
Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

125

 FFQI-FAST FORMULATION QUERY INTERFACE FOR
DATABASES

1R.SHOBANA, 2D.VENKATESAN

1Dept of Computer Science and Engineering, SASTRA University
2Asst. Prof., Department of Computer Science and Engineering, Sastra University

E-mail: 1shob29@gmail.com , 2 venkatgowri@cse.sastra.edu

ABSTRACT

We present a new query formulation interface called FFQI (Fast Formulation Query Interface) which is
based on a semantic graph model. The query formulator allows the users with limited IT skills to query and
explore the data source easily and efficiently. Here the user inputs are formulated based on the graph search
algorithm by using the probabilistic popularity measure. The query ambiguity has been resolved through
the ranking technique. We formulated the SELECT-PROJECT-JOIN queries using the aggregate functions.
In additional to that we also implemented a formulation technique for image databases. Thus this interface
allows user to interact with relational graph-type databases in an effective and easier way.

Keywords: Query Formulation, Semantic Graph, Relational Database, Select-Project-Join (SPJ) queries

1. INTRODUCTION

Many organizations rely on heterogeneous and
distributed information systems for managing
immense quantities of data. Because of the vital
structural complexity of the associated databases the
query formulation within such systems has been too
hard. The major challenge is to make a proposal so
that the end users can effortlessly search and
consume structured data which receives in recent
times a great consideration from web 2.0 and the
data web communities. Rapid intensification of
structured data on web created a high demand in
order to make this content more reusable and
consumable. Companies therefore race on gathering
structured content and making it public and also they
persuade people to reuse and profit from that
content. Numerous database applications require
users to formulate specific queries instead of
invoking precompiled and stored queries. Thus it’s
vital to develop an intelligent query interface which
let users to query and explore the data source easily.
And the Query formulation should be fast and
should not require programming skills.

Formulating complex queries is the toughest job. In
our application a general graph search approach has
been developed to formulate SPJ queries from
incomplete user input. Through aggregate functions

our query formulator formulates SPJ queries. In this
approach, a semantic graph is used to model the
objects in the database and user-defined
relationships have been semi-automatically
generated from a database schema. A given input
may possibly have multiple path sets, hence the
system ranks the candidates based on amount of
information present in the nodes and links of the
paths.

This paper is organized as follows: Next Section
reviews the related work, Section 3 describes about
the semantic data model, Section 4 describes about
graph searching technique, Section 5 describes about
Query Generating for Conditions, Section 6
describes about Query Generation for Join
Operations, Section 6 describes about Query
Generation for Image Database and Section 7
describes about Experimental Result and Section 8
concludes the paper with future work.

2. RELATED WORK

Universal relation model[1,2] and Steiner tree
approach[3] are the various techniques for
formulating simple SELECT-PROJECT-JOIN(SPJ)
queries. The exclusive hypothesis of relationships in
order to mitigate users from the load of specifying

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

126

joins which is given by the universal relation
model[1,2].However illogical user-defined concepts
were not allowed by this model, which limits its
applicability. The conversion of cyclic schemas into
a tree schema by its maximal object theory may
limit the queries that can be formulated. Through
Steiner tree problem the query completion has been
formalized by Wald and Sorenson [3], and a search
algorithm for partial 2-tree graphs has been
provided. A deterministic directed cost for the edges
was used by them, which provides the cardinality of
relationships to measure the complexity of queries.

Path expression completion in object-oriented
queries with a partial order relationship between
different paths has been used for ranking. Three
high-level interfaces to database systems are
discussed in [4].In [5] the use of disambiguating
queries is developed. Through dialogue tree
dialogue is carried out with the user to determine
what additional attributes the user is interested in.

In [6] [7], Query-By-Form which is a simple
querying method is provided. A form is needed to be
developed for each query, and a query-change
implies changing that whole form. In [8], Query-By-
Example which is a known approach in databases
where users formulate queries through filling tables
is given. In [9] the query formulation for relational
database using high level concepts is given. In [10]
the basic concepts for designing database are given.

3. SEMANTIC GRAPH MODEL

The semantic graph model for relational databases
contains nodes to represent relations and links to
represent the joins between them. The semantic
constructs represented by them are;

Extra underneath features for user query interfaces
and query formulation mechanisms are provided by
our semantic model .In general a semantic graph can
be defined as a weighted undirected graph
G=(V,E),where V corresponds to a relation and E
corresponds to a join between that relations .

 3.1 Popularity Measure of Nodes and Links:

For a given user input multiple queries may be
formed, in the query formulation. The popularity of
nodes and links is used for selecting and ranking
query candidates. The popularity measure for an
element ‘k’ (a node or link) in a semantic graph
measures the popularity content of ‘k’;

Pop (k) =P (k);

where P (k) is the probability of using ‘k’ in queries
The definition is consistent with that used in
popularity theory which represents the frequency of
usage of a node or link. The measure gives the
popularity content of a node (or) link. A larger value
of Pop (k) means a larger P (k) thus it will more
likely appear in queries.

In computing the popularity of a sub graph for
simplicity, we assume that all the nodes and links
are independent. For a sub graph with a set of
elements (nodes and links) A= ({ai | i =1...n}), the
independence assumption implies that the popularity
measure is additive, that is

Pop (K) = P ({ki|i-1….n}) = i) (1)

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

127

3.2 Popularity Measure Update:

The popularity measure for nodes and links can be
computed from their relative frequency. Let ci be the
number of times that ki is used in queries and c be
the total number for all the elements used in a set of
queries then,

 Pop (ki) =

The popularity measure of element ki can be updated
by the definition

3.3 Initial Popularity Measure Assignment:

If a large collection of queries are available at the
beginning, initial counting can be performed. But if
the query set is not available or is too small to be
statistically significant, we can assign an equal
initial popularity measure to all the nodes and assign
popularity measures to links based on the link types
and their specificity

4 QUERY FORMULATION AS A GRAPH

SEARCH PROBLEM

For query formulation, an incomplete query topic T0,
a characteristic C and a constraint set X can be
processed from the given user input. The links
specified by the user input, the nodes involved in the
links and the nodes in C and X can be included in
T0.

We need to choose additional links and relevant
nodes from the semantic graph to extend T0 to form
a connected sub graph for the query topic. Now
these links and nodes can be called as query
completion candidate for T0.

4.1 Property of a query completion candidate

Given a semantic graph G=(V,E),to formulate a
query from an input query topic T0=(V0,E0),where
V0⊆V and E0⊆E, is to find a query finishing point
candidate TF=(VF,EF) for ‘T0’ such that the query

topic T=T0UTC=(V0UVF,E0UEF) is a connected
sub graph of G, where VF⊆V,EF⊆E,VF∩V0=Ø,
and EF∩E0=Ø.

That is VF is a set of nodes and EF is a set of links
needed to complete a connected sub graph to
formulate a query. There can be exist more than one
query completion candidate for the same input, if the

semantic graph is cyclic. We use the following
popularity information principle for ranking the
candidates.

4.2 Maximum Popularity (MP) Principle:

The query completion candidate TF (the missing
links and nodes) for an incomplete input topicT0
contains the maximum popular information;
i.e.maxPop (TF).Based on equation 1, Pop (TF) can
be computed from the information of the nodes and
links as follows.

Pop (TF) = ∑∑

∈∈

+
EFev

ePopvPop)()(
VF

Thus this MP principle provides us the measure for
ranking the query completion candidates. The larger
the Pop (TF), user’s query intention are more likely
to be met by the completion candidate. Links and
nodes of most popular information have a higher
probability of being used in queries, thus are more
likely to be in the intended query. The probability
value used in the ranking is an approximation, since
the assumption can be done independently.
Therefore, a set of completion candidates could be
found out, from which the users are allowed to select
one.

Based on the MP principle, the completed graph’s
end point must be from the user input. Thus our MP
principle is consistent with the formulation of the
query completion. And according to this query
completion a graph search problem is NP-complete.

A query auto completion algorithm (QAC) gets user
input x, which denotes the sequence of characters
typed by the user in the search engine’s search box.
Typically a prefix of a complete query q that the
user intends to enter will be the user input. If the
completion c equals the query q that the user was
about to enter, then we can say that as a hit. It is
relatively easy to estimate hit rates when inspecting
search logs, so that here in this paper we will mainly
focus on hits as the main measure of success for
QAC algorithms. A QAC algorithm may be
flourishing even it returns a completion that is
different from the query that user was about to type
but that describes the same information need.

4.3 The framework of QAC algorithm:

A query database is built in an offline phase. A large
collection of queries with high quality and which
represent the intents of the search engine's users will

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

128

be there in the database. This database could be built
from their query logs by extracting the most
frequently searched queries. For example, Michael
Jackson is a proper completion of the input bar. This
advanced QAC algorithm also support non-proper
completions, like mid-string completions (e.g., jack-
>michael jackson) and spell corrections (e.g.,
michel->michael jackson).

UserInput(x)
db = ddatabase.SelectedItem.Value
tb = dtables.SelectedItem.Value
For i = 0 To dfields.Items.Count - 1
 q=dfields.Items (i).Value
 If q (i). Contains(x) Then
 Item (i) = q (i)
End loop
Big=Popularity (Item (i))
For i= 0 To dfields.Items.Count - 1
If Popularity (Item (i)) <Popularity (Item (i+1))
Then
Big=Popularity (Item (i+1))
a =Big
s= "select” &” " & a & “from” & tb
return(s)

5 GENERATING QUERY FOR CONDITIONS

This FFQI can do additional task like applying
conditions between table in a faster way.There is no
need of any manual operation except the selection of
tables and the operation to be done between
them.The algorithm for this operation is given
below.

Select_Condition()
{
 column1 = ddfirstcol_SelectedItem_Value
 column2 = ddsecondcol_SelectedItem_Value
 condition = ddcondition_SelectedItem_Value
 condition1=ddcondition1_SelectedItem_Value
 operation = ddoperation_SelectedItem_Value
If (con = "EQUAL") Then

 condition = "="

ElseIf (con = "NOT EQUAL") Then
 condition = "!="

ElseIf (con = "LESS THAN") Then
 condition = "<"

 ElseIf (con = "GREATER THAN") Then
 condition = ">"
End If
If Popularity (Item (i)) <Popularity (Item (i+1))
Then

Big=Popularity (Item (i+1))
a =Big
For i = 0 To column1_Items_Count - 1
 If (i = column1_Items_Count - 1) Then
 a = a + column1_Items_Value(i)
 Else
 a = a + column1_Items_Value(i) + ","
 End If
End Loop
squery = "select " + a + " from " + table + " where
" + column1 + " " + condition + " '" +first_Text +
"' " + operation + " " + column2 + condition1 + " '"
+ second_Text + "' "

return(squery)
}

6 QUERY GENERATION FOR JOIN

OPERATIONS

In a similar way to the condition operation this join
can be performed in an easy and a faster way. The
algorithm for this operation is given below.

Join ()
{

 column1 = ddfirstcol_SelectedItem_Value
 column2 = ddsecondcol_SelectedItem_Value
 operation =Joinoperation_SelectedItem_Value
 For i = 0 To ItemsList1_Count - 1
 If (i = ItemsList1_Count -1) Then
 a = a + ItemsList1_Value(i)
 Else
 a = a + ItemsList1_Value(i) + ","
 End If
 End Loop
If Popularity (Item (i)) <Popularity (Item (i+1))
Then
Big=Popularity (Item (i+1))
a =Big
For j = 0 To ItemsList2_Count - 1
 If (j = ItemsList2_Count - 1) Then
 b = b + ItemsList2_Value(j)
 Else
 b = b + ItemsList2_Value(j) + ","

 End If
 End Loop

sqlQry = "Select " + table + "." + a + "," + table1
+ "." + b + " from " + table + " " +
DropDownList1_SelectedItem_Value + " " + table1
+ " on " + table + "." + column + "=" + table + "."
+ column1
return(sqlQry)

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

129

}

7. GENERATING QUERY FOR IMAGE

DATABASE

In an additional way we also generated query for
image database. And the major fact here is it can be
done in a faster way with just few selection
operations. The algorithm for this operation is given
below.

Query_Image ()
{
 Im1=Get_Input_Image ()
Upload_Image (Im1)
If Popularity (Item (i)) <Popularity (Item (i+1))
Then
Big=Popularity (Item (i+1))
a =Big

 img=SqlCommand("SELECTimagename,ImageID
from [a] where ImageName='" +TextValue1 + "'")
 dt=datatable
 daimages_Fill(dt);
 Images_DataSource = dt;
 Images_DataBind();
 img_Attributes_Add("bordercolor", "black");
Return(img)}

8 EXPERIMENTAL RESULT

A database interface system using the above query
formulation techniques has been implemented. This
tool can easily contain operations like, Query
generation for join operations, Query generation for
conditions, Query Auto Completion and Query
Generation for image database. This tool needs
offline datasets which can be automatically loaded
in the designed tool. Any number of databases could
be accessed by our interface. For image database the
images can be chosen by the user which can be
automatically uploaded in the database of that
offline schema.

Figure1 Generating query for conditional

operations

Figure 2 Query Generation for Join Operations

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

130

Figure 3 Query Auto Completion

Figure 4 Generating Query for Image Database

Thus finally a graph which provides the overall time
complexity for each operation in our query tool has
been designed. Thus it provides an overall
performance analysis of our query interface tool.
This graph provides the comparison between manual
and our interface for doing these operations.

Figure 5 Manual vs Query Interface

9 CONCLUSION

Thus a new query formulation device which is based
on a semantic graph model is presented. Here query
formulation as a graph search which uses
probabilistic popularity measure for searching and
ranking query candidates. From a given user input
multiple queries are formulated then that query
ambiguity can be resolved through ranking. Our
query formulator algorithm can formulate the
SELECT-PROJECT-JOIN queries with aggregate
functions. Additionally we also formulated queries
for image database, which could manage the image
database by adding and retrieving images in an easy
and effective way. Thus we have constructed an
effective prototype system using the above
technique with simple point-and-click interface. As
a future enhancement we have planned to extend our
idea in distributed databases. By applying
formulation for databases on different system in
different environment for example intranet or
internet application.

REFERENCE

[1] Jeffrey D.Ullman: Principles of database and

knowledge-base systems, Vol.II. Computer
Science Press, 1988

[2] Mosche Y.Vardi: The universal-relation data
model for logical independence. IEEE software,
pages 80-85, March 1988.

Journal of Theoretical and Applied Information Technology
15th March 2012. Vol. 37 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

131

[3] Joseph A. Wald and Paul G. Sorenson:
Resolving the query interface problem using
Steiner trees.ACM Transactions on Database
Systems, 9(3):348-368, September 1984.

[4] Amihai Motro. A tri database user interfaces for
handling vague retrieval requests. IEEE Data
Engineering Bulletin, 12(2), 1989.

[5] A.D’Atri, P.Di Felice, and M.Moscarini.
Dynamic query interpretation in relational
databases. Information Systems, 14(3):195-204,
1989.

[6] Jayapandian M, Jagadish H: Automated Creation
of a Form-Based Database Query Interface,
VLDB 2008.

[7] Jayapandian M.Jagadish H: Expressive Query
Specification through Form Customization,
EDBT 2008.

[8] Zloof. M: Query-by-Example: Data Base
Language, IBM Systems 16(4).

[9] Guogen Zhang: Query Formulation from High-
Level Concepts for Relational Databases, IBM
Santa Teresa Lab, San Jose, CA 95141,USA.

[10] Michael V. Mannino: Database Design,
Application Development and Administration,
fifth edition, University of Colorado, Deniver.

AUTHOR PROFILES

.
R.Shobana received the
Bachelor of Engineering in
Computer Science and
Engineering from PREC,
Anna University, in 2010.
Currently she is doing her
Master’s Degree in Computer
Science and Engineering in
Sastra University. Her interests

are in Data Mining, Formulating Queries and
Information Retrieval

D.Venkatesan received the
M.Sc. degree in Applicable
Mathematics and Computer
Science from the Bharathidasan
University, in 1988.He
received the M.Phil.degree in
Computer Science from
the Alagappa
University in 2004. Currently, he
is a Assistant Professor in

SOC, SASTRA University, Hisr research
interests are in soft computing, databases
and data mining.

