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ABSTRACT 

Since the introduction of public-key cryptography by Diffe and Hellman in 1976, the potential for the use 
of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete 
logarithm problem as first employed by Diffe and Hellman was defined explicitly as the problem of finding 
logarithms with respect to a generator in the multiplicative group of the integers module a prime, this idea 
can be extended to arbitrary groups and in particular, to elliptic curve groups. The resulting public – key 
systems provide relatively small block size, high speed, and high security. This paper explores an efficient 
performance of GF(25) in the normal basis representation and  an elliptic curve cryptosystems using a non-
super singular curve over the field; so this scheme is of less computation cost which is valuable in 
applications with limited memory, communications bandwidth or computing power. 
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1. INTRODUCTION: 
There are three families of public–key 

algorithms that have considerable significance in 
current data security practice. They are integer 
factorization, discrete logarithm, and elliptic curve 
based schemes [2]-[3]. Integer factorization based 
schemes such as RSA [4] and discrete logarithm 
based schemes such as  Diffe -Hellman [5] 
provide intuitive ways of implementation. 
However both methods admit of sub-exponential 
algorithm of cryptanalysis [7]. In this regard 
elliptic curve cryptography, first introduced 
Koblitz [2] and Miller [3] may be the most 
cryptographic method available [6]-[8]. The best 
current brute force algorithm for   cryptanalysis of 
ECC require O(n1/2) steps where n  is the order of 
the additive group. For example , using the best 
current brute force algorithms ECC with a key 

size of 173 bits provides the same level of 
cryptographic security as RSA with a key size of 
1024 bits. This results in smaller system 
parameters band width savings, faster 
implementations and lower power consumptions. 
In addition, elliptic curve over finite fields offer 
an inexhaustible supply finite abelian groups, thus 
allowing more flexible fields selections than 
conventional discrete logarithm schemes. Because 
of these advantages ECC has attracted extensive 
attention in recent years [9]-[13]. This paper 
explores an efficient performance of GF(25) in the 
normal basis representation and  an elliptic curve 
cryptosystems using a non-super singular curve E: 

over the  field GF( ) , 

an irreducible polynomial taken for construction 
of the field is . 

 
2. DATA TYPES AND CONVERSIONS:  

 
The schemes specified in this document 

involve operations using several different data 
types. This section lists the different data types and 
describes how to convert one data type to another 

.Five data types are employed in this document: 
three types associated with elliptic curve arithmetic 
-integers, field elements, and elliptic curve points - 
as well as octet strings which are used to 
communicate and store information, and bit strings 
which are used by some of the primitives. 
Throughout this document the above data types are 
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regarded as abstract data types consisting of distinct 
sets of elements - so that, for example, an octet 
string is regarded as distinct from a bit string. This 
formalism helps to clarify the requirements placed 
on implementations and helps avoid subtle coding 
errors. Frequently it is necessary to convert one of 
the data types into another - for example to 
represent an elliptic curve point as an octet string. 
The remainder of this section is devoted to 
describing how the necessary conversions should 
be performed. 
 
2.1 BitString-to-OctetString Conversion 
 

Bit strings should be converted to octet 
strings as described in this section. Informally the 
idea is to pad the bit string with 0’s on the left to 
make its length a multiple of 8, then chop the result 
up into octets. Formally the conversion routine is 
specified as follows. 
Input: A bit string B of length blen bits. 
Output: An octet string M of length 

octets. 

Actions: Convert the bit string 
to an octet string 

 as follows: 
 
1.For 0 , let: 

 

 

 
2. Let M0 have its leftmost 8(mlen)-blen bits set to 
0, and its rightmost (8-(8(mlen)-blen)  bits 

set to B0B1 …B8-8(mlen)+blen-1. 
3. Output M. 
 
2.2 OctetString-to-BitString Conversion 
 

Octet strings should be converted to bit 
strings as described in this section. Informally the 
idea is simply to view the octet string as a bit string 
instead. Formally the conversion routine is 
specified as follows: 
Input: An octet string M of length mlen octets.  
Output: A bit string B of length blen= 8(mlen) 
bits. 
Actions: Convert the octet string M== M0M1 
….Mmlen-1 to a bit string B= B0B1…Bblen-1 as 
follows: 
 
1.For  set: 

 

2. Output B. 
 
2.3.EllipticCurvePoint-to-OctetString 

Conversion 
 
Elliptic curve points should be converted to octet 
strings as described in this section. Informally, if 
point compression is being used, the idea is that the 
compressed y-coordinate is placed in the leftmost 
octet of the octet string along with an indication 
that point compression is on, and the x-coordinate is 
placed in the remainder of the octet string; 
otherwise if point compression is off, the leftmost 
octet indicates that point compression is off, and 
remainder of the octet string contains the x-
coordinate followed by the y-coordinate. Formally 
the conversion routine is specified as follows: 
Setup: Decide whether or not to represent points 
using point compression. 
 
Input: A point P on an elliptic curve over Fq 
defined by the field elements a,b. 
Output: An octet string M of length mlen octets 
where mlen=  1 if P=  O, mlen=[(log2 q) /8]+1 if 
P  O and point compression is used, and  
mlen =2[(log2 q )/8]+1 if P  O and point 
compression is not used. 
Actions: Convert P to an octet string M = 
M0M1…Mmlen-1 as follows: 
 
1. If P= O, output M =  0016. 
2. If P =(xP  yP)  O and point compression is being 
used, proceed as follows: 

2.1. Convert the field element xP to an 
octet string X of length[ (log2q / 8)] octets 
using the conversion routine specified in 
Section 2.3.5. 
2.2. Derive from yP a single bit  as 
follows (this allows the y-coordinate to be 
represented compactly using a single bit): 

2.2.1. If q  is an odd prime, set 
 (mod 2). 
2.2.2. If q   

set  otherwise compute 
 

such  
that  and set = z0 

2.3. If   assign the value 0216 to the 
single octet Y. If 1, assign the value 
0316 to     the single octet Y. 
2.4. Output M =Y X. 

3. If P (xP,yP )  O and point compression is not 
being used, proceed as follows: 
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3.1. Convert the field element xP to an 
octet string X of length [(log2 q)/8] octets 
using the conversion routine specified in 
Section 4.5. 
3.2. Convert the field element yP to an 
octet string Y of length [(log2 q)/8] octets 
using the conversion routine specified in 
Section 4.5. 
3.3. Output M=0416||X||Y. 
 

2.4      OctetString-to-EllipticCurvePoint 
Conversion 

 
Octet strings should be converted to 

elliptic curve points as described in this section. 
Informally the idea is that, if the octet string 
represents a compressed point, the compressed y-
coordinate is recovered from the leftmost octet, the 
x-coordinate is recovered from the remainder of the 
octet string, and then the point compression process 
is reversed; otherwise the leftmost octet of the octet 
string is removed, the x-coordinate is recovered 
from the left half of the remaining octet string, and 
the y-coordinate is recovered from the right half of 
the remaining octet string. Formally the conversion 
routine is specified as follows: 

 
Input: An elliptic curve over Fq defined by the 
field elements a,b , and an octet string M which is 
either the single octet 0016, an octet string of length 
mlen=[(log2 q)/8]+1, or an octet string of length 
mlen =2[(log2 q)/8]+1. 
Output: An elliptic curve point P, or ‘invalid’. 
Actions: Convert M to an elliptic curve point P as 
follows: 
1. If M =0016, output P=  O. 
2. If M has length [(log2 q)/8]+1 octets, proceed as 
follows: 

2.1. Parse M=Y ||X as a single octet Y 
followed by [(log2 q)/8] octets X. 

2.2. Convert X to a field element xP of Fq 
using the conversion routine specified in 
Section 2.3.6.Output ‘invalid’ and stop if 
the routine outputs ‘invalid’. 
2.3. If Y= 02, set =0 and if Y =03, 

set   Otherwise output ‘invalid’ and stop. 
2.4. Derive from xP and    an elliptic 

curve point P=(xP ,  yP), where: 
2.4.1. If q=  p is an odd prime, 

compute the field element 
xP+b  

(mod p) and compute a square 
root  of modulo p. Output 
‘invalid’ and stop if there are no 
square roots of modulo p, 

otherwise set =  if   
(mod 2), and set   if 

2) 
2.4.2. If q= 2m and xP== 0, output 

yp= in  
2.4.3. If q= 2m and xP  0, 

compute the field element  xP+a+bxP
-2 in 

 
 and find an element 

 such that 
z2+z=  in  

 Output ‘invalid’ and stop if no 
such z exists, otherwise set xP = 
yP z in    z0= and set  
xP(z+1)   in   if z0 . 

2.5. Output P=( xP ,yP). 
3. If M has length 2[(log2 q )/8]+1  octets, proceed 
as follows: 

3.1. Parse M = W || X || Y as a single octet 
W followed by [(log2 q )/8] octets X followed by 

[(log2 q )/8] octets Y. 
3.2. Check that W= = 0416. If  W   0416, 

output ‘invalid’ and stop. 
3.3. Convert X to a field element xP of Fq 
using the conversion routine specified in 
Section 4.6.Output ‘invalid’ and stop if the 
routine outputs ‘invalid’. 
3.4. Convert Y to a field element yP of Fq 
using the conversion routine specified in 
Section     4.6.Output ‘invalid’ and stop if 
the routine outputs ‘invalid’. 
3.5. Check that P=( xP ,yP) satisfies the 

defining equation of the elliptic curve. 
3.6. Ou tput P=( xP ,yP). 
 

2.5 FieldElement-to-OctetString Conversion 
 

Field elements should be converted to 
octet strings as described in this section. Informally 
the idea is  that, if the field is Fp, convert the 
integer to an octet string, and if the field is F2

m, 
view the coefficients of the polynomial as a bit 
string with the highest degree term on the left and 
convert the bit string to an octet string. Formally 
the conversion routine is specified as follows: 
Input: An element a  of the field Fq. 
Output: An octet string M of length  
mlen =[(log2 q )/8] octets. 
Actions: Convert a to an octet string  
M = M0M1 …Mmlen-1 as follows: 

1. If q =p is an odd prime, then a is an 
integer in the interval[0,p-1]. Convert a to 
M  using the conversion routine specified 
in Section 4.7. Output M. 
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2. If q=2m   then 
 is a 

binary polynomial. Convert a  to M as 
follows: 

2.1. For , let: 
 Mi= 

 
2.2. Let M0 have its leftmost  

8(mlen-)m bits set to 0, 
and its rightmost 
       8-8(mlen m)       bits set to 

. 

2.3. Output M. 
 

2.6 OctetString-to-FieldElement Conversion 
 

Octet strings should be converted to field 
elements as described in this section. Informally the 
idea is that, if the field is Fp, convert the octet 
string to an integer, and if the field is , use the 
bits of the octet string as the coefficients of the 
binary polynomial with the rightmost bit as the 
constant term. Formally the conversion routine is 
specified as follows: 
Input: An indication of the field Fq used and an 
octet string M of length mlen =[(log2 q )/8] octets. 
Output: An element a in Fq, or ‘invalid’. 
Actions: Convert  with 

to a field element a as follows: 
1. If q = p is an odd prime, then a needs 

to be an integer in the interval  
[ 0,p-1][Convert M to an integer a 
using the conversion routine specified 
in Section4.8. Output ‘invalid’ and 
stop if a does not lie in the interval [ 
0,p-1]], otherwise output a. 

2. If q = 2m, then a needs to be a binary 
polynomial of degree m-1 or less. Set the 
field element a to be 

 with: 

 
 
Output ‘invalid’ and stop if the leftmost 
8(mlen) m bits of M0 are not all 0, 
otherwise output a. 
 

2.7 Integer-to-OctetString Conversion 
 

Integers should be converted to octet 
strings as described in this section. Informally the 
idea is to represent  the integer in binary then 
convert the resulting bit string to an octet string. 

Formally the conversion routine is specified as 
follows: 
Input: A non-negative integer x together with the 
desired length mlen of the octet string. It must be 
the case that:  
Output: An octet string  M  of length  mlen octets. 
Actions: Convert  
  

represented in base to an octet string 
as follows: 

1. For , set: 

 

      2. Output M. 
 
2.8 OctetString-to-Integer Conversion 
 

Octet strings should be converted to 
integers as described in this section. Informally the 
idea is simply to view the octet string as the base 
256 representation of the integer. Formally the 
conversion routine is specified as follows: 
Input: An octet string M of length mlen octets. 
Output: An integer x. 
Actions: Convert to an 
integer x as follows: 

1. View Mi as an integer in the range [0,255] 
and set: 

 

      2. Output x. 
 
2.9 FieldElement-to-Integer Conversion 
 

Field elements should be converted to 
integers as described in this section. Informally the 
idea is that,if the field is F p no conversion is 
required, and if the field is  Ffirst convert the 
binary polynomial to an octet string then convert 
the octet string to an integer. Formally the 
conversion routine is specified as follows: 
Input: An element a  of the field Fq. 
Output: An integer x. 
Actions: Convert the field element a   to an integer 
x as follows: 
   1. If q =  p is an odd prime, then a must be an 
integer in the interval[ [0,P  1]]. Output  x = a. 
   2. If q = 2m then a must be a binary polynomial of 
degree  m-1,i.e.  

  , Set: 
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    Output  x. 
 

3. GOLOIS FIELD ARITHMETIC: GF(25) 

GF(25)  can be viewed as a vector space of 
dimension 5 over the field GF(2). There are several 
bases known for GF(25) . The most common bases 
are polynomial bases and nonmal bases . with  a 
polynomial basis , the field elements are 
represented by binary polynomials modulo an 
irreducible binary polynomial of degree 5 . given an 
irreducible polynomial  

 

An element A  is represented  either as 

A( )  or as (  , where 

 and  , the root of  [28]-[29]. Here 

the basis is { 1, . It has been proved that 

there always exists a normal basis for  the given 
finite field GF(25) which is of the form 

N={ } where  is aroot of the 

irreducible polynomial  over 

GF(2) and elements of the set are linearly 
independent . we say that  generates the normal 

basis N , or  is a normal elements of 

. will equal to for some . Then every 

element A is represented as  

 

Where  GF(2). A field element can thus be 

represented in a bit vector of length 5. Hence we 
have; 

 

 

 

 

S.N
O 

BIT 
STRI
NG 

POLYNOMIAL 
FORM 

NORM
AL 
FORM 

1 00000 0 

2 00001 

3 00010 1 
4 00100 

5 01000 

6 10000 

7 00011 

8 00101 

9 01001 

10 10001 

11 11000  
12 10100  
13 10010  
14 00110  
15 01100  
16 01010  
17 00111  
18 01011  
19 10011  
20 11100  
21 11010  
22 01110  
23 10110  
24 11001  
25 10101  
26 01101  
27 01111  
28 10111  
29 11011  
30 11101  
31 11110 

32 11111 

 

The following properties of a Golois field with 
normal basis are useful in application: 

1. For any element A  

. 

This implies that normal basis 
representation of 1 is (11111). 

2. For any element A  
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. 

 addition: 

(a4,a3,a2,a1, a0 ) ± (b4,b3,b2,b1, b0) =( c4,c3,c2,c1,c0), 

where ci = ai  bi overGF(2) 

Note that in GF(25), since (a4,a3,a2,a1,a0) +( 
a4,a3,a2,a1,a0) = (0,0,0,0,0) , each element 
(a4,a3,a2,a1,a0)is its own additive inverse. Addition 
and Subtraction can be implemented efficiently as 
component wise exclusive OR in the NB 
representation.  

 squaring 

By the second property of normal basis ,squaring of 
an element a in NB representation is a cyclic shift 
operation . So the hardware implementation of 
squaring operation  multiplication 

 Let A and B be two arbitrary elements in  

in a NB representation  and C= A.B be the product 

of A and B. we denote  as a vector 

A=( a0,a1,a2,a3,a4) ,   as a vector B = 

(b0,b1,b2,b3,b4) where C= 

( c0,c1,c2,c3,c4) , then the last term c4 of C is a logic 
function of the components of A and B, that is, c4=  

(a0,a1,a2,a3,a4; b0,b1,b2,b3,b4). 

Since squaring in NB representation is a cyclic shift 
operation, we  have C2=A2.B2 or equivalently 

(c4 ,c0,c1,c2,c3)= (a4 ,a0,a1,a2,a3). (b4 ,b0,b1,b2,b3). 
Hence, the last component c3 can be obtained by the 
same function  that is, c3= (a4 ,a0,a1,a2,a3; b4 

,b0,b1,b2,b3). By squaring C repeatedly , we get  

c4= (a0,a1,a2,a3,a4; b0,b1,b2,b3,b4) 

c3= (a4 ,a0,a1,a2,a3; b4 ,b0,b1,b2,b3) 

: 

C0= (a1,a2,a3, a4, a0; b1,b2,b3, b4, b0) 

By the above equation define the Massey-Omura 
multiplier in normal basis representation. In the 
multiplier, the same logic function for computing 

the last component of c4 of the product’c’ 

Can be used to get the remaining components c3, c2, 
c1, c0 of the product sequentially. In parallel 
architechture, we can use 5 identical logic function 

for calculating all components of the products of 

the product simultaneously .the product of A and B 
in the field  is 

C =A*B=  

             

 

Thus, we can get  , 

. 

The 5 5 matrices ( ) whose elements 

,  can be obtained if we know the 

transformation between the elements of the PB and 
the elements of NB ,that is, the normal basis 
representation of the elements of the PB. 

For a normal basis there always exist a 
multiplication table T(corresponding to the 
irreducible polynomial),which is given 

by . 

Corresponding to aT matrix , there always exists a 

matrix  for any of the product c , for the 

given irreducible polynomial which defines the 
normal basis in . After the multiplication 

table T is obtained , the matrix can be 

calculated according to the above method. 

 invertion 

We know from Femat’s theorem that for any non-

zero elements , , that is, . 
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. Hence , 

. That is an inversion 

requires 4squaring 3 multiplication. This could be 
reduced further by alternative methods[12],[13]. 

4.  ELLIPTIC CURVE GROUP OPERATION: 

Elliptic group operations includes point negation, 
point subtraction, point doubling, and scalar 
multiplication. 

Let  GF(25) be a characteristic  2 finite 
field. Then a (non-super singular) elliptic curve 
E(GF(25)) over GF(25) defined by E: 

consists of the set of 

solutions or points P=(x,y) for  x,y   GF(25) . 

E: in GF(25) 

together with an extra point O called the point at 
infinity.  

The number of points on E(GF(25))  is 
denoted by # E(GF(25)). The Hasse Theorem states 
that: 

25 + 1 - 2 ≤ #  E(GF(2m)) ≤ 25 + 1+ 2 . 

It is again possible to define an addition rule to 
add points on E as the addition rule is specified as 
follows: 

1. Rule to add the point at infinty to itself: 
O + O =O 

2. Rule to add the point at infinity to any 
other point: 

(x,y) + O = O +(x,y)= (x,y) for all (x,y)   
GF(25) 

3. Rule to add two points with the same x–
coordinates when the points are either 
distinct or have x-coordinates 0: 

 

(x,y) + (x,x + y)= O for all (x,y)  GF(25) 

4. Rule to add two points with different x-
coordinates: Let (x1,y1)   GF(25)    and 
(x2,y2)   GF(25) be two points such that 

x1≠x2. Then (x1,y1)+ (x2,y2)= (x3,y3) , 
where: 

 

     x3=λ
2+ λ+x1+x2+a  in GF(25), y3 = λ.( x1+x3) +x3 + 

y1 in GF(25), and λ   1 2

1 2

y y

x x




in    GF(25). 

5. Rule to add a point to itself (double a 
point): Let (x1,y1)   GF(25)  be a point 
with x1 ≠ 0. Then (x1,y1) + (x1,y1) =(x3,y3)  
,where: 

 

     x3=λ
2+ λ+a  in GF(25) , y3 = x2

1+ (λ +1)x3  in 

GF(25) , and λ =x1 +
1

1

y

x
in GF(25). 

The set of points on E(GF(25)) forms an 
abelian group under this addition rule. Notice that 
the addition rule can always be computed 
efficiently using simple field arithmetic. 
Cryptographic schemes based on ECC rely on 
scalar multiplication of elliptic curve points. As 
before given an integer k and a point P   GF(25) , 
scalar multiplication is the process of adding P to 
itself k times. The result of this scalar multiplication 
is denoted ‘kP’. 

5. SCALAR  MULTIPLICATION : 

In the scalar multiplication  just we used 
the binary method and generated a cyclic group. 
We propose  a non-super singular elliptic curve  

 defined over GF(25). Let 
the primitive polynomial chosen for constructing 
the finite field be x5+x2+1. For example Assume 

that :P = (x 1 , y 1 ) and Q = (x 2 , y 2 ) are two 

distinct points on the elliptic curve E: 
----(1)      .  when Q -P, 

the operation P + Q=(x 3 , y 3 ) can then be derived 

as shown in the following ,in which part  (a) 
corresponds to the point addition and part (b) for 
the point doubling operation.                                 
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2

3
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yxxxy
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x
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x

yyxxQPb

yxxxy
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xx
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yyxxQPa
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
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
















 

Since the field multiplication and field inversion 
/division are much more complicated than the field 
addition, we can ignore the effect of field addition 
operation and conclude the following observations: 

  (i)  the value of      can be computed by first 

finding the inverse of  1 2 11/( ) 1/x x or x                               

and then multiplying the denominator  

121 )( yoryy   .we can also get  by directly 

employing the field division operation[8][12]. 

 (ii) whether  (a) or  (b),  P+Q will be computed in a 
sequential manner based on data dependent  

relationship among 33 ,, yandx  . And, as seen 

from Eqs. (2) and (5),the computation of  in the 
next iteration can start before the completion of  y3 
in the current time, if the inverse operation is used 
instead of employing the division  operation.  

(iii) Equations (6) can be viewed as the degenerate 
case of Eq.(3)  as  x1+x2=0  over  GF(2^5) when 
P=Q; therefore, Eqs.(3)and (6) can share the same 
hardware implementing 

axxx  21
2

3   

In essence, the elliptic curve cryptographic scheme 
requires the scalar multiplication defined as 
follows. 

PPPkPQ  ...  ,  k times 

where P denotes a point on the elliptic curve and k 
is a random integer with  

12)(1  mPorderk . Algorithm-1 gives 

the well-known double and add algorithm, also 
referred to as the binary method, to compute kP 
assuming that Q is initialized as an infinite point 
denoted by the symbol O. 

Algorithm. ; scalar multiplication-binary method 

Input: k and P  

Output: Q = kP 

/*convert the integer k into the binary 
representation */ 

}1,0{);,...,,(;. 021   itt kkkkkPkQ               

1.  Q=O; 
2. for i from t-1 down to 0 do 
3.              Q=Q+Q;  

4.     if ik =1, then Q=Q+P; 

5. return Q: 
                    Double –and-add algorithm. 

            

As seen from algorithm 1, the expected number of 
point additions is approximately 0.5t and the 
number of doubles is exactly t. The expected 
number of point additions is actually equivalent to 
the average number of nonzero coefficients of k. 
hence the cyclic group generated is; 

Using the algorithms above a elliptic curve points 
can be constructed from the curve E: 

.Consider the base point , 

(12,11),means ( where  is the root of 

polynomial x5+x2+1. Order of the base point is 11. 
Hence it is generated 110 random out put points for 
different seed value, that is, 
(12,11),(12,29),(24,22),(17,13),(3,15),(6,21),(17,23
), 
(6,30),(17,13),(17,23),(3,26),(17,23),(24,27),(12,29
),(24,27),(24,22),(24,27),(17,23),(3,26),(6,21)…….. 

6. ELLIPTIC CURVE DOMAIN 
PARAMETERS OVER  

 
Elliptic curve domain parameters over  are a 
sextuple: 

T = (m, f (x),a,b,G,n,h) 
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consisting of an integer m specifying the finite field 
  an irreducible binary polynomial f (x) of 

degree m specifying the representation of  , 
two elements a,b   specifying the elliptic 
curve E(  ) defined by the equation: 

E: over  
a base point G = (xG,yG) on E(  ), a prime n 
which is the order of G, and an integer h which is 
the 
cofactor h = #E(  )/n ;that is, 

Where      m=5 
f(x)=x5+x2+1( irreducible) 

a=1 
b=1(  

n=11 
G=(12,11) 

h=110/11=10 
 
Elliptic curve domain parameters over  . 
precisely specify an elliptic curve and base point. 
This is 
necessary to precisely define public-key 
cryptographic schemes based on ECC. 
Section 6.1.2.1 describes how to generate elliptic 
curve domain parameters over  , and Section 
6.1.2.2 describes how to validate elliptic curve 
domain parameters over  . 
 
 6.1.2.1 Elliptic Curve Domain Parameters over 

 . Generation Primitive 
 
Elliptic curve domain parameters over  . should 
be generated as follows: 
Input: The approximate security level in bits 
required from the elliptic curve domain parameters 
. 
Output: Elliptic curve domain parameters over 

 . 
T = (m, f (x),a,b,G,n,h) 

such that taking logarithms on the associated 
elliptic curve is believed to require approximately 2t 
operations. 
Actions: Generate elliptic curve domain parameters 
over   as follows: 
  
  1. Selecting a binary irreducible polynomial f (x) 
of degree m from to determine the representation of 

 . 
  2. Selecting elements a,b     to determine 
the elliptic curve E(  ) defined by the 
equation: 

E : y2+xy = x3+ax2+b in  . 

    a base point G = (xG,yG) on E(  ), a prime 
n which is the order of G, and an integer h which is 
    the cofactor h = #E(  ) n , subject to the 
following constraints: 
 

  in   

 #E(  ) . 

   (mod n) for any 1  
B < 20. 

  h  4. 
 

  3. Output T = (m, f (x),a,b,G,n,h). 
This primitive also allows any of the known curve 
selection methods to be used. However to foster 
interoperability it is strongly recommended that 
implementers use one of the recommended elliptic 
curve domain parameters over  .  
 
6.1.2.2 Validation of Elliptic Curve Domain 
Parameters over  . 
 
Frequently it is either necessary or desirable for an 
entity using elliptic curve domain parameters over 

 to receive an assurance that the parameters 
are valid—that is that they satisfy the arithmetic 
requirements of elliptic curve domain parameters—
either to prevent malicious insertion of insecure 
parameters, or to detect inadvertent coding or 
transmission errors. 
There are four acceptable methods for an entity U 
to receive an assurance that elliptic curve domain 
parameters over   are valid. Only one of the 
methods must be supplied, although in many cases 
greater security may be obtained by carrying out 
more than one of the methods. 
The four acceptable methods are: 
 
  1. U performs validation of the elliptic curve 
domain parameters over  . itself using the 
validation      primitive described in Section 
6.1.2.2.1. 
 
  2. U generates the elliptic curve domain 
parameters over   itself using a trusted 
system using the      primitive specified in Section 
6.1.2.1. 
 
  3. U receives assurance in an authentic manner 
that a party trusted with respect to U’s use of the 
    elliptic curve domain parameters over  . 
has performed validation of the parameters using 
the 
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    validation primitive described in Section 
6.1.1.2.1. 
 
  4. U receives assurance in an authentic manner 
that a party trusted with respect to U’s use of the 
    elliptic curve domain parameters over  . 
generated the parameters using a trusted system 
using   the primitive specified in Section 6.1.2.1. 
 
6.1.2.2.1 Elliptic Curve Domain Parameters 

over  . Validation Primitive 
 
The elliptic curve domain parameters over  . 
validation primitive should be used to check elliptic 
curve domain parameters over  . are valid as 
follows: 
Input: Elliptic curve domain parameters over  . 

T = (m, f (x),a,b,G,n,h) 
Output: An indication of whether the elliptic curve 
domain parameters are valid or not — either ‘valid’ 
or ‘invalid’. 
Actions: Validate the elliptic curve domain 
parameters over  as follows: 
   
  1. Check that f (x) is a binary irreducible 
polynomial of degree m . 
  2. Check that a, b, xG, and yG are binary 
polynomials of degree m-1 or less. 
  3. Check that b  0 in  . 
  4. Check that yG

2+xGyG = xG
3+axG

2+b in  . 
  5. Check that n is prime.  
  6. Check that h  4, and that 

. 

  7. Check that nG = O. 
  8. Check that   (mod n) for any 1  B < 
20, and that nh  . 
  9. If any of the checks fail, output ‘invalid’, 
otherwise output ‘valid’. 
 
Steps 1 and 8 above excludes the known weak 
classes of curves which are susceptible to either the 
Menezes-Okamoto-Vanstone attack, or the Frey-
Ruck attack, or the Semaev-Smart-Satoh-Araki 
attack,or to attacks based on the Weil descent. If the 
elliptic curve domain parameters have been 
generated verifiably at random using SHA-1 as 
described in ANSI X9.62 [24], it may also be 
checked that a and b have been correctly derived 
from the random seed. 
 
 
 
 

6.2 Elliptic Curve Key Pairs 
 
All the public-key cryptographic schemes described 
in this document use key pairs known as elliptic 
curve key pairs. 
Given some elliptic curve domain parameters T = 
(p,a,b,G,n,h) or (m, f (x),a,b,G,n,h), an elliptic 
curve key pair (d,Q) associated with T consists of 
an elliptic curve secret key d which is an integer in 
the interval [1,n-1], and an elliptic curve public key 
Q = (xQ,yQ) which is the point Q = dG. 
Section 4.2.1 describes how to generate elliptic 
curve key pairs, Section 4.2.2 describes how to 
validate elliptic curve public keys. 
 
 6.2.1 Elliptic Curve Key Pair Generation 

Primitive 
 
Elliptic curve key pairs should be generated as 
follows: 
Input: Valid elliptic curve domain parameters T = 
(p,a,b,G,n,h) or (m, f (x),a,b,G,n,h). 
Output: An elliptic curve key pair (d,Q) associated 
with T. 
Actions: Generate an elliptic curve key pair as 
follows: 
1. Randomly or pseudo randomly select an integer 
d in the interval [1,n-1]. 
2. Calculate Q = dG. 
3. Output (d,Q). 
 
6.2.2 Validation of Elliptic Curve Public Keys 
 
Frequently it is either necessary or desirable for an 
entity using an elliptic curve public key to receive 
an assurance that the public key is valid — that is 
that it satisfies the arithmetic requirements of an 
elliptic curve public key — either to prevent 
malicious insertion of an invalid public key to 
enable attacks like small subgroup attacks, or to 
detect inadvertent coding or transmission errors. 
 
There are four acceptable methods for an entity U 
to receive an assurance that an elliptic curve public 
key is valid. Only one of the methods must be 
supplied, although in many cases greater security 
may be obtained by carrying out more than one of 
the methods. 
 
The four acceptable methods are: 
1. U performs validation of the elliptic curve public 
key itself using the public key validation primitive 
described in Section 6.2.2.1. 
 
2. U generates the elliptic curve public key itself 
using a trusted system. 



Journal of Theoretical and Applied Information Technology 
15th February 2012. Vol. 36 No.1 

 © 2005 - 2012 JATIT & LLS. All rights reserved.                                                                                                                

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
36 

 

 
3. U receives assurance in an authentic manner that 
a party trusted with respect to U’s use of the 
elliptic curve public key has performed validation 
of the public key using the public key validation 
primitive described in Section 6.2.2.1. 
 
4. U receives assurance in an authentic manner that 
a party trusted with respect to U’s use of the 
elliptic curve public key generated the public key 
using a trusted system. 
 
Usually whenU accepts another party’s assurance 
that an elliptic curve public key is valid, the other 
party is a CA who validated the public key during 
the certification process. Occasionally U may also 
receive assurance from another party other than a 
CA. For example, in the Station-to-Station protocol 
described in ANSI X9.63 [4], U receives an 
ephemeral public key from V. V is trusted with 
respect to U’s use of the public key because U is 
attempting to establish a key with V and U only 
combines the public key with its own ephemeral 
key pair. It is therefore acceptable in this 
circumstance for U to accept assurance from V that 
the public key is valid because the public key is 
received in a signed message. 
 
6.2.2.1 Elliptic Curve Public Key Validation 

Primitive 
 
The elliptic curve public key validation primitive 
should be used to check an elliptic curve public key 
is valid as follows: 
Input: Valid elliptic curve domain parameters T = 
(p,a,b,G,n,h) or (m, f (x),a,b,G,n,h), and an elliptic 
curve public key Q = (xQ , yQ) associated with T. 
Output: An indication of whether the elliptic curve 
public key is valid or not—either ‘valid’ or 
‘invalid’. 
Actions: Validate the elliptic curve public key as 
follows: 
  1. Check that Q  O. 
  2. If T represents elliptic curve domain parameters 
over Fp, check that xQ and yQ are integers in the 
     range [1,p-1], and that: 

yQ
2  xQ

3+axQ+b (mod p): 
  3. If T represents elliptic curve domain parameters 
over , check that xQ and yQ are     binary     
 polynomials of degree at most m-1, and that: 

yQ
2+xQyQ = xQ

3+axQ
2+b in  , 

  4. Check that n Q = O. 
  5. If any of the checks fail, output ‘invalid’, 
otherwise output ‘valid’. 

     In the above routine, steps 1, 2, and 3 check that 
Q is a point on E other than the point at     infinity,    
 and step 4 checks that Q is a scalar multiple of G. 
 

7.  ENCRYPTION  SCHEMES 
This section specifies the public-key 

encryption schemes based on ECC supported in this 
document.Public-key encryption schemes are 
designed to be used by two entities — a sender U 
and a recipient V —when U wants to send a 
message M to V confidentially, and V wants to 
recover M. 

 
Here public-key encryption schemes are 

described in terms of an encryption operation, a 
decryption operation, and associated setup and key 
deployment procedures. U and V should use the 
scheme as follows when they want to communicate. 
First U and V should use the setup procedure to 
establish which options to use the scheme with, 
then V should use the key deployment procedure to 
select a key pair andU should obtain V’s public 
key—U will use V’s public key to control the 
encryption procedure, and V will use its key pair to 
control the decryption operation. Then each timeU 
wants to send a message M to V, U should apply the 
encryption operation to M under V’s public key to 
compute an encryption or ciphertext C of M, and 
convey C to V. Finally whenV receives C,V should 
apply the decryption operation to C under its key 
pair to recover the message M. 

 
Loosely speaking public-key encryption 

schemes are designed so that it is hard for an 
adversary who does not possess V’s secret key to 
recover information about messages (other than 
their length) from their ciphertexts. Thus the 
schemes provide data confidentiality. 

 
The public-key encryption schemes 

specified in this section may be used to encrypt 
messages of any kind. They may be used to 
transport keying data from U to V, or to encrypt 
information data directly. This flexibility allows the 
schemes to be applied in a broad range of 
cryptographic systems. Nonetheless it is envisioned 
that the majority of applications will apply the 
schemes for key transport, and subsequently use the 
transported key in conjunction with a symmetric 
bulk encryption scheme to encrypt information 
data. This is the traditional usage for public-key 
encryption schemes. 

 
The only public-key encryption scheme supported 
at this time is the Elliptic Curve Integrated 
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Encryption Scheme (ECIES). ECIES is specified in 
Section7.1. 
 
7.1 Elliptic Curve Integrated Encryption 

Scheme 
 
The Elliptic Curve Integrated Encryption Scheme 
(ECIES) is a public-key encryption scheme based 
on ECC. It is designed to be semantically secure in 
the presence of an adversary capable of launching  
chosen-plaintext and chosen-ciphertext attacks. 
 
(Note that the Elliptic Curve Integrated Encryption 
Scheme has a complex naming history. It is 
occasionally known instead as the Elliptic Curve 
Augmented Encryption Scheme or simply the 
Elliptic Curve Encryption Scheme.) 
 
The setup procedure for ECIES is specified in 
Section 7.1.1, the key deployment procedure is 
specified in Section 7.1.2, the encryption operation 
is specified in Section 7.1.3, and the decryption 
operation is specified in Section 7.1.4. 
 
7.1.1 Scheme Setup 
 
U and V should perform the following setup 
procedure to prepare to use ECIES: 
 
1. V should establish which of the key derivation 
functions to use, and select any options involved in 
the operation of the key derivation function. Let 
KDF denote the key derivation function chosen. (In 
this edition the only possibility is ANSI-X9.63-
KDF with the option SHA-1[27].) 
 
2. V should establish which of the MAC schemes  
(Loosely speaking, MAC schemes are designed so 
that it is hard for an adversary to forge valid 
message and tag pairs so that the schemes provide 
data origin authentication and data integrity.The 
list of supported MAC schemes at this time is: 
HMAC–SHA-1–160 with 20 octet or 160 bit keys 
HMAC–SHA-1–80 with 20 octet or 160 bit keys 
Both these MAC schemes are specified in IETF 
RFC 2104 [21] and ANSI X9.71 [26] based on the 
hash function SHA-1 specified in FIPS 180-1 [22] ) 
to use, and select any 
options involved in the operation of the MAC 
scheme. Let MAC denote the MAC scheme chosen, 
mackeylen denote the length in octets of the keys 
used by MAC, and maclen denote the length in 
octets of tags produced by MAC. 
 
3. V should establish which of the symmetric 
encryption schemes to use,and select any options 

involved in the operation of the encryption scheme. 
Let ENC denote the encryption scheme chosen, and 
enckeylen denote the length in octets of the keys 
used by ENC. 
 
4. V should establish whether to use the ‘standard’ 
elliptic curve Diffie-Hellman primitive , or the 
elliptic curve cofactor Diffie-Hellman primitive . 
 
5. V should establish elliptic curve domain 
parameters T = (p,a,b,G,n,h) or (m, f (x),a,b,G,n,h) 
at the desired security level. The elliptic curve 
domain parameters T should be generated using 
the primitive specified in Section 6.1.1.1 or the 
primitive specified in Section6.1.2.1. V should 
receive an assurance that the elliptic curve domain 
parameters T are valid using one of the methods 
specified in Section 6.1.1.2 or Section 6.1.2.2. 
 
6. U should obtain in an authentic manner the 
selections made by V — the key derivation function 
KDF, the MAC scheme MAC, the symmetric 
encryption scheme ENC, the elliptic curve domain 
parameters T, and an indication whether to use the 
‘standard’ elliptic curve Diffie-Hellman primitive 
or the cofactor Diffie-Hellman[27]. U should also 
receive an assurance that the elliptic curve 
domain parameters T are valid using one of the 
methods specified in Section 6.1.1.2 or Section 
6.1.2.2. 
 
7. U should establish whether or not to represent 
elliptic curve points using point compression. 
 
7.1.2 Key Deployment 
 
U and V should perform the following key 
deployment procedure to prepare to use ECIES: 
1. V should establish an elliptic curve key pair (dV 
,QV ) associated with the elliptic curve domain 
parameters T established during the setup 
procedure. The key pair should be generated using 
the 
primitive specified in Section 6.2.1. 
 
2. U should obtain in an authentic manner the 
elliptic curve public key QV selected by V. If the 
‘standard’ elliptic curve Diffie-Hellman primitive is 
being used,U should receive an assurance that 
QV is valid using one of the methods specified in 
Section 6.2.2, and if the elliptic curve cofactor 
Diffie-Hellman primitive is being used, U should 
receive an assurance that QV is at least partially 
valid using one of the methods specified in Section 
6.2.2 or Section 6.2.3. 
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7.1.3 Encryption Operation 
 
U should encrypt messages using ECIES using the 
keys and parameters established during the setup 
procedure and the key deployment procedure as 
follows: 
 
Input: The input to the encryption operation is: 
1. An octet string M which is the message to be 
encrypted. 
2. (Optional) Two octet strings SharedInf o1 and 
SharedInf o2 which consist of some data shared by 
U and V. 
 
Output: An octet string C which is an encryption 
of M, or ‘invalid’. 
Actions: Encrypt M as follows: 
 
1. Select an ephemeral elliptic curve key pair (k,R) 
with R=(xR,yR) associated with the elliptic curve 
domain parameters T established during the setup 
procedure. Generate the key pair using the key pair 
generation primitive specified in Section 6.2.1. 
 
2. Convert R to an octet string R using the 
conversion routine specified in Section4.3. Decide 
whether or not to represent R using point 
compression according to the convention 
established 
during the setup procedure. 
 
3. Use one of the Diffie-Hellman primitives 
specified [27] to derive a shared secret field 
element z  from the ephemeral secret key k and 
V’s public key QV obtained during the key 
deployment procedure. If the Diffie-Hellman 
primitive outputs ‘invalid’, output ‘invalid’ and 
stop. 
Decide whether to use the ‘standard’ elliptic curve 
Diffie-Hellman primitive or the elliptic curve 
cofactor Diffie-Hellman primitive[53] according to 
the convention established during the setup 
procedure. 
 
4. Convert z  to an octet string Z using the 
conversion routine specified in Section 4.5. 
 
5. Use the key derivation function KDF established 
during the setup procedure to generate keying 
data K of length enckeylen+mackeylen octets from 
Z and [SharedInf o1]. If the key derivation 
function outputs ‘invalid’, output ‘invalid’ and stop. 
 
6. Parse the leftmost enckeylen octets of K as an 
encryption key EK and the rightmost mackeylen 

octets of K as a MAC key MK. 
 
7. Use the encryption operation of the symmetric 
encryption scheme ENC established during the 
setup procedure to encrypt M under EK as 
ciphertext EM. If the encryption scheme outputs 
‘invalid’, 
output ‘invalid’ and stop. 
 
8. Use the tagging operation of the MAC scheme 
MAC established during the setup procedure to 
compute the tag D on EM [SharedInf o2] under 
MK. If the MAC scheme outputs ‘invalid’, output 
‘invalid’ and stop. 
 
9. Output C = R EM D. 
 
7.1.4 Decryption Operation 
 
V should decrypt ciphertext using ECIES using the 
keys and parameters established during the setup 
procedure and the key deployment procedure as 
follows: 
Input: The input to the decryption operation is: 
1. An octet string C which is the ciphertext. 
2. (Optional) Two octet strings SharedInf o1 and 
SharedInf o2 which consist of some data shared by 
U and V. 
Output: An octet string M which is the decryption 
of C, or ‘invalid’. 
Actions: Decrypt C as follows: 
 
1. If the leftmost octet of C is 0216 or 0316, parse the 
leftmost octets of C as an octet 
string R, the rightmost maclen octets of C as an 
octet string D, and the remaining octets of C as an 
octet string EM. If the leftmost octet of C is 0416, 
parse the leftmost octets of C as an 
octet string R, the rightmost maclen octets of C as 
an octet string D, and the remaining octets of C 
as an octet string EM. If the leftmost octet of C is 
not 0216, 0316, or 0416, output ‘invalid’ and stop. 
 
2. Convert the octet string R to an elliptic curve 
point R = (xR,yR) associated with the elliptic curve 
domain parameters T established during the setup 
procedure using the conversion routine specified in 
Section4.4. If the conversion routine outputs 
‘invalid’, output ‘invalid’ and stop. 
 
3. If the ‘standard’ elliptic curve Diffie-Hellman 
primitive is being used[27], receive an assurance 
that R is a valid elliptic curve public key using one 
of the methods specified in Section 6.2.2. If the 
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elliptic curve cofactor Diffie-Hellman primitive is 
being used, receive an assurance that R is at 
least a partially valid elliptic curve public key using 
one of the methods specified in Section 6.2.2 
Section 6.2.3. If an appropriate assurance is not 
obtained, output ‘invalid’ and stop. 
 
4. Use one of the Diffie-Hellman primitives to 
derive a shared secret field element z  from V’s 
secret key dV established during the key deployment 
procedure and the public key R. If the Diffie-
Hellman primitive outputs ‘invalid’, output 
‘invalid’ and stop. Decide whether to use the 
‘standard’ elliptic curve Diffie-Hellman primitive 
or the elliptic curve cofactor Diffie-Hellman 
primitive [27]according to the convention 
established during the setup procedure. 
 
5.Convert z to an octet string Z using the 

conversion routine specified in Section 4.5. 

6. Use the key derivation function KDF established 
during the setup procedure to generate keying 
data K of length enckeylen+mackeylen octets from 
Z and [SharedIn f o1]. If the key derivation 
function outputs ‘invalid’, output ‘invalid’ and stop. 
 
7. Parse the leftmost enckeylen octets of K as an 
encryption key EK and the rightmost mackeylen 
octets of K as a MAC key MK. 
 
8. Use the tag checking operation of the MAC 
scheme MAC established during the setup 
procedure 
to check that D is the tag on EM [SharedIn f o2] 
under MK. If the MAC scheme outputs ‘invalid’, 
output ‘invalid’ and stop. 
 
9. Use the decryption operation of the symmetric 
encryption scheme ENC established during the 
setup procedure to decrypt EM under EK as M. If 
the encryption scheme outputs ‘invalid’, output 
‘invalid’ and stop. 
 
10. Output M. 
 
Note that when implementing the above decryption 
operation on a constrained device, it may be 
desirable to perform the symmetric decryption 
operation (step 9) before the tag checking operation 
(step 8). This variant is allowed. However 
implementers of this variant should guard against 
the possibility that the output of step 9 is available 
to attackers regardless of the output of step 8. 
 

8. CONCLUTION: 
 
Elliptic curve over finite field are being extensively 
used in the design of public-key cryptographic 
schemes. Due to the emerging market of electronic 
commerce public-key cryptosystem gain more and 
more attention. Unlike for military purposes there is 
a need of flexible user groups. By this  article we 
contributed a secure cryptosystem choosing the 
non-super-singular-curve  
E: over  as per the 
guidelines given the ear liar works. 
 
9. LIMITATION AND FUTURE WORK: 
 
In our article, we tried our level best to implement 
The Elliptic curve cryptography in the finite field 
GF(2^5) . We plan  to generalize the results ,that is 
, implementation in the binary field GF(2^ n). Also 
the speed of the computations can be compared 
between normal and polynomial basis.. 
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