuously vary during the second pass, we
perform a third pass to do the final assignments of
pages to cluster without adjusting vector counts. In
the third pass, each page p with shingle vector v is
assigned to the cluster Cv' forthe masked shingle
vector v' in H that covers v and has the maximum
count.

Fig 4. Cluster coverage

3.1.2. Page Annotation

 While pages within the cluster have
similar structure for the most part, they may contain
minor structural variations due to missing attribute
values, HTML tags, etc. From each cluster, a few
sample pages that are structurally varied are
selected for annotation by human editors.For an
XPath Xi, let F (Xi) denote the frequency of Xi; that
is, the number of cluster pages that contain Xi.In
order to differentiate between informative and
noisy XPaths, we assign different weights to them.
For this, we leverage the fact that, in a particular
web site, noisy sections share common structure
and content, while informative sections differ in
their actual content. The informative of an XPath Xi
is determined as:

Where Ti denotes the set of content
associated with XPath Xi, F (Xi , t) denotes the
number of pages containing content t at the node
matching Xi , and M is the number of cluster
pages.Spontaneouslyan XPath Xi in a noisy portion
of the page will have repeating content across
pages, thus will end up with a low informative
score close to 0 since |Ti| ≈ 1 and ∑ t א
TiFሺXi , tiሻ≈ M. On the other hand, we will assign a
higher informative score to an XPath belonging to
an informative region that has distinct content
across pages, here the informativeness score will be
close to 1 since ∑ t א TiFሺXi , tiሻ≤ M but |Ti| ≈ M.
Since we are interested in covering frequently
occurring XPaths belonging to informative regions,
we assign each XPath Xi a weight w (Xi) = F (Xi).
I(Xi). Ideally, we would like our annotation sample
to contain pages with the high weight XPaths since
these have the attributes that we wish to extract.
Thus, for a K size sample, our problem is to select
K pages such that the sum of the weights of the
distinct XPaths contained in the page is maximized.
This is identical to the maximum coverage problem
which is known to be NP-hard, but can be
approximated to within a factor of 1- 1/e using a
simple greedy algorithm. We can achieve this
approximation bound by modifying the
approximate greedy solution to order pages based
on uncovered XPaths as shown below.

Algorithm 2: Weighted greedy algorithm

3.1.3. XSLT Rule learning

The annotations in the annotated sample
pages AS of a cluster specify the location of nodes
containing attribute values. These are used to learn
an XSLT rule for extracting attribute values from
new pages that map to the cluster. The XSLT rule

Input: cluster C = { p1,.....,pn}, and sample size
K;

Output: K or less sample pages;

Initialize the uncovered XPath set X to all
distinct
XPaths in C, and sample S to �;
While X ≠ � and |s| ≤ K do
Find Pi = max pjε(C-S) {Σܺ݅�݆݌∩ࣲ(ܺ݅)};
S = S � {pi};
x = x - {XPaths in pi};
end while
return S;

I(Xi) = I - ሺ∑ ሻሻ ܜ, ܑ܆۴ሺ ܑ܂ઽ ܜ
|ܑ܂|. ࡹ

Journal of Theoretical and Applied Information Technology
31st March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645www.jatit.org E-ISSN: 1817-3195

256

contains XPath expressions that identify the node in
the new page corresponding to each attribute and
other components that extract the actual text value
of interest from the node.In order to extract the
attribute, we first try to learn a rule that precisely
extracts the node that contains the value of the
attribute using a combination of strong features
only.

3.1.3.1. Robust XPath generation

We are interested in generating a robust
XPath query (called pXPath) that selects only the
annotated nodes and none of the other nodes on
annotated sample pages. An XPath is constructed
using a combination of features, and our objective
is to find the most general XPath (with few
features) that will be robust to changes in page
structure. We model robustness using two metrics:
distance and support. We prefer XPaths with
feature close to the annotated node over many
distant features. Further, we use unannotated
sample pages to define the support on unannotated
pages over XPaths that do not. Giving an XPath X,
we define prec(X) as the precision of the XPath, i.e.
prec(X) is the ratio of the number of correct nodes
selected by the XPath and the total number of nodes
selected.We define dist(X) to be the maximum
distance of the features of the XPath on
unannotated pages.This is the fraction of
unannotated pages in which the XPaths selects one
or more candidates. We expect the XPaths we
generate to select all annotated nodes; hence,
support on annotated pages is 1.We generate an
XPath that satisfies the followingproperties:

1) The XPath selects all annotated nodes, recall is
1.
2) Among all XPaths satisfying (1), precision
prec(X) is maximum. 3) Among all
XPaths satisfying (1) and (2) dist(X) is minimum.

4) Among all XPathssatisfying (1), (2) and (3)
above, sup(X) is maximum.

We use an Apriori style algorithm to
generate an XPath satisfying the above 4 properties.
Let S be the set of features generated using the
feature generation procedure described in the
previous subsection. Algorithm 3 starts with XPath
candidates C1, each of which has a single feature
from S. In each subsequent iteration we combine
features to generate a set of candidates Ck+1 that
are more specific than the candidates Ck
consideredin the previous iteration. Note that Ck

contains candidate sets of features, each set with
exactly k features

Algorithm 3: Learn XSLT rule

Input: Sample pages (annotated and unannotated),
feature
set S,
Output: Maximum precision XPath;
C1= {{f} : f ε S};
k=1; min dist =∞; max sup =0; max prec=0;
bestXPath = max precXPath = NULL;
while Ck /= � do
Lk+1= � ,
for all XPaths X(F), F in Ckdo
if X selects all the positive nodes in P+ then
if X selects a negative node in P- or X matches
more than one node in an un annotated page then
Lk+1= Lk+1 U {F};
if(prec(X)> max prec) or
(prec(X) = max prec and
dist(X) < min dist) or (prec (X) = max prec
and dist(X) = min dist and
sup(X) > max sup) then
maxprec = prec (X);
maxprecXPath = X;
min dist = dist (X);
max sup = sup(X);
end if
else if (dist(X) < min dist) or
dist(X) = min dist and (sup(X) > max sup))
then
best XPath = X;
min dist = dist(X);
max sup = sup (X);
maxprec =1;
end if
end if
end for
for allXPAth X(F), F ε Lk+1 do
if best XPath /= NULL and
((dist(X) > min dist) or
(dist (X) = min dist and sup (X)≤ max sup))
then
delete X from Lk+1;
end if
end for
Ck+1 = { K+1-sets F: all K-subsets of F are in Lk+1};
k=k+1;
end while

Journal of Theoretical and Applied Information Technology
31st March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645www.jatit.org E-ISSN: 1817-3195

257

We evaluate our rule learning system over
many large sites from across 4 different verticals
namely product, business, news etc. Let P+ be the
set of annotated nodes and p- be all other nodes on
annotated pages. In the Kth iteration, we examine
candidate XPaths X corresponding to feature sets in
Ck, and prune the XPaths that do not cover all the
annotated nodes in p+. We also keep track of the
best XPath X seen so far - this XPath satisfies
properties (1) through (4). It has the minimum
dist(X) from among XPaths satisfying properties
(1) and (2), and the maximum support from the
XPaths having distance dist (X). The best XPath is
either stored in max_prec_XPath (if max_prec < 1)
or best_XPath (if max_prec = 1).In order to
generate the set of candidates Ck+1, we store in
Lk+1 all the feature sets in Ck that can potentially
lead to XPaths that are superior to the best XPath
found so far. Observe that the distance of XPaths is
non-decreasing and the support of XPaths in non-
increasing as they become more specific in
subsequent iterations. Thus, we only add to Lk+1
feature sets whose corresponding XPaths have a
precision less than 1. Further, we prune from Lk+1
feature sets whose XPaths are inferior to the current
best XPaths in terms of distance and support. The
candidates in Ck+1 are then call sets of F
containing k+1 features such that every k-subset of
F belongs to Lk+1. Further, we prune from Lk+1
feature sets whose XPaths are inferior to the current
best XPaths in terms of distance and support. The
candidates in Ck+1 are then call sets of F
containing k+1 features such that every k-subset of
F belongs to Lk+1. These sites typically are script
generated and hence have good template structure.
The clustering on these sites gave us a total of ≈
300 clusters.

3.2. Extraction Subsystems

The learning subsystem learns a single
XSLT rules from sample of pages belonging to the
cluster that are applied to the stream of crawled
web pages to extract records from them.In the
following subsections, we describe the algorithms
employed by the key components of the extraction
subsystem in detail.

3.2.1. Rule matching

For each crawled, we need to determine
the matching rule and apply it to extract the record
from the page. This is done in two steps. We first
determine the set of matching rules for the page
based on the page URL.The final rule is
subsequently chosen based on the page shingle

vector.To accomplish the first step, we associate a
URL regex with each rule. The URL regex has a
syntax similar to URLs but is allowed to contain
wildcards, e.g., "http://domain-name/product/
(.*)/detail.html". During learning, we select the
URL regexes for a rule to be the most specific
regexes that matches all the URLs contained in the
cluster for the rule.To prevent over fitting, we
impose certain size restrictions on the URL
regexes.In the first step, we filter out rules whose
URL regexes does not match the page URL. Then,
in the second step, we further narrow down the
rules set to those whose shingle signatures math the
page's shingle vector.For a page, there can be more
than one matching rule base on the URL regexes
and shingle pattern. In our experiments, we have
found that on an average approximately 2 rules
match each page. Note that using URL regexes
helps to reduce the number of possible candidate
rules for shingle comparisons.

Fig 5. Rule match

Matching a URL to URL regexes is
computationally much cheaper compared to
computing the page shingle.

3.2.2. Rule monitoring

Web sites are dynamic with the content
and structure of pages changing
constantly.Examples of content changes are price
changes, rating changes,etc. Page structure changes
can happen due to products going on sale or out of
stock, addition of reviews, variable number of ads,
etc.Values ranging from 10% to 50%. Row i of the

Journal of Theoretical and Applied Information Technology
31st March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645www.jatit.org E-ISSN: 1817-3195

258

table contains the number of sites that changes i
times. It can be seen that several sites changed
multiple times over this period. In fact, one site
www.amazon.com changed 4 times in one
month.The number of unique sites that changed
over the 30 day period is 17(40%) and the number
of site changes is 27 (63%).The above coverage-
based framework detects only structural changes.
But a rule can fail in three different ways:Shingle
changes: Due to changes in the Web page structure,
the rule might not apply to previously applicable
pages, thus resulting in a potential reduction of
coverage. Null extraction:
 If the structure of the XPath pointing to a
particular attribute changes with the page's shingle
still conforming to the rule's shingle signature, then
the rule gets applied but the rule application can
result in the attribute not getting extracted anymore.
 Incorrect extractions:
This scenario is similar to the one above except that
the rule application can result in incorrect
extractions. Note that this impacts extraction
precision.

In order to identify rule breakage, the rule
monitoring component identifies 10-20 sample
URLs (called bellwether URLs) from each cluster
within a site, and crawls them periodically.

3.2.3. Rule reuse

Two major findings from our rule
breakage detection experiments in section 4 are:1)
Even minor changes in page structure can cause
pages shingles to change thereby flagging rule
breakage. Approximately 2 % of web sites
experience some sort of page structure change each
day.2) Sites undergo partial and not complete
changes. For example, for the false positives at the
bottom of table 4, only a small fraction (≤ 10%) of
rules breaks within each site. Hence a site change
may be signalled even if only a small fraction of
pages within the web site changes. Let C be anew
cluster and C1, C2, Ck be the old clusters with
which Chas non-empty URL overlap. Let U=Uri(C
∩ Ci) be the URLs in the intersection of C and the
old clusters Ci. The matching cluster Ci whose rule
we reuse for C is selected using two tests: a shingle
test and field test. Shingle tests for detecting
matching cluster pairs C, Ci have two variants.
Below, they are listed in decreasing order of
strictness.Cluster match: Clusters C and Ci have the
same masked shingle signature.Page match: The
shingles of all the pages in C match the masked
shingle signature of Ci. The perception here is
that if Ci and C have similar shingles then we can

reuse C is rule for the new cluster C. In case of ties,
we select the cluster with the largest importance
score. Let Cm be the matching cluster selected by
one of the above two techniques.Then Rm, the rule
for Cm, is subjected to the field test. The field test
employs both the old and new versions of the page
for every URL in U and is as follows: We apply Rm
to the old and new versions of the pages in U. For
the field test to be successful, we require that,the
extracted values for constant attributes should
match between the old and new versions of the
pages, and (2) Rm should successfully extract all the
mandatory attributes from the new version of the
pages. If Rm passes the field test, it is associated
with C. Otherwise C is scheduled for annotation.

4. EXPERIMENT ANALYSIS

 The clustering algorithm and Apriori style
algorithm are implemented in .NET.Vertex extracts
the index terms and stores it as records and also it
works on the dynamic web pages. Figure 8 is the
extraction of URLs, Figure 9 is the spitting of
URLs, Figure 10 is the rule matched sites, Figure
11 represents extracting the contents, Figure 12
showing the result as attribute of records.Vertex
handles end to end extraction tasks and delivers
close to 100% accuracy for most attributes.

Fig 6. Extraction of URLs.

Journal of Theoretical and Applied Information Technology
31st March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645www.jatit.org E-ISSN: 1817-3195

259

Fig 7. Spitting the URLs

Fig 8. Rule matched sites

Fig 9. Extracting the contents

Fig 10. Showing the result as records

5. CONCLUSION

In this project, we described the design
and performance of the vertex based information
extraction platform. To work at Web scale, Vertex
relies on a crowd of algorithmic innovations in
Web page clustering, robust wrapper learning,
detecting site changes, and rule relearning
optimizations. Vertex handles end to end extraction
tasks and delivers close to 100% accuracy for most
attributes.Our current research focus is on reducing
the editorial costs of rule learning and relearning
without sacrificing accuracy. Vertex currently uses
page-level shingles for clustering pages and
detecting site changes. However, since structural
shingles can be sensitive to minor variations in
page structure, the total number of rules and rule
breakages can be high. We are currently
investigating XPath-based alternatives to page-level
shingles to address both these issues. We are
exploring ways of exploiting site -level structural
constraints to boost extraction accuracy.

REFERENCES:

[1] Web-Scale Information Extraction with Vertex
Pankaj Gulhane , Amit Madaan , Rupesh Mehta ,
Jeyashankher Ramamirtham ,Rajeev Rastogi,
Sandeep Satpal , Srinivasan H Sengamedu ,
Ashwin Tengli , Charu Tiwari ,2011 IEEE

Journal of Theoretical and Applied Information Technology
31st March 2012. Vol. 37 No.2

© 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645www.jatit.org E-ISSN: 1817-3195

260

[2] TEXT: Automatic Template Extraction from
Heterogeneous Web Pages Chulyun Kim and
Kyuseok Shim, Member, IEEE Transaction on
data and knowledge Engineering VOL. 23, NO. 4,
APRIL 2011

[3] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig, Syntactic clustering of the web. In
WWW, 1997.

[4] V. Crescenzi, G. Mecca, and P. Merialdo.
RoadRunner: Towards automatic data extraction
from large web sites. In VLDB, 2001.

[5] Y. Zhai and B. Liu. Web data extraction based on
partial tree assignment. In WWW, 2005.

[6] A. Arasu and H. Garcia-Molina, "Extracting
Structures Data from Web Pages," Proc. ACM
SIGMOD, 2003.

[7] I.S. Dhillon, S. Mallela, and D.S. Modha,
"Information-Theoretic Co-clustering," Proc. ACM
SIGKDD, 2003.

[8] B. Long, Z. Zhang, and P.S. Yu, "Co-Clustering by
Block Value Decomposition, "Proc. ACM
SIGKDD, 2005.

