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ABSTRACT 

 
General VLSI Cell placement has gone through different versions depending upon the particular 
applications. The area under modern challenges of VLSI desgin throw light on Power minimization, 
Thermal capacity and Area occupation. Thus Utility function, Renewal reward and Hypergraph setup are 
utilized in our discussion. A brief review is given in this paper 

. 
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1. INTRODUCTION  

 
Major VLSI Physical design issues are addressed 

at different points with different perspective . Graph 
theoretical algorithms, deterministic and non 
deterministic optimization problems and 
probabilistic models are studied in this area to give 
complete solu-tion to problem arising in this 
direction. We have analysed the problem through 
hyper-graph, utility function, renewal reward theory 
and few optimization techniques. The pa-per is 
presented in three sections. In section I, we deal 
with relevance of utility function and generalization 
in VLSI Cell placement . In section II , We deal 
with graph theoretical algorithms for constraint 
placement .In section III, we deal with hypergraph 
for VLSI Cell partitioning. 
 
2. SECTION -I 
 
VLSI cell placement problem can be regarded as an 
information processing through reinforced learning 
rule. Since the movements are governed by non-
liner dynamics and chaos the explorations at each 
stage is a dynamic programming process. During 
this learning process we do not  have the 
knowledge of the previous history and  assuming 
that the future depends on the present  state, we get 
the model to satisfy Markov-property. Besides this 
we have acquired a partial breakthrough leading to 
a reward. This reward is to be regarded as a 
function of time. Transit from different states of the 
system is governed by a certain weight attached 
learning rule. We are left with pricing our options 
and take care of reward exploration leading to 

unlimited transits as the circuitry in VLSI Design. 
Here we coin the problem as non-linear dynamics 
and chaos information processing in neural network 
[1,2] 
 

 We can divide the VLSI circuit design 
problem into sub problems and solve each sub 
problem independently to give more effective and 
efficient technique to handle existing difficulties 
and design complexities. We  address the problem 
of Channel Routing as information processing 
neural network through non linear dynamics and 
uncertainly.  

 
Temporal Difference (TD) Method 
                  TD methods are based upon the 
following simple recursive relation: When we are 
trying to estimate Q experimentally, the estimates 
for different states are related as 



  
0 1111 ),(),(

k ttttk
k

tt asQrrasQ ,a

nd therefore 
0),(),( 111   tttttt asQasQr . If 

0t , it means that the present estimates have to 

be modified. So, the methods look as follows. One 
uses time-dependent estimates ),,( tasQ  of action 

values. The initial guesses )0,,( asQ  can be 

chosen arbitrarily. Then one chooses a policy  , 
and after every step modifies the action values 
iteratively: 

tt taseatasQtasQ  ),,(),,()1,,( .  

This relation contains two new factors – the 
learning rate ta   and the so-called eligibility traces 
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),,,( tase  which we shall describe a little later. For 

the evaluation of the correction of the correction 
term  ,there are two major methods.  
a) “Sarsa” (the name reflects the sequence 

111 ,,,,  ttttt asras  used for  evaluation) [3] 

 ).,,(),( 111 tasQtasQr tttttt    

It provides the estimates of Q for the current policy. 
Nonetheless, if one uses the current values of Q for 
the policy formation, e.g., at the moment t chooses 
the action a with the largest current ),,( tasQ t  , 

then it proves that the method admits policy 
improvement as well. 
 
(b) “Q-learning”,  
     ).,,(),,(max 11 tasQtasQr ttt

a
tt    

This method converges to the action values *Q  for 

the optimal policy *  almost independently of the 
current policy  . Knowing Q* it is easy to obtain 
the optimal policy *  itself.   

 
 Let us consider eligibility traces which are 
reflexes related to events neural and assumptions 
that are separated by  a set of time intervals. Neural 
events correspond change in weight after neural 
reputation the essential events occur which is 
proportional to signal, for some time for resetting 
the corresponding connection can change until the 
new settings can take place. 
 
 It is necessary in  that the information 
about the environment is complete the action value 
Q, the optimal policy can be calculated. This is to 
use activities with the largest Q. Even if some of 
the Q estimated accurately. There always remind 
the possibilities the best option might not be tried. 
This policy is called greedy policy. Among the best 
known action with probability 1-e other action with 
probability ne 1/ . We conclude neural networks 
with reinforced learning can be used to study non 
linear dynamics with information processing.  
 
Renewal reward process 
In the context of channel routing, the decisions 
involve assigning nets to tracks such that no 
horizontal and vertical constraints are violated and 
the number of tracks is minimum. In the previously 
developed search techniques based routers, the 
neighbourhood solutions are generated by randomly 
selecting nets and tracks. However, random moves 
do not guarantee convergence in a reasonable time 
and the algorithm is highly likely to get trapped in a 
local minima. In this work, a variety of problem 

domain information are combined using Markov 
process that, nets and tracks are selected based on 
their respective rewarding. The net reward renewal 
function express information about the goodness 
for assigning a net to a track. The track reward 
combines information about the goodness of cluster 
of nets assigned to a track and about the sparsity of 
the track.     
 
 We now present how the channel routing 
problem-domain information can be mapped into 
Markov process and renewal reward process. [4] 
    Let }{ nX  denote the stochastic poisson-process 

with parameter  to represent the tip of channel 
routing and process }{ nY  is a poisson process with 

parameter  to denote the cell design. The 

cumulative process 
)(

1

)(
tw

nYtY  is the reward 

process. Then we can obtain the complete 
description of channel route and cell placed VLSI 
design is got as a limit of t tends to infinity.  
 
A set of benchmark problems taken from an 
existing paper [5] and the difficult problem of 
Deutsch are used to evaluate the performance of the 
algorithm. The optimal routing width of each 
benchmark is known. The statistics for these 
benchmarks are shown in table 1. Several scenarios 
were conducted using these benchmarks. In each 
scenario, the performance of the algorithm was 
evaluated based on one of the following criteria (1) 
convergence behavior; (2) effectiveness f 
incorporating Tabu Search; (3) effectiveness of 
using utility functions to select the best moves. Due 
to the fact that the SE algorithm is stochastic in 
nature and to ensure the validity of the approach, 
the algorithm was executed for 20 trials in each 
scenario. 
 The first scenario was designed to 
investigate the convergence of the algorithm.  
 
Table 1: Statistics for the different benchmarks 

Benchmark No. of nets 
Global 
optimum 

ex1 21 12 
ex3a 45 15 
ex3b 47 17 
ex3c 54 18 
Deutsch ex. 72 28 
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The routing of the difficult Deutsch problem is 
illustrated in figure (1). Furthermore, as shown in 
figure (2), the valley representing the optimal 
routing width was explored at an average number 
of generation of 172. The algorithm was executed 
with the SETS (SE and TS) hybrid as the search 
engine. Also, utility functions are used to select 
best moves during exploration of the solution 
space. Figure (2) illustrates the variation of the 
average cost versus the generation number for the 
Deutsch difficult example. By observing the 
average cost contour, one can easily see that the 
algorithm climbs hills and descends valleys of the 
solution space. This suggests that the algorithm 
explores the solution space effectively and 
convergence to the global optimum is very likely. 
 
 The second scenario was designed to 
ascertain the effectiveness of combining SE and TS 
as a hybrid search engine (SETS hybrid). In this 
scenario, two experiments were conducted. In the 
first experiment, the algorithm employed only Se as 
a search engine, and in the second experiment the 
SETS hybrid was employed as a search engine. 
Moves were randomly selected (i.e., nets and 
destination tracks are randomly chosen). The 
algorithm converged to the global optimal routing 
width in both experiments, except for the extra 
benchmark for which the optimal answer obtained 
in the first experiment, is one track beyond the 
global optimum. For all the benchmarks, the 
number of generation, AVG-NUM, needed to 
converge to the optimal solution and, OPT-SOL, in 
the second experiment are less compared to the first 
experiment (see Table 2). This observation 
demonstrates the significance of SETS hybrid as a 
search engine.    

 
Figure 1. The routing of Deutsch’s difficult 

example 

 
Figure 2.The variation of the average cost value as 
the algorithm progresses over generations for the 

difficult Deutsch problem 
 
Table 2: For all the benchmarks, average number 

of  generations (AVG-GEN) required to converge to 
an optimal solution (OPT-SOL) when the search 
engine is (i) only SE; (ii) SETS hybrid and utility 

functions (SETS-UTFN). 

 
  
 In the third scenario, the effectiveness of 
using utility functions in selecting the best moves is 
investigated. The algorithm is executed with utility 
functions used to choose candidate nets and 
candidate tracks for a move. The results obtained 
are again reported in table 2. The global optimum 
for each benchmark is obtained. Also, the AVG-
NUM required to obtain the global optimum is 
smaller compared to the previous scenarios. This 
indicates that using of utility functions to determine 
best moves (rather than relying on random moves) 
in generating neighborhood solution is a quite 
effective approach. The major limitation of the 
SETS channel router is in the choice f the control 
parameters; i.e., Tabu Lengh, stopping parameter, 
control parameter and the threshold criteria.  
 

Benchmark AVG-GEN OPT-SOL 

ex1 4 4 4 12 12 12 

ex3a 335 160 310 16 16 15 

ex3b 297 227 206 17 17 17 

ex3c 67 56 45 18 18 18 

Deutsch ex. 314 217 172 28 28 28 
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 Regarding the Aspiration criterion used, 
again, our experience shows that such a criterion is 
quite effective in forcing the SE to backtrack 
previous solutions and refine those search regions.  
 
 
3. SECTION-II 
 
In this section, we firstly describe the significant of 
graph theoretical algorithms. In understanding the 
details of cell placement process in VLSI, we come 
to the conclusion that this problem is an NP-
Complete problem. It is practiced to search for 
relevant NP-Complete problems which can be put 
into one-to-one correspond of similar NP-Complete 
problem. One of the graph theoretical algorithms 
which can be identified to correlate our VLSI 
design and placement is the vertex cover problem.  

 
 
The Constrained placement problems deal with the 
computation of an optimal arrangement of items on 
a planar site. The objective function for these 
optimization problems is based on the overall 
rectangular area of occupied space and on addition 
of all terms that reflect problem-specific 
constraints. The basic variants of these problems 
are unconstrained two-dimensional packing 
problem and the quadratic assignment problem. In 
the case of the packing problem, a set of rectangular 
blocks has to be arranged such that no blocks 
overlap each other. The area of the rectangle 
circumscribing all blocks has to be minimal, hence 
the optimal packing pattern is that with minimal 
waste inside the enveloping rectangle. In the 
quadratic assignment problem [6], a set of items has 
to be matched to fixed arranged bins. A flow matrix 
defines the connectivity between the items. The 
objective is to find a mapping with minimal flow 
costs, these being the sum of the products of flow 
and distance between each pair of items. The 
quadratic assignment problem is an NP-hard 
optimization problem [7].  
 To deal with different often conflicting 
objectives divide and conquer approach is typically 
used. Multistage approaches compute optimum 
arrangement of blocks are based on the 
connectivities. Connectivity between the blocks 
considered as structured graph theoretical problem.  
 
Threshold Device Networks For Generalized 
Vertex Cover Problems 
 The primary theoretical contributions of 
this paper are expressed in three theorems, each of 
which contributes to be eventual development of 

methodologies for effective on-chip spare 
row/column allocation in VLSI arrays. Here we 
identify and analyze a class of threshold device 
networks which is proven applicable to the GVC 
problem. 
 Consider a network of threshold devices 
whose energy function is of the form  


 


N

i

N

j
jijjVC SCSASE

1 1

)(  

where each ijC  is determined by the connection 

matrix of some undirected graph G with no self-
loops, and where A is any positive constant. If a 
correspondence is established between device I of 
the network and vertex i of G for Ni 1 , and if 

a subject 0V  is defined of which vertex i is 

considered a member whenever 0iS , then we 

have the following lemma.  
Lemma: 1 
 Let H be a network of laterally connected 
threshold devices whose energy function is given 
by VCE . A necessary and sufficient condition for 

any state to be a local minimum of VCE  and hence 

a stable state of H, is that its associated vertex set 

0V  be a vertex cover of G.           

Lemma: 2 
 Let H be a network of laterally connected 
threshold devices whose energy function is given 
by CMVE   and whose parameters A and iB  are 

chosen so as to obey the inequalities 

2

)1||2( 
 ii LB

A  and  0iB  for 

Ki 1 . 
A necessary condition for any state of H to be 
stable is that its associated 0V  be a vertex cover of 

G.  
Let H be a network of laterally connected threshold 
devices which fulfills the 
 requirements of Lemma 2, and let U denote the 
union of all sets iL  of threshold devices for which 

0iB . A necessary and sufficient condition for 

any state of H to be stable is that its associated 
vertex set 0V  be a vertex cove of G which is 

minimal over the set of vertices corresponding to U. 
 
Iterative Clustering Based On Connectivity 
 While slicing trees and shape functions 
deal with the packing aspect of the optimization 
problems, another heuristic is necessary to take into 
account those constraints based on connectivity. 
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When constructing a solution for these problems, 
care must be taken that highly connected blocks are 
placed near each other on the layout site. During 
the composition of a slicing layout, blocks (or 
meta-blocks) are iteratively paired. This 
corresponds to composing an inner node of the 
slicing tree by joining two leaves (or subtrees). 
 
At the beginning of the construction, globally good 
pairings are identified in the set of all blocks. These 
build the lowest level of the slicing tree. A good 
technique for successively pairing items according 
to a quality function is the iterated matching 
heuristic, which was introduced by Fritsch and 
Vornberger [8] It is based on the graph algorithmic 
computation of a maximum weight matching on a 
complete graph. The vertices of this graph represent 
the items to be paired, and each edge is weighted 
with the value of the quality function for the 
corresponding pairing. A matching in this graph is a 
set of node-disjunct edges, and the weight of a 
matching is the sum of the weights of all edges in 
this set.  
 
 
In the case of the facility layout problem, an edge is 
weighted according to the flow between the 
facilities represented by the adjacent vertices. For 
the VLSI layout generation problem, the quality 
function is based on the number of terminals that 
have to be connected by signal nets between both 
cells. A maximum weight matching corresponds to 
a set of optimal pairings such that a globally 
maximal number f terminals can be connected 
inside the resulting meta-blocks. Since paired 
blocks are adjacent on the final layout, the 
maximum weight matching ensures short wiring 
lengths in the case of macro-cell layout generation 
and low partial flow-cost terms for the facility 
layout problem. 
 
We have used the graph-theoretical algorithm 
namely, generalized vertex cover problem to 
describe the VLSI cell placement problem process. 
This procedure has been illustrated through two 
specific applications one on one-line chip 
embedded system and another with mobile secure 
communications.[9] 

4.  SECTION-III 

The Main problem of partitioning in VLSI Design 
and other related domain of study can be posed as 
getting sub domain of equal size of the vertices in a 
given hypergraph. A Variety of knowledge based 

algorithms have been developed which give 
different cost-quality tradeoffs. The edges at 
consecutive cells dominate each other to have 
incident one, two or more creating cluster like 
situation which can be modeled as a hypergraph. 
The contribution of links to specific node is relative 
important and thus demands for probabilistic 
algorithms to develop on stochastic function. 
Iterative refinement algorithms have been 
developed by Kernighan-Lin (KL) and Fiduccia-
Mattheyses [10,11,12] 
 
 
 Earlier Researchers have placed the 
problem in searching for Max-Min cut on graphical 
representation of the design. Here, We give hyper 
graph concepts explained through discrete time and 
space sequence of random variables forming 
Markov chain [13]. The classification of nodes 
studied through an analysis on variety of classified 
states of the Markov chain fitted to the situation. 
 
Problem Specification 

 Formally, the k -way min-cut partitioning 

problem  can be stated as follows. Let a circuit C  
be represented by a hypergraph or netlist 

),,( EVG   where V  is the set of nodes that 

represent the nets of the circuit. Each hyperedge or 
net connects two or more nodes together; generally 
the output of a node is connected to the inputs of 
several other nodes by a net. We will represent a 

net in   as a set of the nodes that it connects. We 

denote the number of nodes in V   by n  the 

number of hyperedges in E   by ,e  the average 

number of nets that a node is connected to by ,nq  

the average number of nodes that a net connect by 

,eq  and the average number of neighbors of a node 

by  )1( en qqd  a node u  is said to be a 

neighbor of another node ,u  if u  and u  are 

connected by a common net. A k  way 

partitioning of G  is a set of subsets 

},....,{ 21 k
k VVVP   of V  such that each 

Vu  belongs to exactly one .iV  Let 1r  and 2r  

be two numbers between 0 and 1 such that 
krr /1,21   and ./1,2 kr   Then, an 

),( 21 rr  balanced k  partition in which 
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21 || rnVr i   for each subset iV  of .kP  

When ;1,2 21 rrk   however, for 3k  

there is no obvious relation between 1r  and 2r  

(except ).21 rr   We assume that all nodes have 

unit size; the balance criterion is easily changed to 
reflect size constraints on the subset when this is 

not the case. The cutest of a k  way partitioning 
is defined as  
 

},..,|{ 1cut jiVutsnEnE itu 
 

 In other words, the cutest cutE  is the set 

of nets that connect nodes belonging to different 

subsets of .kP  The cost of size of the cutest of 
kP  is defined as  

 





k

i
tt

k EnncP
1

cutwhere),()cost(  

Assume that there are n   nodes in the 

hypergraph ,G  and that it is being partitioned into 

}.,{ 21 VV   When partitioning a hypergraph or 

netlist, the gain of a node is not as apparent as in 
the case of graph. The FM netlist partitioner user a 
simple extension of the Kernighan-Lin node gain 
calculation (used for graph partitioning). For each 

node ,u  let I )(u  be the set of nets to which u  is 

connected that lie entirely in su'  current subset, 

and )(uE  be the set of nets that belong to the 

cutest and for which u  is the only node connected 

to them in su'  partition. Then the gain of u  is 
given by 
 

 
 


)( )(

)()(:)gain(
uEn uIn

ji
i j

ncncu

  
 This gain definition of a node is the 
immediate decrease in the cutest cost if it is moved 
to the other subset. The partitioning process 

proceeds by determining the next best node iu  to 

move in the ith step as follows. The “unlocked” 
note (initially all nodes are unlocked)  with the 
maximum gain in either subset is determined. If the 
balance criterion on the two subsets can be 
maintained after moving this node from its current 

subset to the other one, it is chosen as the node .iu  

Node  .iu  is them moved to the other subset and 

“locked”, and the gain of all its neighbors are 

updated. The node gain )( iu  is inserted in an 

ordered set ,S  and the next best node is moved in 

a similar fashion such that the balance criterion is 
satisfied. 
 Data and analysis 
We can represent this graph as an adjacency list. 

 
 
Figure 3. The Adjacency list representation of the 

graph

Figure 4. Adjacency list representation of fG  

 
 From the adjacency matrix given in fig.3 
we get the number of edges for the hypergraph 
connection different vertices in fig.4. The vertical 
and horizontal representation on the writing is 
analyzed through Cross-correlation from the result 
we find that hypergraph can be converted into 
ordinary spanning tree of a regular graph.  
 
Step 1: Average of each row is subtracted from 

every entry .1d  
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Step 2: Average of each every column is subtracted 

from every entry .2d  

Step 3: Product is summed and the average is taken.  
Step 4: We find the cross correlation between this 
movements. 
 
Row variance = 12.36 
Column variance = 14.66 
Covariance between row and column entities = 9.38 
Correlation between row and column = 0.7 
This shows that the hypergraph method is better 
than the vertical and horizontal method procedure 
in wing and cell partitioning. Markov distribution is 
shown below.    
 

1 2 3 4 5 6 7

1 0 .12 .14 .19 .14 .31 .06

2 .31 0 .28 0 .2 .21 0

3 .37 .17 .14 .11 .05 .08 .05

4 .15 .13 .18 .09 0 .26 .17

5 0 .14 .16 .21 .16 .32 0

6 .31 0 .28 0 .2 .2 0

7 .15 .12 .18 .09 0 .25 .18
 
                       Fig.5 Markov distribution 

In fig.5 we have given the probability transition 
matrix for a design with finite number of nodes, but 
in VLSI design we have to deal with large scale of 
nodes. Thus this matrix will be of infinite 
dimension and the markov-chain is studied through 
virtual memory systems, where in additional 
memory locations are treated as virtual memories 

5. CONCLUSION 

In this paper, we have presented stochastic and 
deterministic models to tackle the challenges arising 
from the VLSI Circuit designs with wirelength 
optimization. Although significant progress has been 
in placement research, modern VLSI  circuit designs 
have been induced many more challenges and 
opportunities for future research on partitioning and 
VLSI Cell placement. 
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