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ABSTRACT 
 

A major problem of most speaker identification systems is their unsatisfactory robustness in noisy 
environments. The performance of automatic speaker identification systems degrade drastically in the 
presence of noise and other distortions, especially when there is a noise level mismatch between the 
training and testing environments. In this experimental research we have studied a recently robust front-end 
algorithm based on Gammatone Frequency Cepstral Coefficients GFCC associated to Voice Activity 
DetectorVAD and Cepstral Mean Normalization CMN techniques. Our system using a Gaussian Mixture 
Models GMM classifier are implemented under MATLAB®7 programming environment. An Expectation 
Maximization EM algorithm was used to maximize the sum of Gaussian densitiesuntil convergence was 
reached.Evaluation is carried out on our owndatabase containing 51 mixed Arabic speakers. All test 
utterances are corrupted by a multilevel White Gaussian Noise WGN.Our aim  is to  study  the 
performances  of  the suggested architecture and  make  a  comparison  with  the conventional Mel 
Frequency Cepstral Coefficients MFCC method which we have successfully implemented and tested in the 
previous work. The obtained experimental results confirm the superior performance of the proposed 
method over MFCC and outperform it in different noisy environments. Theevaluationresultsbased on the 
recognition rate accuracy show that both MFCC and the proposed features extractor have perfects 
performances in low-noise environments when Signal per Noise Ratio SNR is greater than 35 dB 
(practically 100% in all cases). But when the SNR of test signal changed from 0 to 40 dB, the average 
accuracy of the MFCCs methods is only 52.14%, while the proposed GFCCsfeatures extractors associated 
to VAD and CMN techniques still achieves an average accuracy of 57.22%. 
 
Keywords:Cepstral Mean Normalisation(CMN); Gammatone Frequency Cepstral Coefficients (GFCC); 

Gaussian Mixture Models (GMMs); Mel Frequency Cepstral Coefficients (MFCC); Robust 
speaker identification;Voice Activity Detector (VAD); White Gaussian Noise (WGN). 

 
1. INTRODUCTION 
 
Speaker identification assigns an identity to a 
test utterance from a set of known speakers. 
Normally the utterance is assumed to be from a 
known set of speakers [1,2] and is therefore 
called closed-set speaker identification but open-
set speaker identification can also reject a 
speaker if the best speaker score does not exceed 
a certain threshold. Speaker identification is 
normally carried out by training a speaker model 
for every speaker in the set and the test is 
implemented by pattern matching, as shown in 
figure 1. The preprocessing and feature 

extraction process treats the speech signal 
waveform  
and represents it as feature vectors. These feature 
vectors are modeled in the training part of the 
system by using Gaussian mixturemodels 
GMMs. 
 
 
The identification process performs pattern 
matching of the derived feature vectors with each 
speaker model to give Maximum Log Likelihood 
MLL and the decision module selects the most 
likely speaker. In general, a typical speaker 
identification systemcan be divided into two 
major parts:front-end and back-end.The front-
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end of the system is principally a features 
extractor device, while the back-end consists of a 
template or statistical classifier and a 
referencedatabase. The following figure 

1 illustrates the architecture of ourrobust speaker 
identification system. 
 

 

Figure 1:  Architecture of the suggestedrobust speaker identification system 
 
The main task of the front-end is to extract 
features from a speech signal. The aim is to 
sufficiently   represent  the  Characteristics of  
the  speech  signal  with  reduced 
redundancy[1,2]. Features are extracted based 
on frames (windows). In other words, a short 
speech segment, typically 32ms, is first 
obtained from the entire speech signal. Then 
speech extraction algorithm is applied to the 
segment.  As a result, a few numbers of 
coefficients are calculated. These coefficients 
are grouped together to form a feature vector, 
which represents some useful characteristics of 
that particular frame. After that, the above 
procedure repeats with subsequent utterance 
frames. Each new frame is some time posterior 
to its previous frame, typically 16ms. One 
feature vector is calculated for every subsequent 
frame. Hence, a sequence of feature vectors is 
generated as a result. After feature extraction, 
the sequence of feature vectors is passed to the 
back-end of the speaker identification system, 
which is primarily a classifier. Based on the 
feature vectors, the back-end of the system 
selects the most likely utterance out of all the 
possibilities from the reference database. In this 
work we have used a GMM statistical classifier 
which we have described in the previous study 
[3]. After training, the statistical models are 
stored in the database. When an unknown 
utterance is presented, feature vectors are 
obtained. The classifier calculates the maximum 
log likelihood based on the models and decides 
the most likely utterance. In order to have a 

good identification performance, the front-end 
of the system should provide feature vectors 
that can capture the important characteristics of 
an utterance. Besides, the front-end should also 
demonstrate reasonable performance in adverse 
environment.   
In this research we have studied a recently 
robust front-end algorithm Gammatone 
FrequencyCepstral Coefficients (GFCC) [4,5]. 
Our goal  is to  study  the performances  of  this  
front-end  and  make  a  comparison  with  the  
MFCC baseline  method previously studied in 
[3,6]. The first part of the paper, in section 2, 
describes the used VDA, GTCC and CMN 
techniques in detail. It will explain how feature 
vectors are extracted. Then the second part of 
the paper, in section 3, will explain and depict 
the experimental conditions and identification 
results. The last part, in section 4, concluded the 
paper. 

 

2. DESCRIPTION OF VAD, GFCCAND 
CMN USED METHODS 

 
2.1. Description of the VoiceActivity Detector  
VAD 
 
A voice activitydetector VAD permit to extract 
only the parts containingthe speech signal by 
removing the parts corresponding to a silenceand 
background noise. This will reduce the duration 
of recordings to theiruseful parts only. Hence 
 there improved speed andperformances of the 
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system. Several implementations are reported in 
the literature to design a VAD. In this study we 
havechoosed the solutionusing theZero 
crossing Rate ZCR combined to the energy of 
the speech signal. Indeed alow rate of zero 
crossingand high energy are a good indicator 
of the presence of aspeech signal, while a high 
rate of zero crossing rate 
and a lowenergy characterize a silencezone conta
ining only backgroundnoise [7].Given the fact 
that the noise is characterized by its random 
nature, usually it has a zero-crossing rate higher 
than the parts corresponding to a speech signal. 
In this implementation we have used the 
equation (1) to compute the zero crossing rate 

��� � 0.5 ∗ 	 |�������
���

��� � ���������|									�1� 
With sign(sn) is the sign of the instantaneous 
value of signal s(n) acquired at time n. 
N is the total length of the processed speech 
signal. In practice to discriminate between the 
presence and absence of the speech signal we 
have fixedtwo thresholds one for energy and one 
other for ZCR.Figure 2 shows an example of the 
evolution curve of the zero 
crossingrate corresponding to an utterance of 
speech for about 8 seconds. 
 

 
 

Figure 2: Example of Zero crossing rate of speech 
signal 

 
 
 
 

2.2. Description of the GFCC algorithm 
 
GammatoneCepstral Coefficients (GFCC) is 
another FFT-based feature extraction technique 
in speaker identification systems. The technique 
is based on the Gammatone filter  bank 
(GTFB),  which  attempts  to  model  the  
human  auditory  system  as  a  series  of 
overlapping  band-pass  filters [8,9,10,11].  Like 
MFCC, feature vectors in this technique are 
calculated from the spectra of a series of 
windowed speech frames. The following block 
diagram at figure 3 explains the feature 
extraction process. 
 

 
 

Figure3: Block diagram of the used GFCC 
algorithm 

 
First, the spectrum of a speech frame is 
obtained. Then the speech spectrum is passed 
through the Gammatone filter bank. Equal-
loudness is applied to each of the filter output, 
according to the centre frequency of the filter. 
After that logarithm is taken to each of the filter 
outputs and Discrete Cosine Transform (DCT) 
is applied to the filter outputs. The following 
sub-sections describe each step of the algorithm 
in detail. 
 
A. Pre-emphasis stage 

 
The first step of the algorithm is pre-emphasis. 
The idea of pre-emphasis is to spectrally 
flatten the speech signal and equalize the 
inherent spectral tilt in speech [1,2]. Pre-
emphasis is implemented by a first order FIR 
digital filter. The transfer function of the pre-
emphasis digital filter is given by the 
following equation (2) 
 ������ 1 � ����																																																�2� 
 
where a is a constant, which has a typical 
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value of  0.97. 
 

B. Hamming windowing  and FFT stage 
 
This stage consists first to subdivide a speech 
sequence into frames. The windowing 
function used is the Hamming window given 
by equation (3), which aims to reduce the 
spectral distortion introduced by windowing 
[2]. 
 ����
� � 0.54 � 0.46	 cos� 2��2� � 1� , 0 � � � � � 1

0																						���������																																											�3� 
 
After windowing, Fast Fourier Transform 
(FFT) is applied to the windowed speech 
frame. The 512point FFT spectrum, S[k] for 

0 � � � � � 1, of the speech frame is 
obtained as a result. 
 
C. Gammatone filter banks stage 

 
The Gammatonefilterbank consists of a series 
of bandpass filters, which models the 
frequency selectivity property of the human 
cochlea. The impulse response of each filter 
was introduced by Patterson [10], as shown in 
the following equation (4) 
 ��� � ���������	
 cos�2���� !�																		�4� 
 
where a is a constant, usually equals to 1. n is 
the order of the filter. φ is the phase shift. fc 
and b are respectively the centre frequency 
and the bandwidth of the filter in Hz. 
According  to  Patterson  [10],  the  centre  
frequency  and  the  bandwidth  of  each 
Gammatone filter can be derived from the 
filter’s Equivalent Rectangular Bandwidth 
(ERB). Under the concept of auditory 
modeling, the human cochlea can be modeled 
by a series of rectangular auditory filters, 
whose bandwidths are called the Equivalent 
Rectangular Bandwidth (ERB). The ERB of 
an auditory filter is related to the filter’s centre 
frequency. Glasberg and Moore [12] 
suggested the following equation (5), which 
expresses the mathematical relationship 
between the centre frequency and the ERB of 
an auditory filter. 

#�$���� � 24.7 &4.37 ��1000 1(																			�5� 
 
Patterson [10] adopted the idea of ERB to 
Gammatone filters and suggested that the 
bandwidth of a Gammatone filter should be 
approximately 1.019 times the ERB at its 
centrefrequency  according to the following 
equation (6).  

 

� � 1.019��	 � 1.019
24.7 �4.37 ��
1000

� 1�					
6� 
 
He also suggested that a 4th order Gammatone 
filter (n=4) would be a good model of the 
auditory filter.  
After defining the order and the bandwidth of 
the Gammatone filters, here comes a question  
on  how  to  determine  the  centre  frequencies  
of  the  filters.  Slaney [4] suggested that each 
Gammatone filter should be spaced a given 
fraction (a step factor) of an ERB away from 
the previous filter. By integrating the 
reciprocal of equation 4 with a proper step 
factor [4], he showed that the centre frequency 
of a Gammatone filter can be determined by 
the equation (7) bellow.   
Where fcm is the centre frequency of the 
mthGammatone filter (1 ≤ m ≤ M), fL and fH are 
respectively the lower and upper frequency 
boundaries of the filter bank in Hz. There are a 
total M Gammatone filters distributed between 
fL and fH in the filter bank.  
Slaney [4] proposed an efficient implementation 
of the Gammatone filter bank. In his design, 
each 4thorder Gammatone filter in the filter bank 
comprises four cascaded filter stages. Each 
stage is essentially a 2nd order digital filter. The 
equations (8.1) to (8.4) bellows describe the 
transfer functions of these digital filters.Where 
T is the sampling interval. 
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��� � �10004.37  &�  10004.37 ( �)� *+,-�.� &�  10004.37 (  .� &��  10004.37 (/0 �7� 
 

������� � �21  221����	� cos�2���1�  233  2� �� 1����	� sin�2���1�6 ����2  4e����� cos�2πf�T� z�� � 2e�����z�� �8.1� 
 
 �������
� �21  221����	� cos�2���1� � 233  2� �� 1����	� sin�2���1�6 ����2  4e����� cos�2πf�T� z�� � 2e�����z�� 																																											�8.2� 
 
 �������
� �21  221����	� cos�2���1�  233 � 2� �� 1����	� sin�2���1�6 ����2  4e���	� cos�2πf�T� z�� � 2e�����z�� 																																												�8.3� 
 
 

������� � �21  221����	� cos�2���1� � 233 � 2� �� 1����	� sin�2���1�6 ����2  4e����� cos�2πf�T� z�� � 2e�����z�� �8.4� 
 
 
It can be shown that the transfer function of the 
Gammatone  filter, H(z), is the product of the 
transfer functions of these cascaded filters given 
by the following equation (9) 
 ���� ��������. �������. �������. �������											�9) 
 
In GFCC algorithm, we are interested to the 
magnitude response, ||H(ω)|| (or in digital 
domain,  ||H[k]||),  of  the  filter  transfer  
function.  The magnitude response can be 
obtained by substituting z=ejω  into H(z). The 
following figure 4 illustrates the magnitude 
responses of a series of Gammatone filters in a 
filter banks. 

 

Figure 4:  Frequency response of  Gammatone 
filter banks 

 
In addition the frequency responses of the filters 
are normalized.  Hence the magnitude response 
at the centre frequency is equal to unit. As 
previously described in sub-section B) we 
applying FFT to a windowed  speech  frame  for  
obtaining  its  frequency  spectrum,  S[k].  The  
power spectrum,  |S[k]|2, is  then  calculated  on  
the  first  half  of  the  frequency  spectrum (the 
second half of the spectrum is just the mirror 
image of the first half and is discarded). The 
next step is to find out the filter output, Xm, 
which can be expressed by the following 
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equation (10), 
 

>� �	 |?@?AB|�|��?AB|					1 C +�

�
��

��� C ,				�10�	 
 
Where N is the number of FFT points in each 
windowed frame and Hm[k] is the frequency 
response of the mthGammatone filter. 

 

D. Equal-loudness stage 

 
As described in a previous paper [6], equal 
loudness technique which we have used in PLP 
front-end, is also applied to the Gammatone 
filter outputs according to their centre 
frequencies. The equal loudness weight of the 
mth  filter, Em, can be found by evaluating either 
equation (11) for applications, whose Nyquist 
frequency is up to 5 kHz or equation  (12) for 
applications, whose Nyquist frequency is above 
5 kHz. 
 #
� �D�  56.8 F 10��D�

�D�  6.3 F 10����D�  0.38 F 10�� 												 �11� 
 #
� �D�  56.8 F 10��D��D�  9.58 F 10������D�  6.3 F 10����D�  0.38 F 10�� �12� 

 
The filter output after equal loudness, Xm(e) , is 
simply the product of the filter output and the 
equal loudness weight  is given by the following 
equation (13) 

 
��
e� � �� . ��				1 C mC M																																					�13� 

 
Alternatively,  the  weight  can  be  applied  to  
the  magnitude  response  of  each Gammatone  
filter  according to equation (14)  and  after that  
the filter  outputs  can be  directly obtained from 
the weighted Gammatone filters by applying 
equation (15). 

 
 

��

e��k� � �� . ��	?kB												1 C mC M															�14� 

 
 

��
e� �� |�����|�. |��

e��k�|					1 � ��

�
��

��	 �  					
15�	 
 

E. Logarithmic compression stage 
 

The next step of the algorithm is to apply 
logarithm to each filter output according to 
equation (16). The aim of this  procedure  is  to  
simulate  the  human  perceived  loudness  given  
certain  signal intensity.  Let  ��
ln  e�be  the  
logarithmically-compressed  filter output  of  the  
mthGammatone filter. 
 
 

��
ln  e� � ln	���
e��					1 C mC M																			�16� 
 

 
F. Discrete cosines Transformation DCT stage 

 
The last stage of the algorithm consistsof 
correlating the filter outputs. For this the Discrete 
Cosine Transform (DCT) is applied to the filter 
outputs.  Suppose p is the order of GFCC. The 
feature vector of one speech frame,  which  has  p  
number   of  GFCC  coefficients,  contains  the  
first  p  DCT coefficients of the filter outputs. The 
kth GFCC coefficient of the feature vector is 
defined by the following equation (17) where: 
1 � � � � 
 

!"##� � $2%& '(�
�ln�

���

+ e�. cos-�.�/ � 0.5�% 01								�17� 
 
Often an additional component is appended to 
the  pth   order feature  vector.  The additional 
component can either be a log energy term or 
the zeroth order GFCC coefficient or both. The 
log energy term is simply the logarithm of the 
energy of one speech frame. The zeroth order 
GFCC coefficient is the zeroth order DCT 
coefficient of the filter outputs given by (18). 
 

K1��� � L1,	 �
�ln�

��� e�																													�18�	 
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Given the fact that these two components do not 
contain any specific information relevant to the 
discrimination of speakers [1,2], they are not used 
in this study and only the 12 first static 
coefficients (K=1 to 12) plus their first and second 
derivative are used. In total we have used 36 
parameters. 

 
 

2.3. Cepstral Mean NormalizationCMN  
 

CMN normalization ensures that the values in 
the feature vectors have zero mean and unit 
variance. This will help avoid the risk that larger 
values will have a greater influence on the 
behavior of different treatments in subsequent 
identification steps. Given the fact that the cepstral 
coefficients  of speech signals  have generally 
a zero mean then to remove noise, we must simply 
subtract each cepstral coefficient the average of 
all cepstral coefficients characterizing the speech 
signal in question. This operation is known by 
Cepstral Mean subtraction (CMS). These 
two treatments will help improve the identification 
scores of our system. For this we have used 
the empirical definitions of mean and variance of 
feature vectors given respectively by 
equations(19) and (20) below. 

 

μ � 1N	c�n��

���

�19� 
σ� � 1N	�c�n��

���

�	μ�		��20� 
Wherec(n) is the features vector of the nth frame, 

N is the total number of frames in the analyzed 

speech signal. 

Finally to obtain the normalized features vector 

ĉ	
� using the CMN technique we have first 

subtract the average cepstral features vector  µ  for 

each c(n) and then dividing the result by the 

standard deviation σ according to 

equation (21) follows. 

                          

ĉ���
� Q��� � RS 																																																										�21� 

The CMN  is an alternate  way  to high-pass  filter  
cepstral coefficients which  allows to compensate 
the  effects of  unknown linear  filtering and force 
the average value of cepstral coefficients to be 
zero in both the training and testing domains.  
Nevertheless, CMN can compensate directly the 
combined effects of additive noise and linear 
filtering. 
 
3. EXPERIMENTAL SETUP AND  
RESULTS 

3.1. Experimental conditions 

      In this study, we are interested to evaluate the 
performance of the suggested front-end based on 
GFCC method in a text-independent monaural 
speaker identification context. For this we are built 
our proper database which corresponding to a 
population of 51 Arabic-speakers (35 male and 16 
female). Each speaker had participated by 2 
different recordings: one for learning the database 
for about 20s per utterance and one other for the 
test step for about 10s per utterance. All the 
productions sound from the speakers, were 
directly digitized to .wav format with a sampling 
frequency of 16 kHz and 16-bit quantification 
using the well-known software Wavesurfer®8 
[13]. A white Gaussian noise of variable level 
(0db <SNR <40dB) was added to the recorded test 
utterances only to examine the robustness of 
described technique in noisy environments that are 
inevitable in most real applications. The features 
extractors that will be considered in this set of 
experiments are MFCC, ∆MFCC, ∆∆MFCC, 
GFCC, ∆GFCC, and ∆∆GFCC. The classifier of 
our system is the Gaussian Mixture Models 
(GMM) which is considered actually as the state 
of the art in text-independent speaker 
identification task [14,15,16]. The entire 
identification system is implemented in a 
MATLAB®7 programming environment. The 
following table 1 describes the experiment 
conditions in detail. 
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TABLE  1: EXPERIMENT CONDITIONS OF SPEAKER IDENTIFICATION SYSTEMS 
 

Task system Text-independent automatic speaker  identification 
language Arabic 

Front-ends MFCC, ∆MFCC, ∆∆MFCC, GFCC, ∆GFCC, ∆∆GFCC 
Back-end Gaussian mixture models (GMM)with 8 mixture 

Number of coefficients in a feature vector 36(12static + 12delta + 12delta-delta) for MFCC & GFCC 
Window size 32 ms 

Step size 16 ms 
Sampling rate 16kHz 
Training set 51 speakers (one utterance per speaker for about 20s) 

Test set 51 speakers (one utterance per speaker for about 10s) 
Noise Type White Gaussian Noise (WGN)  
SNR range 0, dB, 5dB, 10dB, 15dB, 20dB, 25dB , 30dB, 35dB, 40dB 
Platform Laptop PC HP 512 Intel Pentium M 2.13Ghz 

Programming Language MATLAB®7 
Acquisition tool Wavesurfer®8 

3.2. Experimental results 

 
The evaluation of the identification performances 
of our systems was done by applying the 
empirical equation (22) 
 

� � �T	F	100% �22� 
 
Where C is the percentage of correctly identified 
speakers called identification/recognition rate 
RR, H is the number of correctly identified 
speakers and N is the total number of speakers 
that have participated to test identification. The 
following table 2 and figure 5 show the 
identification rate of MFCC, ∆MFCC, 
∆∆MFCC, GFCC, ∆GFCC and ∆∆GFCC front-

ends in various SNR conditions. These results 
indicate clearly that the algorithm GFCC 
produces interesting results. In a clean speech 
environment GFCC works perfectly like MFCC. 
However, in noisy environments, all variants of 
GFCC exceed all variants of MFCC. Second the 
dynamic variants of these two algorithms work 
better than static variants but they occur a long 
time to estimate the parameters of the GMM 
models. The average identification rate of GFCC 
is about 55.31% while the average identification 
rate of MFCC is still equal 50.53% when SNR 
changes from 40dB to 0dB. In others words, 
these results indicate that in noisy environments 
the GFCC algorithm works better  than MFCC 
and the dynamic variants of these algorithms are 
better suited to robust conditions.  

 
TABLE  2:  PERCENTAGE OF CORRECTLY IDENTIFIED SPEAKERS (C) IN VARIOUS SNR ENVIRONMENTS 

CORRESPONDING TO  BASELINE  MFCCS  AND  PROPOSED GFCC FRONT-ENDS COMBINED TO VAD  AND 

CMN TECHNIQUES 
 

SNR(dB) 0 5 10 15 20 25 30 35 40 MOY. 

MFCC 07.22 9.45 12.23 23.67 43.15 63.43 95.67 100 100 50.53 

∆MFCC 10.47 12.78 15.93 25.15 45.54 66.35 96.65 100 100 52.54 

∆∆MFCC 11.34 13.65 16.43 26.83 46.52 68.74 96.89 100 100 53.37 

GFCC 13.87 17.13 24.32 32.17 48.23 66.83 95.25 100 100 55.31 

∆ GFCC 17.34 21.87 27.70 35.28 51.35 70.34 96.54 100 100 57.82 

∆∆ GFCC 18.68 22.05 28.18 36.38 52.82 72.13 96.75 100 100 58.55 
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Figure 5:  Performances of GFCCs and MFCCs front-ends versus SNR. 
 
 

4. CONCLUSION  AND FUTURE WORK 
 

A typical speaker identification system consists of a 
front-end and a back-end. The front-end is basically a 
features extraction module, while the back-end is 
primarily a classifier. The function of the back-end is 
to make accurate identification decisions based on the 
speech features extracted by the front-end. Hence, the 
quality of a front-end algorithm plays an important 
role in speaker identification systems. In this 
experimental study the robust front-end GFCC 
algorithm combined to VAD and CMN techniques 
was implemented, evaluated and compared to the 
baseline and conventional front-end MFCC. The 
experiment results show that the proposed approach 
outperforms the baseline methods MFCCs in noisy 
conditions by approximately 5.08% when SNR 
changes from 40dB to 0dB. However in clean 
environment (SNR≥35dB)our architecture performs 
equally well with MFCC and all its variants. Finally, 
compared to the ordinary Mel frequency cepstral 
coefficients, the speaker identification system based 
on GFCC combined to VAD and CMN techniques 
presented gives better identification rate and 
robustness characteristics. 

In perspective to this work, we intend to implement 
the suggested architecture on a Digital Signal 
Processor DSP in order to use it in a real application 
for secured access to high secure areas. 
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