
Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1

THE NEW METHOD OF ADAPTIVE CPU SCHEDULING
USING FONSECA AND FLEMING’S GENETIC ALGORITHM

1MEHDI NESHAT, 2MEHDI SARGOLZAEI, 3ADEL NAJARAN, 4ALI ADELI

1 Department of Software Engineering, Shirvan Branch, Islamic Azad University, Shirvan, Iran
2 Department of Computer sciences, Shirvan Branch, Islamic Azad University, Shirvan, Iran

3 Department of Software Engineering, Shirvan Branch, Islamic Azad University, Shirvan, Iran
4 Department of Software Engineering, Shirvan Branch, Islamic Azad University, Shirvan, Iran

E-mail: 1neshat_mehdi@ieee.org, 2Sargolzaei@iau-shirvan.ac.ir , 3nadjaran@iau-shirvan.ac.ir ,
4adeli@iau-shirvan.ac.ir

ABSTRACT

The CPU scheduling is one of the most important tasks of the operating system. Many algorithms are
designed and used in this regard each having advantages and disadvantages. In this paper a new algorithm
for the CPU scheduling is presented using FFGA (Fonseca and Fleming’s Genetic Algorithm)
multiobjective optimization. Contrary to the classical algorithms in use, it uses the three parameters of CPU
burst time; I/O devices service time, and priority of process instead of using one parameter of CPU burst
time. The important point is the adaptation of the algorithm which selects a special process depending on
the system situation. The performance of this algorithm was compared with seven classical scheduling
algorithms (FCFS, RR (equal, prioritized), SJF (preemptive, non-preemptive, Priority (preemptive, non-
preemptive)), and the results showed that the performance of the proposed method is more optimized than
other methods. The proposed algorithm optimizes the average waiting time and response time for the
processes.
Keywords: CPU Scheduling, Multiobjective Optimization, FFGA, Waiting Time, Response Time,

Turnaround Time.

1. INTRODUCTION

Each process needs two factors when entering the
operating system; first CPU and second I/O. The
processes are divided into two general groups of
CPU limited and I/O limited processes based on the
need to these two factors. However, most processes
always need the two types of sources. Now in a
system with many processes available there will be
a competition between these processes to acquire
the resources. One of the most difficult problems in
designing the operating systems is the timely
allocation of resources to the processes and
retrieving them. This problem is solved by the
classical view of the different algorithms. All of the
algorithms have some advantages and
disadvantages; yet there is not a general method
available. This is more problematic in systems with
multiprocessor.
Modern Operating Systems are moving towards
multitasking environments which mainly depends
on the PU scheduling algorithm since the CPU is
the most effective or essential part of the computer.

Round Robin is considered the most widely used
scheduling algorithm in CPU scheduling [1]-[2],
also used for flow passing scheduling through a
network device [3]-[4]. Operating systems may
feature up to 3 distinct types of a long-term
scheduler (also known as an admission scheduler or
high-level scheduler), a mid-term or medium term
scheduler and a short-term scheduler. The
dispatcher is the module that gives control of the
CPU to the process selected by the short-term
scheduler [1].

Figure 1: Queuing diagram for scheduling

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2

 The key idea behind a medium term scheduler is
that some times it can be advantageous to remove
processes from memory and thus reduce degree of
multiprogramming. Later, the processes can be
reintroduced into memory, and its execution can be
continued where it left off. This scheme is called as
swapping. So, the process is swapped out, and is
later swapped in, by the medium term scheduler.
The time for which a process holds the CPU is
known as burst time. The time at which a process
arrives is its arrival time. Turnaround time is the
amount of time to execute a particular process.
Waiting time is the amount of time a process has
been waiting in the ready queue [5].
 Using Artificial Intelligence methods in CPU
scheduling algorithms has optimized the results. In
recent years good scheduling algorithms have been
presented which used tools like Fuzzy Logic[7-11],
Neural network[12]-[18], Genetic Algorithms[13 -
14] and Swarm Intelligence[15]-[16]. In this study
a multiobjective optimization method is used.
 Multiobjective Optimization Problems (MOPs)
optimize a set of conflicting objectives
simultaneously. Mops are a very important research
topic, not only because of the multi-objective
nature of most real-world decision problems, but
also because there are still many open questions in
this area. In fact, there is no one universally
accepted definition of optimum in MOP as opposed
to single objective optimization problems, which
makes it difficult to even compare results of one
method to another. Normally, the decision about
what the best answer is corresponds to the so-called
human decision maker [19].
 We will proceed to the main parameters of
scheduling in the second section. The FFGA
algorithm will be explained in the third section and
the proposed algorithm will be reviewed in the
forth section. In the fifth section the experimental
results gathered through the proposed method will
be compared with those of other methods and
finally a general conclusion will be drawn.

2. METHODS

2.1. CPU SCHEDULING
 Whenever the CPU becomes idle, the operating
system must select one of the processes in the
queue to be executed. The selection process is
carried out by the short-term scheduler (or CPU
scheduler). The scheduler selects a process from the
processes in memory that are ready to execute and
allocates the CPU to that process.
Note that the ready queue is not necessarily a first-
in, first-out (FIFO) queue. As we shall see when we

consider the various scheduling algorithms, a ready
queue can be implemented as a FIFO queue, a
priority queue, a tree, or simply an unordered
linked list. Conceptually, however, all the processes
in the ready queue are lined up waiting for a change
to run on the CPU. The records in the queue are
generally process control blocks (PCB) of the
processes [1].
2.1.1. CPU Utilization
 We want to keep the CPU as busy as possible that
means CPU is not free during the execution of
processes. Conceptually the CPU utilization can
range from 0 to 100 percent.
2.1.1.1. Throughput
 If the CPU is executing processes, then work is
being completed. One measure work is the number
of processes that are completed per time unit that
means the number of tasks per second which the
scheduler manages to complete the tasks.
2.1.1.2. Response Time
 In an interactive system, turnaround time may not
be best measure. Often, a process can produce some
output fairly early and can continue computing new
results while previous results are being output to
the user. Thus, response time is the time from the
submission of a request until the first response is
produced that means when the task is submitted
until the first response is received. So the response
time should be low for best scheduling.
2.1.1.3. Turnaround Time
 Turnaround time refers to the total time which is
spend to complete the process and is how long it
takes the time to execute that process. The time
interval from the time of submission of a process to
the time of completion is the turnaround time. Total
turnaround time is calculation is the sum of the
periods spent waiting to get into memory, waiting
in the ready queue, executing on the CPU and
doing I/O.
2.1.1.4 Waiting Time
 The waiting time is not the measurement of time
when a process executes or does I/O completion; it
affects only the amount of time of submission of a
process spends waiting in the ready queue. So the
Waiting time is the period of spent waiting in the
ready queue to submit the new arriving process for
the CPU.

 So a good scheduling algorithm for real time and
time sharing system are concluded that must
possess following characteristics [6]:

1. Minimum context switches.
2. Maximum CPU utilization.
3. Maximum throughput.
4. Minimum turnaround time.
5. Minimum waiting time.

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3

6. Minimum response time.
2.2. Algorithms Scheduling
 The different methods are used to allocate CPU to
ready processes in queue. Each of these methods
uses a certain algorithm and has advantages and
disadvantages. Several common methods for
process scheduling will follow.
2.2.1. First-Come, First-Served (FCFS):
 This algorithm allocates the CPU to the process
that requests the CPU first. This algorithm is easily
managed with a FIFO queue. New process enters
the queue through the tail of the queue and leaves
through the head of the queue (when the process is
allocated to the CPU) (1). The processes are
allocated to the CPU on the basis of their arrival at
the queue. Once a process is allocated to the CPU,
it is removed from the queue. A process does not
give up CPU until it either term unites or perform s
I/O [1].
2.2.2. Shortest-Job-First (SJF):
 The SJF algorithm associates the lengths of the
next CPU burst w ith each process such that that the
process that have the smallest next CPU burst is
allocated to the CPU (1). The SJF uses the FCFS to
break tie (a situation where two processes have the
same length next CPU burst). The SJF algorithm
may be implemented as either a preemptive or non-
preemptive algorithms. When the execution of a
process that is currently running is interrupted in
order to give the CPU to a new process with a
shorter next CPU burst, it is called a preemptive
SJF. On the other hand, the non-preemptive SJF
will allow the currently running process to finish its
CPU burst before a new process is allocated to the
CPU [1].
2.2.3. Priority Scheduling (PS):
 The PS algorithm associates with each process a
priority and the CPU is allocated to the process
based on their priorities. Usually, lower numbers
are used to represent higher priorities. The process
with the highest priority is allocated first. If there
are multiple processes with same priority, typically
the FCFS is used to break tie [1].
2.2.4. Round Robin (RR):
 The RR algorithm is designed especially for time-
sharing systems and is similar to the FCFS
algorithm. Here, a small unit of time (called time
quantum or time slice) is defined. A time quantum
is generally from 10-100 milliseconds. So, the RR
algorithm will allow the first process in the queue
to run until it expires its quantum (i.e. runs for as
long as the time quantum), then run the next
process in the queue for the duration of the same
time quantum. The RR keeps the ready processes as
a FIFO queue. So, new processes are added to the
tail of the queue. Depending on the time quantum

and the CPU burst requirement of each process, a
process may need less than or more than a time
quantum to execute on the CPU. In a situation
where the process need more than a time quantum,
the process runs for the full length of the time
quantum and then it is preempted. The preempted
process is then added to the tail of the queue again
but with its CPU burst now a time quantum less
than its previous CPU burst. This continues until
the execution of the process is completed [1]. The
RR algorithm is naturally preemptive [17].RR
algorithm is one of the best scheduling algorithms
that developed by many researchers [20-23].
2.3. Multiobjective optimization
 The notion of weighing tradeoffs is common to
problems in everyday life, science, and engineering.
Buying a less expensive product might tradeoff
product quality for the ability to buy more of
something else. Adding an additional science
instrument to a spacecraft trades off increased costs
for increased science return. Hard optimization
problems typically require many decisions on the
input side and many objectives to optimize on the
output side. The set of objectives forms a space
where points in the space represent individual
solutions. The goal of course is to find the best or
optimal solutions to the optimization problem at
hand. Pareto optimality defines how to determine
the set of optimal solutions. A solution is Pareto-
optimal if no other solution can improve one
objective function without a simultaneous
deterioration of at least one of the other objectives
[24].

Def.1: (Multiobjective Optimization) A general
MOP includes a set of n parameters (decision
variables), a set of k objective functions, and a set
of m constraints. Objective functions and
constraints are functions of the decision variables.

The optimization goal is to

Yyyyy

Xxxxxwhere

xexexexetosubject

xfxfxfxfyMaximize

k

n

m

k

),...,,(

),...,,(

0))(),...,(),(()(

))(),...,(),(()(

21

21

21

21

(1

 and x is the decision vector, y is the objective
vector, X is denoted as the decision space, and Y is
called the objective space. The constraints

0)(xe determine the set of feasible solutions.

Def.2: (Feasible Set) The feasible set fX is

defined as the set of decision vectors x that satisfy
the constraints)(xe :

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4

}0)(|{ xeXxX f (2

The image of fX , i.e., the feasible region in the

objective space, is denoted as

)}.({)(xfXxXfY fff

Without loss of generality, a maximization
problem is assumed here. For minimization or
mixed maximization/minimization problems the
definitions presented in this section are similar.
Consider again the above example and assume that
the two objectives performance (f1) and cheapness
(f2), the inverse of cost, are to be maximized under
size constraints (e1). Then an optimal design might
be an architecture which achieves maximum
performance at minimal cost and does not violate
the size limitations. If such a solution exists, we
actually only have to solve a single objective
optimization problem (SOP). The optimal solution
for either objective is also the optimum for the
other objective. However, what makes MOPs
difficult is the common situation when the
individual optima corresponding to the distinct
objective functions are sufficiently different. Then,
the objectives are conflicting and cannot be
optimized simultaneously. Instead, a satisfactory
trade-off has to be found. In our example,
performance and cheapness are generally
competing: high-performance architectures
substantially increase cost, while cheap
architectures usually provide low performance.
Depending on the market requirements, an
intermediate solution (medium performance,
medium cost) might be an appropriate trade-off.
This discussion makes clear that a new notion of
optimality is required for MOPs [25].

Figure 2: Illustrative example of Pareto optimality in
objective space (left) and the possible relations of

solutions in objective space (right).

In single-objective optimization, the feasible set is
completely (totally) ordered according to the

objective function f: for two solutions a; b fX

either)()()()(afborfbfaf .The goal is

to find the solution (or solutions) that gives the
maximum value of f. However, when several

objectives are involved, the situation changes: fX

is, in general, not totally ordered, but partially
ordered [26]. This is illustrated in Figure 2 on the
left. The solution represented by point B is better
than the solution represented by point C: it provides
higher performance at lower cost. It would be even
preferable if it would only improve one objective,
as is the case for C and D: despite equal cost, C
achieves better performance than D. In order to
express this situation mathematically, the relations

,, and > are extended to objective vectors by

analogy to the single-objective case.
Def. 3: (Pareto Dominance) For any two decision
vectors a and b,

aba (dominates b))()(bfafiff

weaklyaba (dominates b))()(bfafiff

)(btotindifferenisaba

)()()()(afbfbfafiff

The definitions for a minimization problem

),,(are analogical.
2.3.1. Fonseca and Fleming’s Genetic Algorithm
Fonseca and Fleming proposed a Pareto-based
ranking procedure (here the acronym FFGA is
used) [26], where an individual’s rank equals the
number of solutions encoded in the population by
which its corresponding decision vector is
dominated. The fitness assignment procedure (For

each individual i tp do)(()(imfiF i),

which slightly differs from Goldberg’s suggestion,
consists of three steps:

(Fitness Assignment in FFGA)

Input: tP (population)

)(radiusnicheshare

Output: F (fitness values)

Step 1: for each tPi calculate its rank:

.}|{1)(ijPjjir t

Step 2: Sort population according to the ranking r.

Assign each tPi a raw fitness)(iF by

interpolating from the best (r (i) =1) to the worst
individual))((Nir ; in this work linear ranking

(Baker 1985) is used.
Step 3: Calculate fitness values F (i) by averaging
and sharing the raw fitness values)(iF among

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5

individuals tPi having identical ranks r (i)

(fitness sharing in objective space).

Figure.3: Fonseca and Fleming’s Genetic Algorithm

Note that the symbol |. | used in Step 1 denotes the
number of elements in Z in conjunction with a
(multi) set Z.
In Figure 3, a hypothetical population and the
corresponding ranks of the individuals are shown.
The individuals whose associated solutions are
nondominated regarding m (P) have rank 1 while
the worst individual was assigned rank 10. Based
on the ranks, the mating pool is filled using
stochastic universal sampling (Baker 1987).
The basic concept has been extended meanwhile
by, e.g., adaptive fitness sharing and continuous
introduction of random immigrants [27]-[28],
which is, however, not regarded here.

2.4. Proposed Algorithm
 In classical CPU scheduling algorithms, the only
parameter used for process scheduling is the CPU
burst time. In the proposed method for the process
scheduling the three parameters of CPU burst time,
I/O Service time, And priority of processes are
used. In case only CPU burst time is taken into
account for scheduling the algorithm would not
notice the processes which need I/O and the system
may not have a proper behavior or vice versa.
 Any process which enters the system is surveyed
from several points of view:
 a) CPU burst time: Turnaround defines how long
they need CPU to complete the operation.
Prediction of this time is, however, difficult for the
operating system. In fact the operating system

makes a primary estimation and after running the
process corrects this Estimation (The estimated
value is updated). You may have noticed while
trying to copy a CD the windows operating system
firstly estimates a time value for the copying
process but it does not take that long and this
estimation is always longer than the real time. The
more the copying process continues, the more
accurate the estimation will be.
 This value is in fact the next calculation burst. It is
usually predicted as exponential mean of the
lengths determined in previous bursts. Presuming
that the length of Next Bursts is similar to the
length of previous bursts it can be roughly
calculated from the length of previous bursts. To do
this the following formula is used:

nnn TtT)1(1 (4

nt = the length of nth real calculation burst

nT = The predicted value for the nth calculation

burst.

1nT = The predicted value for the next burst

 = The relative weight of recent and previous date
of prediction.
If 1/2 Recent and previous dates weigh
equally.
If 1 The recent date is not included in the
calculation of the next burst time and only the
previous date is included.

0T value can be defined as a constant or total mean

of the system.
b) I/O service time: Any process might need to
receive new data from the input unit or produce
information results in the output unit while running.
At this time the process no longer needs the CPU
and if this process is the only process of the system
the CPU will be idle. This situation is not
considered appropriate by the system. The policy in
designing the operating systems is to keep the CPU
busy running a process and stop wasting its time.
 It is easier to determine I/O service time than CPU
burst time. Since the I/O unit is slower than the
CPU it will therefore have a longer time. This time
is calculated from the following formula by default:

Nnn TSP
 (5)

nS = the total time of running the process from the

moment of arrival at the system to the moment it
exits the system.
2.4.1. Pareto-optimal front
 In MOO problems there are always several
parameters for decision making and optimization

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6

which sometimes conflict. In the proposed method
for processes scheduling three parameters are used
which sometimes Conflict. These processes are
located in a three dimensional environment and
have special positions according to their values.
Those processes are selected from among processes
which are not dominated by other processes [29]
and these are the acceptable answers. Again, a
process which is called the preferred answer is
selected from among these processes according to
the criteria and it is deleted from the set. Finally the
priority of the process is also included so that the
processes which are not dominated by any process
are selected and placed in Pareto front.
2.4.2. Algorithm
 The fitness processes and determination of Pareto
front have been evaluated so far. The proposed
algorithm will be described as follows.
(ACSFFGA)
1) Label 2: Input: np , pareto =null

2) Output:

),...,,max(21 nini ppppandpp

3) For Each ni pp Calculate

 ijpjjirrank n &1)(:

4) Sort r (i);

5) Select paretopinsertir i &1)(

6) Label1: If CPU =0 then select

)&max(paretoppx ii

7) If CPU =1 then select

)&max(paretoppy ii

8) Run ip ;

9) If ip not completed run then

10) Remove paretopi

11) Update),(yxpi

12) Insert ni pp

13) Else

14) Remove paretopi

15) If Pareto! = null then

16) Next ip

17) go to label1;
18) Else

19) For each 1)(| priorityppp ini

20) Go to label 2
1) In the first step the program input is determined

which is the np of the set of processes.

2) The program output which is the best process. It
is the best process in Pareto front of the operating
system and should control the CPU.
Tip: (Elitism which is put forward in MOO in this
algorithm indicates in each application of the
algorithm the elite process is found and deleted
from the population.)
3) We score each process using FFGA algorithm
(by the use of the dominate concept) and in fact the
rank function determines the best processes which
have the highest priority.
4) After determination of the fitness of each
process, these processes are sorted (in ascending
order).
5) The Pareto set is selected from among the
processes with the lowest amount of rank (i)
function (rank (i) =1).
6) If the CPU is free choose a process which has the
shortest time needed for running.
7) If the CPU is busy running another process,
choose a process which has the shortest time
needed to communicate to the I/O unit so that I/O
finishes its task while this process is running the
CPU unit tasks.
8) In each case run the chosen process.
9) If running the process is not finished
10) Delete the chosen process from the Pareto set
11) Then reset the values for x, y (CPU burst time,
I/O service time). In such cases the CPU burst time
is less than before.
12) add the Deleted process from the Pareto front to

the main set of np so that in the next generation

the algorithm is applied to it again.
13, 14) However, if running the process is
completed then the process is deleted from the
Pareto front.
15, 16 and 17) if the Pareto front still has a process
repeat the algorithm on the next process and go to
step six.
18, 19) If the Pareto front has no process, increase
the priority of all processes so that processes with
lower priority would not face starvation. After a
while when their aging is increased they will have
higher priorities and will be included in the Pareto
front. In fact the waiting time for processes is an
auxiliary lever for selection.
20) Repeat the algorithm.

2.4.3. Specific conditions
 We will face different conditions in the problem
while running this algorithm which should be
predicted in program. These conditions are
described as follows:
2.4.3.1. Processes having requirements with the same

angle coefficient

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7

 When the processes requirements coincide with
the x=y axis, determination of the best process is
very important for controlling system resources.
According to a general rule, a process is appropriate
which has shorter requirements. In classic cases this
requirement is the only CPU burst time, however,
in this algorithm both CPU and I/O unit times are
taken into account.
 A process is selected which is not dominated by
any other process. However, in cases where
processes' requirements have the same angle
coefficient only one process is always selected
since certainly a process is selected which has both
smaller parameters.
2.4.3.2. Processes with the same priority in CPU burst

time
 We face a new state of processes now. This state
happens when ready queuing processes all have the
same requirements to CPU burst time. The General
(Classic) algorithm selects the process which has a
longer waiting time, but the proposed algorithm
first puts all the processes in the Pareto front. Then
it selects a process depending on the situation of the
I/O whether it has a heavy traffic load or not
(through adaptation). If the I/O unit has a heavy
traffic load, a process with a short I/O time is
selected; otherwise, a process with a high I/O unit
demand will be selected.
* In fact the situation of I/O unit as well as the
priority determines the selection method.

2.4.3.3. Processes with the same requirement for the

I/O unit
 This algorithm may apparently act the same as the
classic algorithm here, while in fact it is not so. In
classic algorithms a process with fewer
requirements for CPU is selected in this case
without regarding the correct system computational
volume. If the system has a small computational
load then it can easily perform a process with high
computational volume in a short period of time.
Bear in mind that the CPU performance rate is
several million instructions per second, and its
performance structure is different from that of I/O
unit. When a system is busy with a high
computational load, however, the best choice is to
select a process with a short CPU burst time.
2.4.3.4. Processes with symmetric requirements
 Presume four processes with symmetric
requirements are located at the four corners of a
square. If we want to act according to the classic
pattern, the process at the top right corner is
immediately selected while the process at the top
left corner has the same need to CPU. In the
algorithm with MOO technology both parameters
are taken into account and the processes which are

subordinate to rank (p) =1 is placed in the Pareto
front. The preferable process is selected depending
on the situation of CPU, and I/O unit.
2.4.3.5. Using clustery in determination of Pareto

front
 We sometimes face different behaviors of
processes. One of these behaviors is the appearance
of two different types of behavior; i.e. some
processes have the same CPU burst time, and some
have the same I/O unit service time. Classical
algorithms select a process with the shortest CPU
burst time which will have a very weak
performance here. The proposed algorithm in this
case selects a process considering the two resources
of CPU, and I/O unit, as well as priority. It should
be noted that in such cases all processes are
included in Pareto front, and all processes have the
chance of being selected.
 After selection of the front and determination of
the system conditions a dominant process will be
selected. In the world of genetics, elitism we
always hope that elite people survive during genetic
mutations and don't perish, but in this system
dominant processes leave the system soon. The
system aims at deleting these processes and run
them as soon as possible.

3. DATA

 In this study 50 processes with the characteristics
presented in Table (1) have been used. Each
process has three parameters defined as follows
[30]:

Initial burst time: this is the amount of CPU time
the process will require. In real life this is not really
known, but can be predicted with some degree of
accuracy.

Delay (I/O): the time separating the arrival of
processes. The amount of time after the (n-1)th
process arrives that this process arrives.

Priority: For prioritized algorithms this is the
relative weight of this process. The range is from 0
- 9 where 9 is the lowest priority and 0 is the
highest.

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9

4. EXPERIMENTAL RESULTS

 The proposed method has been tested using the
data from Table (1). Start, finish, wait, response
and turnaround parameters have been reviewed.
The proposed method was compared with 7
classical scheduling algorithms. These algorithms
are as follows:

4.1. First-Come, First-Served (FCFS)

 This algorithm selects the simplest method for
CPU scheduling. A process which enters the queue
earlier will control the CPU earlier. This method is
non-preemptive. This method usually has a long
waiting time on average. Table (2) shows the
results of this algorithm.

 In the FCFS algorithm the waiting time and
response time are the same. As it could be seen in
Table (2), the waiting time is usually long and
fairness is not observed among the processes. For

example, 34P process which only needs the CPU

for 4 seconds that should wait for 142 seconds.

4.2. Priority Weighted (PRI) (Preemptive, Non-
preemptive)

 The priority scheduling algorithm selects its next
job based on the importance of the process. The job
that has the highest priority (0 high: 9 low) is run
first. If preemption is enabled the new jobs with a
higher priority will interrupt the currently executing
job. Without preemption the highest priority job is
chosen after the active process finishes execution.

 The PRI method makes decisions regarding the
priority of the processes. Determination of the
processes priority rests on the operating system.
When a process enters the ready processes queue,
its priority is determined and will not change to the
end. This could be a weak point for this method.

 One of the problems of preemptive CPU
scheduling algorithms is the period of time a
scheduler should switch between the processes.
This causes an overhead to be applied to the CPU
and System performance is decreased. After
reviewing the results of Tables (3) and (4) it could
clearly be seen that in PRI (non-preemptive)
method the average waiting time and the average
Turnaround time are less than those of PRI
(preemptive) method. The non-preemption of the

CPU has also some advantages including the ability
to reduce the response time for the processes which
can be viewed in the results of tables (3) and (4).
The PRI method can generally be a fair and good
method.

4.3. Round Robin (RR) (Prioritized, Equal time)

 The Round Robin scheduling algorithm allocates a
time slice to each running process. This is called
the quantum and it represents the number of CPU
cycles a process gets before the scheduler searches
for a new job to run. Jobs receive their quantum of
CPU time in FCFS order. With priority scheduling
enabled the quantum is multiplied by the magnitude
of a processes priority. Thus more important jobs
get more CPU time.

 The RR method has some advantages including
the average short response time of the processes
since this method switches between the processes
using the time slices. But the RR method applies an
extra overhead to the CPU due to these multiple
switches and causes an increase in the average
Turnaround time. Whit attention to table(5) and
table(6), the performance of RR algorithm with
identical time slices is better than the RR method
with Prioritized.

4.4. Shortest Job First (SJF) (Preemptive, Non-
preemptive)

 The SJF algorithm chooses the shortest job.
Without preemption jobs run to completion before a
new job is selected. If preemption is enabled then
the instant a job arrives that is shorter than the one
being run the CPU switches to the new shorter job.
The processing can be interrupted to run newly
arrived shorter jobs.

 This method only pay attention to the CPU burst
time and this filed is checked. This algorithm is
presented in two states of non-preemptive and
preemptive. Regarding the Tables (7) and (8) the
performance of preemptive method is preferable.
The SJF method has shown a better performance
compared to previous methods, and it could be
concluded that the processes which have a shorter
CPU burst time would run earlier.

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

10

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

11

This method only pay attention to the CPU burst
time and this filed is checked. This algorithm is
presented in two states of non-preemptive and
preemptive. Regarding the Tables (7) and (8) the
performance of preemptive method is preferable.
The SJF method has shown a better performance
compared to previous methods, and it could be
concluded that the processes which have a shorter
CPU burst time would run earlier.

4.5. Proposed algorithm

In the proposed method the three parallel
parameters of (CPU, and I/O service time, and
priority) are taken into account. And using the
FFGA multiobjective optimization method the
processes are selected after determination of fitness.

While running the proposed algorithm we
encounter certain conditions which show its
performance well. Some of these conditions are
described as follows:

a: P3 process arrives at the system at the moment
235, and since there is no process it begins to run.
After 25 seconds the process P4 arrives at the
system and there is a competition between the two
processes. The proposed algorithm reviews the two
processes. Since P4 has the (burst=13) and the
priority of 3, and P3 has (burst=12 (remaining) and
priority of 8) the proposed algorithm selects the P4

as the winner and retrieves the CPU from P3 and
passes it to P4 to get control of the CPU. P4 will
have the waiting and response time of zero. After
running of P4 is completed, the CPU is passed to P3

again so that its execution is completed.

b: 7P arrives at the system at the moment 453 and

controls CPU, but at the moment 465 P8 process
arrives at the system. Both processes have the same

priority. The remaining execution of 7P is only 15

seconds, while for 8P burst=20, therefore, the

algorithm continues to run P7.

c: 10P process arrives at the system at the moment

510 and starts running, but at the moment 585 the

11P process arrives at the system. This process has

the priority of 7 and burst=21 while 10P process

has the priority of 5 and burst=2(remaining). The

algorithm keeps the 11P in waiting state so that

running of 10P completes.

d: 14P process starts running at the moment 715 to

740 when 15P process arrives at the system. P15 has

the priority of 9 and burst=48 while 14P has the

priority of zero and burst=1. The scheduling

algorithm continues running 14P process until it

completes.

e: 15P process starts running at the moment 741,

but at the moment 756 the 16P process arrives at

the system. This process has the priority of 2 and

burst=2, while 15P has the priority of 9 and

burst=33(remaining). The proposed algorithm stops

running 15P and passes the CPU to 16P . Running of

16P completes at the moment 762. The system

resumes running 15P , but at the moment 775 P17

process arrives at the system. This process has the

priority of 2 and burst=28, while 15P has the

priority of 9 and burst=20 (remaining). The

proposed algorithm stops running 15P and passes

the CPU to 17P . At the moment 790 the 18P process

arrives at the system. Now the algorithm can select

three processes 17P , 18P and 15P where regarding

the parameters of the processes the 17P process

continues running to be completed. Running of 17P

completes at the moment 802. Now there are two

processes of 15P , and 18P available in the system.

Regarding the passage of time, the proposed

algorithm increases the priority of the 15P process

and 15P starts running until the moment 822.

f: 20P process arrives at the system at the moment

925 and starts running, but at the moment 1000 the

21P process arrives at the system. The 21P process

has the priority of zero and its burst=28, and the

20P process has the priority of zero and its

burst=21. The proposed algorithm continues

running 20P .

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

12

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

13

G: The 22P process arrives at the system at the

moment 1050 and immediately the 23P process

also arrives. The 22P process has the priority of 4

and its burst=65, and the 23P process has the

priority of 2 and its burst=37. The proposed

algorithm runs the 23P process, but at the moment

1055 the 24P process also arrives at the system.

Regarding the characteristics of the 24P process,

the proposed algorithm continues running 23P and

completes it. Now, it runs the 24P process from

among the two remaining processes (22P , 22P).

 According to the Table 9, the proposed algorithm
has the best results. The average waiting time for
50 processes is 9.28, the average response time is
7.62, and the average Turnaround time is 39.76.
From the 7 scheduling algorithms, the best method
is SJF (preemptive) method. The average waiting
time for 50 processes is 18.24, the average response
time is 13.68, and the average Turnaround time is
48.86. The SJF and Priority (non-preemptive)
methods come in second and third, respectively.

5. CONCLUSION

 One of the main parts of any operating system is
the scheduler. The schedulers try to improve the

performance of the system by allocation of the
resources to processes. Many CPU scheduling
algorithms have been presented having advantages
and disadvantages each. In this paper a new CPU
scheduling algorithm is presented. This algorithm
schedules the running of processes according to the
three parameters of CPU burst time, I/O service
time, and priority of processes). To this end, the
FFGA multiobjective optimization algorithm is
used. The proposed algorithm selects and runs the
desired processes through adaptation. In this
algorithm, the priority of processes increases with
time, and no process encounters starvation. A
comparison of the proposed algorithm with the 7
other methods showed that the average waiting time
and average response time are decreased. The
average turnaround time is also improved. One of
the most important positive points of this method is
that there is fairness among processes. Using other
methods of artificial intelligence such as Fuzzy
Logic, Neural Network, and Swarm Intelligence
will be covered by the authors in the future. We
hope to improve the performance of the operating
systems and use the maximum potential of
processors by using more advanced scheduling
algorithms.

REFRENCES:

[1] Silberschatz ,Galvin and Gagne, Operating
systems concepts, 8th edition, Wiley, 2009.

[2] Lingyun Yang, Jennifer M. Schopf and Ian
Foster, “Conservative Scheduling: Using

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

14

predictive variance to improve scheduling
decisions in Dynamic Environments”, Super
Computing 2003, November 15-21, Phoenix,
AZ, USA.

[3] Weiming Tong, Jing Zhao, “Quantum Varying
Deficit Round Robin Scheduling over Priority
Queues”, international Conference on
Computational Intelligence and Security. pp
252- 256, China, 2007.

[4] Abbas Noon1, Ali Kalakech2, Seifedine
Kadry1, “A New Round Robin Based
Scheduling Algorithm for Operating Systems:
Dynamic Quantum Using the Mean Average”,
IJCSI International Journal of Computer Science
Issues, Vol. 8, Issue 3, No. 1, May 2011.

[5] SAROJ HIRANWAL and K. C. ROY,
“ADAPTIVE ROUND ROBIN SCHEDULING
USING SHORTEST BURST APPROACH
BASED ON SMART TIME SLICE”,
International Journal of Computer Science and
Communication Vol. 2, No. 2, July-December
2011, pp. 319-323.

[6] Ajit Singh, Priyanka Goyal, Sahil Batra,” An
Optimized Round Robin Scheduling Algorithm
for CPU Scheduling”, (IJCSE) International
Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2383-2385.

[7] Shatha J. Kadhim1 and Kasim M. Al-Aubidy,”
Design and Evaluation of a Fuzzy-Based CPU
Scheduling Algorithm”, BAIP 2010, CCIS 70,
pp. 45 – 52, © Springer-Verlag Berlin
Heidelberg 2010.

[8] Ozelkan, E.C., Duckestine, L.,” Optimal Fuzzy
Counterparts of Scheduling Rules”, .European
Journal of operational Research (113), 593–609
(1999).

[9] McCahon, C.S., Lee, E.S, “Job Sequencing with
Fuzzy Processing Times”, Computers &
Mathematics with Applications (19), 31–41
(1990).

[10] Hapke, M., Slowinski, R., “Fuzzy Priority
Heuristics for Project Scheduling”, Fuzzy Sets
and Systems (83), 291–299 (1996).

[11] A., Bashir, M.N. Doja and R., Biswas,
“Conceptual Improvement of Priority Based
CPU Scheduling Algorithm Using Fuzzy
Logic,” International Journal of Fuzzy Systems
and Rough Systems (IJFSRS) (Vol. 1, No. 1, Ja-
nu.-June 2008)

[12]George Kousiouris Tommaso Cucinotta,
Theodora Varvarigou,” The effects of
scheduling workload type and consolidation
scenarios on virtual machine performance and
their prediction through optimized artificial
neural networks ”, Journal of Systems and

Software,Volume 84, Issue 8, August 2011,
Pages 1270-1291.

[13] Carole Fayad and Sanja Petrovic,” A Genetic
Algorithm for the Real-World Fuzzy Job Shop
Scheduling ”, Innovations in Applied Artificial
Intelligence , Springer, Pages: 524–533, 2005.

[14] Sanja Petrovic and Carole Fayad, “A Genetic
Algorithm for Job Shop scheduling with Load
Balancing “,AI 2005, Lecture Notes in Artificial
Intelligence, 3809, Springer, 2005, pp. 339-348.

[15] Qun Niu, Bin Jiao, Xingsheng Gu,m ,”
Particle swarm optimization combined with
genetic operators for job shop scheduling
problem with fuzzy processing time”, Applied
Mathematics and Computation ,Volume 205,
Issue 1, 1 November 2008, Pages 148-158.

[16] Surekha P, Dr.S.Sumathi, “PSO and ACO
based approach for solving combinatorial Fuzzy
Job Shop Scheduling Problem”, Int. J. Comp.
Tech. Appl., Vol 2 (1), 112-120.

[17] 1E.O. Oyetunji and 2A. E. Oluleye,
“Performance Assessment of Some CPU
Scheduling Algorithms”, Research Journal of
Information Technology 1(1): 22-26, 2009.

[18] Daniel Chillet, Antoine Eiche, Sébastien
Pillement, Olivier Sentieys,” Real-time
scheduling on heterogeneous system-on-chip
architectures using an optimised artificial neural
network”, Journal of Systems Architecture,
Volume 57, Issue 4, April 2011, Pages 340-353.

[19] Coello, C. “A comprehensive survey of
evolutionary-based multiobjective optimization
techniques”. Knowledge and Information
Systems 1 (3), 269–308, 1999.

[20] Shih-Chiang Tsao, Ying-Dar Lin , “Pre-order
Deficit Round Robin : a new scheduling
algorithm for packet-switched networks” ,
Computer Networks, Volume 35, Issues 2-3,
February 2001, Pages 287-305.

[21] Alam, B.; Doja, M.N.; Biswas, R.; “Finding
Time Quantum of Round Robin CPU
Scheduling Algorithm Using Fuzzy Logic”,
International Conference on Computer and
Electrical Engineering (ICCEE), Phuket , 795 –
798 , 2008 .

[22] Debashree Nayak, R Mohanty and H.S.Behera.
Article: A New Proposed Dynamic Quantum
with Re-Adjusted Round Robin Scheduling
Algorithm and Its Performance Analysis.
International Journal of Computer Applications
5(5):10–15, August 2010. Published By
Foundation of Computer Science.

[23] Tech. Univ. of Denmark, Lygnby, Denmark ,
“A Novel Round-Robin Based Multicast
Scheduling Algorithm for 100 Gigabit Ethernet

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

Switches ” , INFOCOM IEEE Conference on
Computer Communications Workshops , 2010 ,
San Diego, CA,2010.

[24] Jason D. Lohn, William F. Kraus, Gary L.
Haith,” Comparing a Co evolutionary Genetic
Algorithm for Multiobjective Optimization”,
proceeding of the IEEE Congress on
Evolutionary Computation, may 2002, pp.1157-
1162.

[25] Eckart Zitzler,” Evolutionary Algorithms for
Multiobjective Optimization: Methods and
Applications”, Swiss Federal Institute of
Technology Zurich for the degree of Doctor of
Technical Sciences, Diss. ETH No. 13398, 1999.

[26] Fonseca, C. M. and P. J. Fleming. “Genetic
algorithms for multiobjective optimization:
Formulation, discussion and generalization”. In
S. Forrest (Ed.), Proceedings of the Fifth
International Conference on Genetic Algorithms,
San Mateo, California, pp. 416–423. Morgan
Kaufmann, 1993.

[27] Fonseca, C. M. and P. J. Fleming.”
Multiobjective genetic algorithms made easy:
Selection, sharing and mating restrictions”. In
First International Conference on Genetic
Algorithms in Engineering Systems: Innovations
and Applications (GALESIA 95), London, UK,
pp. 45–52. The Institution of Electrical
Engineers, 1995.

[28] Fonseca, C. M. and P. J. Fleming.
Multiobjective optimization and multiple
constraints handling with evolutionary
algorithms—part i: A unified formulation. IEEE
Transactions on Systems, Man, and Cybernetics
28(1), 26–37, 1998.

[29] N.srinivas, Kalyanmoy Deb, “Multiobjective
Optimization using nondominated sorting in
genetic algorithms” .journal of evolutionary
computation, vol .2, no.3, pages 221-248.

[30] Jim weller ,CPU Scheduler
Application , http://jimweller.com/jim-weller/
jim/ java _proc _sched/#discussion ,2000

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

AUTHOR PROFILES:

Mehdi Neshat was born in
1980.He received the B.Sc.
degree in computer
engineering from Azad
University, Maybod, Iran, in
2006, the M.Sc. degree in
Artificial Intelligence from the
University of mashhad, in

2008 and is a member of the IEEE and the IEEE
Computer Society He is with Islamic Azad University,
Shirvan Branch, Faculty of Engineering, and computer
Engineering Dept., Shirvan /Iran since 2007. His
research interests are fuzzy logic, fuzzy systems, and
fuzzy neural networks, particle swarm optimization,
genetic algorithms, ant colony optimization, and other
evolutionary computation techniques. He has
publications and submissions in international
conferences like applied soft computing, Applied
Mathematical Modeling, Expert Systems with
Applications, Fuzzy Sets & Systems, Computers in
Industry Information Sciences, Mathematical &
Computer Modeling.

Dr.Mehdi sargolzae was born
in 1978.He received the B.Sc.
degree in computer engineering
from Ferdowsi University,
mashhad, Iran, in 2005, the
M.Sc. degree in computer
engineering from the Amirkabir
University of Tehran, in 2007
and Dr student in computer

engineering from the Amsterdam University.

Adel Nadjaran Toosi is a PhD
candidate in the Department of
Computer Science and
Software Engineering of the
University of Melbourne,
Australia. He’s a member of
Cloud Computing and
Distributed Systems

(CLOUDS) Laboratory and my supervisor is Dr.
Rajkumar Buyya. He used to be lecturer in Azad
University of Mashhad. He received his B.S. degree in
2003 and M.S. degree in 2006 both in the department
of Computer Software Engineering, Ferdowsi
University of Mashhad, Iran. His research interests
include Distributed Systems and Networking, Cloud
Computing, Cloud Federation, Virtualization, Soft
Computing and Fuzzy Systems. Currently I am
involved in Inter-Cloud project which is a framework
for federated Cloud Computing.

Ali Adeli was born in 1984.He received the B.Sc.
degree in computer engineering from Islamic azad
university of Shirvan ,in 2010 ,the M.Sc. degree in
software engineering from the shiraz University of
shiraz, in 2012.

