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ABSTRACT

A major problem of most speaker identification syss is their unsatisfactory robustness in noisy
environments. The performance of automatic spead@mtification systems degrade drastically in the
presence of noise and other distortions, especialign there is a noise level mismatch between the
training and testing environments. In this experitakresearch we have studied a recently robust-&nd
algorithm based on Gammatone Frequency Cepstraffiierts GFCC associated to Voice Activity
DetectorVAD and Cepstral Mean Normalization CMNHheiques. Our system using a Gaussian Mixture
Models GMM classifier are implemented under MATLAB®rogramming environment. An Expectation
Maximization EM algorithm was used to maximize then of Gaussian densitiesuntil convergence was
reached.Evaluation is carried out on our owndawb@mtaining 51 mixed Arabic speakers. All test
utterances are corrupted by a multilevel White Gieams Noise WGN.Our aim is to study the
performances of the suggested architecture armkema comparison with the conventional Mel
Frequency Cepstral Coefficients MFCC method whiehhave successfully implemented and tested in the
previous work. The obtained experimental resultafiom the superior performance of the proposed
method over MFCC and outperform it in different syoenvironments. Theevaluationresultsbased on the
recognition rate accuracy show that both MFCC amel proposed features extractor have perfects
performances in low-noise environments when Sigmedl Noise Ratio SNR is greater than 35 dB
(practically 100% in all cases). But when the SNRest signal changed from 0 to 40 dB, the average
accuracy of the MFCCs methods is only 52.14%, wihite proposed GFCCsfeatures extractors associated
to VAD and CMN techniques still achieves an averageuracy of 57.22%.

Keywords.Cepstral Mean Normalisation(CMN); Gammatone Frequency Cepstral Coefficients (GFCC);
Gaussian Mixture Models (GMMs); Mel Frequency Cepstral Coefficients (MFCC); Robust
speaker identification; Voice Activity Detector (VAD); White Gaussian Noise (WGN).

1. INTRODUCTION extraction process treats the speech signal

waveform

Speaker identification assigns an identity to a
test utterance from a set of known speakers.
Normally the utterance is assumed to be from a
known set of speakers [1,2] and is therefore
called closed-set speaker identification but open-
set speaker identification can also reject a
speaker if the best speaker score does not exceed
a certain threshold. Speaker identification is
normally carried out by training a speaker model
for every speaker in the set and the test is
implemented by pattern matching, as shown in
figure 1. The preprocessing and feature

and represents it as feature vectors. These feature
vectors are modeled in the training part of the
system by using Gaussian mixturemodels
GMMs.

The identification process performs pattern
matching of the derived feature vectors with each
speaker model to give Maximum Log Likelihood
MLL and the decision module selects the most
likely speaker. In general, a typical speaker
identification systemcan be divided into two
major parts:front-end and back-end.The front-
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end of the system is principally a features
extractor device, while the back-end consists of a
template or statistical classifier and a
referencedatabase.

The following figure

GFCC

Extraction

1 illustrates the architecture of ourrobust speaker
identification system.

Static features
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Figure 1: Architecture of the suggestedrobust speaker identification system

The main task of the front-end is to extract
features from a speech signal. The aim is to
sufficiently represent the Characteristics of
the speech signal with reduced
redundancy[1,2]. Features are extracted based
on frames (windows). In other words, a short
speech segment, typically 32ms, is first
obtained from the entire speech signal. Then
speech extraction algorithm is applied to the
segment. As a result, a few numbers of
coefficients are calculated. These coefficients
are grouped together to form a feature vector,
which represents some useful characteristics of
that particular frame. After that, the above
procedure repeats with subsequent utterance
frames. Each new frame is some time posterior
to its previous frame, typically 16ms. One
feature vector is calculated for every subsequent
frame. Hence, a sequence of feature vectors is
generated as a result. After feature extraction,
the sequence of feature vectors is passed to the
back-end of the speaker identification system,
which is primarily a classifier. Based on the
feature vectors, the back-end of the system
selects the most likely utterance out of all the
possibilities from the reference database. In this
work we have used a GMM statistical classifier
which we have described in the previous study
[3]. After training, the statistical models are
stored in the database. When an unknown
utterance is presented, feature vectors are
obtained. The classifier calculates the maximum
log likelihood based on the models and decides
the most likely utterance. In order to have a

good identification performance, the front-end
of the system should provide feature vectors
that can capture the important characteristics of
an utterance. Besides, the front-end should also
demonstrate reasonable performance in adverse
environment.

In this research we have studied a recently
robust front-end algorithm Gammatone
FrequencyCepstral Coefficients (GFCC) [4,5].
Our goal isto study the performances of this
front-end and make a comparison with the
MFCC baseline method previously studied in
[3,6]. The first part of the paper, in section 2,
describes the used VDA, GTCC and CMN
techniques in detail. It will explain how feature
vectors are extracted. Then the second part of
the paper, in section 3, will explain and depict
the experimental conditions and identification
results. The last part, in section 4, concluded the
paper.

2. DESCRIPTION OF VAD, GFCCAND
CMN USED METHODS

2.1. Description of the VoiceActivity Detector
VAD

A voice activitydetector VAD permit to extract
only the parts containingthe speech signal by
removing the parts corresponding to a silenceand
background noise. This will reduce the duration
of recordings to theiruseful parts only. Hence
there improved speed andperformances of  the
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system. Several implementations are reported in
the literature to design a VAD. In this study we
havechoosed the  solutionusing theZero
crossing Rate ZCR combined to the energy of
the speech signal. Indeed alow rate of zero
crossingand high energy are a good indicator
of the presence of aspeech signal, while a high
rate of zero crossing rate
and a lowenergy characterize a silencezone conta
ining only backgroundnoise [7].Given the fact
that the noise is characterized by its random
nature, usually it has a zero-crossing rate higher
than the parts corresponding to a speech signal.
In this implementation we have used the
equation (1) to compute the zero crossing rate
N-1
ZCR = 0.5 * z |sign(s,)

n=0

=sign(s,-)l (D

With sign(sn) is the sign of the instantaneous
value of signal s(n) acquired at time n.

N is the total length of the processed speech
signal. In practice to discriminate between the
presence and absence of the speech signal we
have fixedtwo thresholds one for energy and one
other for ZCR.Figure 2 shows an example of the
evolution curve of the zero
crossingrate corresponding to an utterance of
speech for about 8 seconds.

Speech signal s(n)

Time(s)

Zero crossing rate
T T

Time(s)

Figure 2: Example of Zero crossing rate of speech
signal

2.2. Description of the GFCC algorithm

GammatoneCepstral Coefficients (GFCC) is
another FFT-based feature extraction technique
in speaker identification systems. The technique
is based on the Gammatone filter bank
(GTFB), which attempts to model the

human auditory system as a series of
overlapping band-pass filters [8,9,10,11]. Like
MFCC, feature vectors in this technique are
calculated from the spectra of a series of
windowed speech frames. The following block

diagram at figure 3 explains the feature

extraction process.

’

Harnmng
Windowng

Pre-emphasis

Loganthemc
DCT ¥ compression

Figure3: Block diagram of the used GFCC
algorithm

Equal-loudness

First, the spectrum of a speech frame is
obtained. Then the speech spectrum is passed
through the Gammatone filter bank. Equal-
loudness is applied to each of the filter output,
according to the centre frequency of the filter.
After that logarithm is taken to each of the filter
outputs and Discrete Cosine Transform (DCT)
is applied to the filter outputs. The following
sub-sections describe each step of the algorithm
in detail.

A. Pre-emphasis stage

The first step of the algorithm is pre-emphasis.
The idea of pre-emphasis is to spectrally
flatten the speech signal and equalize the
inherent spectral tilt in speech [1,2]. Pre-
emphasis is implemented by a first order FIR
digital filter. The transfer function of the pre-

emphasis digital filter is given by the

following equation (2)

Hp(2)
=1-az™?! 2

where a is a constant, which has a typical
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value of 0.97. f.
ERB(f,) = 24.7 (4.37 1000
B. Hamming windowing and FFT stage
9 g g + 1) (5)

This stage consists first to subdivide a speech
sequence into frames. The windowing
function used is the Hamming window given
by equation (3), which aims to reduce the
spectral distortion introduced by windowing

2].

win
0.54 0.46 cos 0<n<N 1

0 otherwise 3)

After windowing, Fast Fourier Transform
(FFT) is applied to the windowed speech
frame. The 512point FFT spectrum, S[k] for

0<k<N-—1, of the speech frame is
obtained as a result.

C. Gammatone filter banks stage

The Gammatonefilterbank consists of a series
of bandpass filters, which models the
frequency selectivity property of the human
cochlea. The impulse response of each filter
was introduced by Patterson [10], as shown in
the following equation (4)

g(t) = at™ e 2™t cos(2nf,t
+9) C)

where a is a constant, usually equals to 1. n is
the order of the filtere is the phase shift. fc
and b are respectively the centre frequency
and the bandwidth of the filter in Hz.

According to Patterson [10], the centre
frequency and the bandwidth of each
Gammatone filter can be derived from the
filter's Equivalent Rectangular Bandwidth
(ERB). Under the concept of auditory
modeling, the human cochlea can be modeled
by a series of rectangular auditory filters,
whose bandwidths are called the Equivalent
Rectangular Bandwidth (ERB). The ERB of
an auditory filter is related to the filter's cemtr
frequency. Glasberg and Moore [12]
suggested the following equation (5), which
expresses the mathematical relationship
between the centre frequency and the ERB of
an auditory filter.

209

Patterson [10] adopted the idea of ERB to
Gammatone filters and suggested that the
bandwidth of a Gammatone filter should be
approximately 1.019 times the ERB at its
centrefrequency according to the following
equation (6).

fe
1000

b = 1.019ERB = 1.019(24.7 (4.37
4—1) 6)

He also suggested that a 4th order Gammatone
filter (n=4) would be a good model of the
auditory filter.

After defining the order and the bandwidth of
the Gammatone filters, here comes a question
on how to determine the centre frequencies
of the filters. Slaney [4] suggested that each
Gammatone filter should be spaced a given
fraction (a step factor) of an ERB away from
the previous filter. By integrating the
reciprocal of equation 4 with a proper step
factor [4], he showed that the centre frequency
of a Gammatone filter can be determined by
the equation (7) bellow.

Where fcm is the centre frequency of the
m"Gammatone filter (K m< M), fL and fH are
respectively the lower and upper frequency
boundaries of the filter bank in Hz. There are a
total M Gammatone filters distributed between
fL and fH in the filter bank.

Slaney [4] proposed an efficient implementation
of the Gammatone filter bank. In his design,
each forder Gammatone filter in the filter bank
comprises four cascaded filter stages. Each
stage is essentially &%order digital filter. The
equations (8.1) to (8.4) bellows describe the
transfer functions of these digital filters.Where
T is the sampling interval.
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_ —1000 + ( 4 1000) m ] ( + 1000) + ( 4 1000) @
Jem = —3z7~ T \u t3g37) ey~ e+ 457 ) t i+ 457
W —2T + (ZTe_Z’”’T cos(2rf.T) + 2V3 + 2%/ e=2mbT sin(anCT)) z71
H = 8.1
@ —2 + 4e72™T cos(2mf T) z71 — 2e~470Tz =2 ®.1)
H®(z)
—2T + (2Te™2™7 cos(2mf,T) — 23 + 27/2Te~2™7 sin(2nf,T)) z™*
= 8.2
=2 + 4e72m0T cos(2nf, T) z~1 — 2e~4m0Tz—2 (8.2)
H®(2)
2T + (2Te 2™ cos(2nf.T) + 23 — 27/2Te~2™T sin(2nf,T)) z™*
— (8.3)

—2 + 4e72mT cos(2nf, T) z=1 — 2e~4mbTz -2

—2T + (2Te™2™" cos(2nf,T) — 273 — 27/2Te~2™T sin(2nf,T)) z™*

H® —
) —2 + 4e72mT cos(2nf, T) z~1 — 2e~4m0Tz 2

(8.4)

It can be shown that the transfer function of the Frequency response of GTFB (F=16Khz)

Gammatone filter, H(z), is the product of the 0 gy . e
transfer functions of these cascaded filters given II"{“" '
by the following equation (9) il JH”’Q“‘W --------
;TR0
H () = R e A N
HO@.HO@.HO (). HD(Z) () £ W o E
B Y ke '
@ 00 BEEREECRA N N\ N N R T
In GFCC algorithm, we are interested to the = BT : . '
magnitude response, |fb){(| (or in digital -&]- B N g e S - T
domain, ||HI[K]|), of the filter transfer - - d
function. The magnitude response can be -1 : . <
obtained by substituting ze into H(z). The 0 4m 4100 L GLLL
following figure 4 illustrates the magnitude Frequency(Hz)

responses of a series of Gammatone filters in a
filter banks.

Figure 4: Freguency response of Gammatone
filter banks

In addition the frequency responses of the filters
are normalized. Hence the magnitude response
at the centre frequency is equal to unit. As
previously described in sub-section B) we
applying FFT to a windowed speech frame for
obtaining its frequency spectrum, S[k]. The
power spectrum, |S[K]lis then calculated on
the first half of the frequency spectrum (the
second half of the spectrum is just the mirror
image of the first half and is discarded). The
next step is to find out the filter output,,X
which can be expressed by the following
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equation (10),

Ko=) " ISIPIH L 1S m
<M (10)

Where N is the number of FFT points in each
windowed frame and Hk] is the frequency
response of the iGammatone filter.

D. Equal-loudness stage

As described in a previous paper [6], equal
loudness technique which we have used in PLP
front-end, is also applied to the Gammatone
filter outputs according to their centre
frequencies. The equal loudness weight of the
m" filter, E., can be found by evaluating either
equation (11) for applications, whose Nyquist
frequency is up to 5 kHz or equation (12) for
applications, whose Nyquist frequency is above
5 kHz.

E
B (w? + 56.8 x 109)w* "
T (w2 4 6.3 x 10)2(w? + 0.38 x 109) ab
E

_ (w? +56.8x10°)w*(w® +9.58 x 102°) 7! 12)

(W? + 6.3 X 106)2(w? + 0.38 x 10°)

The filter output after equal loudness,(¥) , is
simply the product of the filter output and the
equal loudness weight is given by the following
equation (13)
Xm@)=E,.X, 1<m
<M

(13)

Alternatively, the weight can be applied to

the magnitude response of each Gammatone
filter according to equation (14) and after that

the filter outputs can be directly obtained from

the weighted Gammatone filters by applying

equation (15).

1<m

Hy,(€)[K] = Ey. Hy [K]
<M (14)

2
Xn(©) = D" IS (@Kl 1<m
<M (15)

E. Logarithmic compression stage

The next step of the algorithm is to apply
logarithm to each filter output according to
equation (16). The aim of this procedure is to
simulate the human perceived loudness given
certain signal intensity. Lef,,(In + e)be the
Io%arithmically-compressed filter output of the
m"Gammatone filter.

Xm(In+e) =In(X,,(e))
<M

1<m

(16)

F. Discrete cosines Transformation DCT stage

The last stage of the algorithm consistsof
correlating the filter outputs. For this the Didere
Cosine Transform (DCT) is applied to the filter
outputs. Suppose p is the order of GFCC. The
feature vector of one speech frame, which has p
number of GFCC coefficients, contains the
first p DCT coefficients of the filter outputsh&

K" GFCC coefficient of the feature vector is
defined by the following equation (17) where:
1<k<p

2 M
GTCC, = Mz {Xm(ln
m=1

mk(m — 0.5)
+e).cos (T)} an

Often an additional component is appended to
the @' order feature vector. The additional
component can either be a log energy term or
the zeroth order GFCC coefficient or both. The
log energy term is simply the logarithm of the
energy of one speech frame. The zeroth order
GFCC coefficient is the zeroth order DCT
coefficient of the filter outputs given by (18).

1 M
GTCC, = MZ X,,(In
m=1

+e) (18)

211




Journal of Theoretical and Applied Information Technology

29" February 2012. Vol. 36 No.2 N
© 2005 - 2012 JATIT & LLS. All rights reserved T
ISSN: 1992-8645 www.jatit.org E-I1SSI¥17-3195
Given the fact that these two components do not &(n)
contain any specific information relevant to the c(n) —
discrimination of speakers [1,2], they are not used — aw-H (21)
in this study and only the 12 first static g

coefficients (K=1 to 12) plus their first and sedon The CMN is an alternate way to high-pass filter
derivative are used. In total we have used 36 cepstral coefficients which allows to compensate
parameters. the effects of unknown linear filtering and ferc
the average value of cepstral coefficients to be
zero in both the training and testing domains.
Nevertheless, CMN can compensate directly the
combined effects of additive noise and linear
CMN normalization ensures that  the values in filtering.

the feature vectors have zero mean and unit

variance. This will help avoid the risk that larger 3. EXPERIMENTAL SETUP AND

values will  have a greater influence on the RESULTS

behavior of different treatments in subsequent
identification steps. Given the fact that the ceglst
coefficients of speech signals have generally . .
a zero mean then to remove noise, we must simply N this study, we are interested to evaludie
subtract each cepstral coefficient the  average of Performance of the suggested front-end based on
all cepstral coefficients characterizing the speech GFCC method in a text-independent monaural
signal in question. This operation is known by speaker identification context. For this we ardtbui

Cepstral Mean subtraction (CMS). These our proper database which corresponding to a

2.3. Cepstral Mean NormalizationCMN

3.1. Experimental conditions

two treatments will help improve the identification
scores of our system. For thiswe have used
the empirical definitions of mean and variance of
feature vectors given respectively by
equations(19) and (20) below.

N
1
p=2 Y e (19)
n=1
N
1
0 =2 ) (e — W) *(20)

Wherec(n) is the features vector of thframe,
N is the total number of frames in the analyzed
speech signal.

Finally to obtain the normalized features vector
¢(n) using the CMN technique we have first

subtract the average cepstral features vegtdor
by the

to

each c¢(n) and then dividing the result

standard deviation ¢ according

equation (21) follows.
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population of 51 Arabic-speakers (35 male and 16
female). Each speaker had participated by 2
different recordings: one for learning the database
for about 20s per utterance and one other for the
test step for about 10s per utterance. All the
productions sound from the speakers, were
directly digitized to .wav format with a sampling
frequency of 16 kHz and 16-bit quantification
using the well-known software Wavesurfer®8
[13]. A white Gaussian noise of variable level
(Odb <SNR <40dB) was added to the recorded test
utterances only to examine the robustness of
described technique in noisy environments that are
inevitable in most real applications. The features
extractors that will be considered in this set of
experiments are MFCCAMFCC, AAMFCC,
GFCC, AGFCC, andAAGFCC. The classifier of
our system is the Gaussian Mixture Models
(GMM) which is considered actually as the state

of the art in text-independent speaker
identification task [14,15,16]. The entire
identification system is implemented in a

MATLAB®7 programming environment. The
following table 1 describes the experiment
conditions in detail.
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TABLE 1:EXPERIMENT CONDITIONS OF SPEAKER IDENTIFICATION SYEMS

Task system Text-independent automatic speakettifidation
language Arabic
Front-ends MFCCAMFCC,AAMFCC, GFCCAGFCC,AAGFCC
Back-end Gaussian mixture models (GMM)with 8 migtur
Number of coefficients in a feature vector| 36(18sta 12delta + 12delta-delta) for MFCC & GFCC
Window size 32ms
Step size 16 ms
Sampling rate 16kHz
Training set 51 speakers (one utterance per spé&akabout 20s)
Test set 51 speakers (one utterance per speakavdat 10s)
Noise Type White Gaussian Noise (WGN)
SNR range 0, dB, 5dB, 10dB, 15dB, 20dB, 25dB , 3&f®iB, 40dB
Platform Laptop PC HP 512 Intel Pentium M 2.13Ghz
Programming Language MATLAB®7
Acquisition tool Wavesurfer®8

ends in various SNR conditions. These results
indicate clearly that the algorithm GFCC
produces interesting results. In a clean speech
The evaluation of the identification performances environment GFCC works perfectly like MFCC.
of our systems was done by applying the However, in noisy environments, all variants of

3.2. Experimental results

empirical equation (22) GFCC exceed all variants of MFCC. Second the
dynamic variants of these two algorithms work

H . .
C == x100% (22) better than static variants but they occur a long

time to estimate the parameters of the GMM

models. The average identification rate of GFCC
Where C is the percentage of correctly identified is about 55.31% while the average identification
speakers called identification/recognition rate rate of MFCC is still equal 50.53% when SNR
RR, H is the number of correctly identified changes from 40dB to 0dB. In others words,
speakers and N is the total number of speakers these results indicate that in noisy environments
that have participated to test identification. The the GFCC algorithm works better than MFCC

following table 2 and figure 5 show the and the dynamic variants of these algorithms are
identification rate of MFCC, AMFCC, better suited to robust conditions.

AAMFCC, GFCC,AGFCC andAAGFCC front-

TABLE 2: PERCENTAGE OF CORRECTLY IDENTIFIED SPEAKERE) IN VARIOUS SNRENVIRONMENTS
CORRESPONDING TOBASELINE MFCCS AND PROPOSEBSFCCFRONT-ENDS COMBINED TOVAD AND
CMN TECHNIQUES

SNR(dB) 0 5 10 15 20 25 30 35 40 | MOY.
MFCC | 07.22 | 9.45 | 1223 2367 43.15 6343 9567 1P0100 | 5053
Amrce | 1047 | 1278 1593 2515 4584 66.85 9665 100100 | 5254
AAwrce | 1134 | 1365| 16.43 2683 46.52 68.y4 96/89 100 108337
GFcc | 13.87 | 17.13| 2433 321f 4823 66.83 9525 100 106531
Acrcc | 1734 | 2187 27.70 3528 5135 70.84 9654 100 106782
AAGroc | 1868 | 22.05| 2818 36.38 5242 7213 96[75 100 108855
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Figure5: Performances of GFCCs and MFCCs front-ends versus SNR.
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