
Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

26

AN ELLIPTIC CURVE ARITHMETIC IN THE NORMAL
BASIS OF GF(2^5) TO USE IN ECC

A.R.RISHIVARMAN B. PARTHASARATHY M.THIAGARAJAN

1. Assitant Professor, Mathematics,Dr.Pauls Engineering college,Villupuram, TN,India
2. Professor ,Mathematics, Mailam Engineering College,Villupuram,TN,India

3. Professor ,Mathematics ,SASTRA University,Tanjore,TN,India

Email: 1rishi_130777@yahoo.co.in, 2mlampmlc@gmail.com, 3m_thiyagarajan@yahoo.com

ABSTRACT

Since the introduction of public-key cryptography by Diffe and Hellman in 1976, the potential for the use
of the discrete logarithm problem in public-key cryptosystems has been recognized. Although the discrete
logarithm problem as first employed by Diffe and Hellman was defined explicitly as the problem of finding
logarithms with respect to a generator in the multiplicative group of the integers module a prime, this idea
can be extended to arbitrary groups and in particular, to elliptic curve groups. The resulting public – key
systems provide relatively small block size, high speed, and high security. This paper explores an efficient
performance of GF(25) in the normal basis representation and an elliptic curve cryptosystems using a non-
super singular curve over the field; so this scheme is of less computation cost which is valuable in
applications with limited memory, communications bandwidth or computing power.

Key words: Secret Sharing, Elliptic Curve Cryptography (ECC), GF(25), Irreducible Polynomial, ECDLP.

1. INTRODUCTION:
There are three families of public–key

algorithms that have considerable significance in
current data security practice. They are integer
factorization, discrete logarithm, and elliptic curve
based schemes [2]-[3]. Integer factorization based
schemes such as RSA [4] and discrete logarithm
based schemes such as Diffe -Hellman [5]
provide intuitive ways of implementation.
However both methods admit of sub-exponential
algorithm of cryptanalysis [7]. In this regard
elliptic curve cryptography, first introduced
Koblitz [2] and Miller [3] may be the most
cryptographic method available [6]-[8]. The best
current brute force algorithm for cryptanalysis of
ECC require O(n1/2) steps where n is the order of
the additive group. For example , using the best
current brute force algorithms ECC with a key

size of 173 bits provides the same level of
cryptographic security as RSA with a key size of
1024 bits. This results in smaller system
parameters band width savings, faster
implementations and lower power consumptions.
In addition, elliptic curve over finite fields offer
an inexhaustible supply finite abelian groups, thus
allowing more flexible fields selections than
conventional discrete logarithm schemes. Because
of these advantages ECC has attracted extensive
attention in recent years [9]-[13]. This paper
explores an efficient performance of GF(25) in the
normal basis representation and an elliptic curve
cryptosystems using a non-super singular curve E:

over the field GF() ,

an irreducible polynomial taken for construction
of the field is .

2. DATA TYPES AND CONVERSIONS:

The schemes specified in this document

involve operations using several different data
types. This section lists the different data types and
describes how to convert one data type to another

.Five data types are employed in this document:
three types associated with elliptic curve arithmetic
-integers, field elements, and elliptic curve points -
as well as octet strings which are used to
communicate and store information, and bit strings
which are used by some of the primitives.
Throughout this document the above data types are

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

27

regarded as abstract data types consisting of distinct
sets of elements - so that, for example, an octet
string is regarded as distinct from a bit string. This
formalism helps to clarify the requirements placed
on implementations and helps avoid subtle coding
errors. Frequently it is necessary to convert one of
the data types into another - for example to
represent an elliptic curve point as an octet string.
The remainder of this section is devoted to
describing how the necessary conversions should
be performed.

2.1 BitString-to-OctetString Conversion

Bit strings should be converted to octet
strings as described in this section. Informally the
idea is to pad the bit string with 0’s on the left to
make its length a multiple of 8, then chop the result
up into octets. Formally the conversion routine is
specified as follows.
Input: A bit string B of length blen bits.
Output: An octet string M of length

octets.

Actions: Convert the bit string
to an octet string

 as follows:

1.For 0 , let:

2. Let M0 have its leftmost 8(mlen)-blen bits set to
0, and its rightmost (8-(8(mlen)-blen) bits

set to B0B1 …B8-8(mlen)+blen-1.
3. Output M.

2.2 OctetString-to-BitString Conversion

Octet strings should be converted to bit
strings as described in this section. Informally the
idea is simply to view the octet string as a bit string
instead. Formally the conversion routine is
specified as follows:
Input: An octet string M of length mlen octets.
Output: A bit string B of length blen= 8(mlen)
bits.
Actions: Convert the octet string M== M0M1
….Mmlen-1 to a bit string B= B0B1…Bblen-1 as
follows:

1.For set:

2. Output B.

2.3.EllipticCurvePoint-to-OctetString

Conversion

Elliptic curve points should be converted to octet
strings as described in this section. Informally, if
point compression is being used, the idea is that the
compressed y-coordinate is placed in the leftmost
octet of the octet string along with an indication
that point compression is on, and the x-coordinate is
placed in the remainder of the octet string;
otherwise if point compression is off, the leftmost
octet indicates that point compression is off, and
remainder of the octet string contains the x-
coordinate followed by the y-coordinate. Formally
the conversion routine is specified as follows:
Setup: Decide whether or not to represent points
using point compression.

Input: A point P on an elliptic curve over Fq
defined by the field elements a,b.
Output: An octet string M of length mlen octets
where mlen= 1 if P= O, mlen=[(log2 q) /8]+1 if
P O and point compression is used, and
mlen =2[(log2 q)/8]+1 if P O and point
compression is not used.
Actions: Convert P to an octet string M =
M0M1…Mmlen-1 as follows:

1. If P= O, output M = 0016.
2. If P =(xP yP) O and point compression is being
used, proceed as follows:

2.1. Convert the field element xP to an
octet string X of length[(log2q / 8)] octets
using the conversion routine specified in
Section 2.3.5.
2.2. Derive from yP a single bit as
follows (this allows the y-coordinate to be
represented compactly using a single bit):

2.2.1. If q is an odd prime, set
 (mod 2).
2.2.2. If q

set otherwise compute

such
that and set = z0

2.3. If assign the value 0216 to the
single octet Y. If 1, assign the value
0316 to the single octet Y.
2.4. Output M =Y X.

3. If P (xP,yP) O and point compression is not
being used, proceed as follows:

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

28

3.1. Convert the field element xP to an
octet string X of length [(log2 q)/8] octets
using the conversion routine specified in
Section 4.5.
3.2. Convert the field element yP to an
octet string Y of length [(log2 q)/8] octets
using the conversion routine specified in
Section 4.5.
3.3. Output M=0416||X||Y.

2.4 OctetString-to-EllipticCurvePoint
Conversion

Octet strings should be converted to

elliptic curve points as described in this section.
Informally the idea is that, if the octet string
represents a compressed point, the compressed y-
coordinate is recovered from the leftmost octet, the
x-coordinate is recovered from the remainder of the
octet string, and then the point compression process
is reversed; otherwise the leftmost octet of the octet
string is removed, the x-coordinate is recovered
from the left half of the remaining octet string, and
the y-coordinate is recovered from the right half of
the remaining octet string. Formally the conversion
routine is specified as follows:

Input: An elliptic curve over Fq defined by the
field elements a,b , and an octet string M which is
either the single octet 0016, an octet string of length
mlen=[(log2 q)/8]+1, or an octet string of length
mlen =2[(log2 q)/8]+1.
Output: An elliptic curve point P, or ‘invalid’.
Actions: Convert M to an elliptic curve point P as
follows:
1. If M =0016, output P= O.
2. If M has length [(log2 q)/8]+1 octets, proceed as
follows:

2.1. Parse M=Y ||X as a single octet Y
followed by [(log2 q)/8] octets X.

2.2. Convert X to a field element xP of Fq
using the conversion routine specified in
Section 2.3.6.Output ‘invalid’ and stop if
the routine outputs ‘invalid’.
2.3. If Y= 02, set =0 and if Y =03,

set Otherwise output ‘invalid’ and stop.
2.4. Derive from xP and an elliptic

curve point P=(xP , yP), where:
2.4.1. If q= p is an odd prime,

compute the field element
xP+b

(mod p) and compute a square
root of modulo p. Output
‘invalid’ and stop if there are no
square roots of modulo p,

otherwise set = if
(mod 2), and set if

2)
2.4.2. If q= 2m and xP== 0, output

yp= in
2.4.3. If q= 2m and xP 0,

compute the field element xP+a+bxP
-2 in

 and find an element

 such that
z2+z= in

 Output ‘invalid’ and stop if no
such z exists, otherwise set xP =
yP z in z0= and set
xP(z+1) in if z0 .

2.5. Output P=(xP ,yP).
3. If M has length 2[(log2 q)/8]+1 octets, proceed
as follows:

3.1. Parse M = W || X || Y as a single octet
W followed by [(log2 q)/8] octets X followed by

[(log2 q)/8] octets Y.
3.2. Check that W= = 0416. If W 0416,

output ‘invalid’ and stop.
3.3. Convert X to a field element xP of Fq
using the conversion routine specified in
Section 4.6.Output ‘invalid’ and stop if the
routine outputs ‘invalid’.
3.4. Convert Y to a field element yP of Fq
using the conversion routine specified in
Section 4.6.Output ‘invalid’ and stop if
the routine outputs ‘invalid’.
3.5. Check that P=(xP ,yP) satisfies the

defining equation of the elliptic curve.
3.6. Ou tput P=(xP ,yP).

2.5 FieldElement-to-OctetString Conversion

Field elements should be converted to
octet strings as described in this section. Informally
the idea is that, if the field is Fp, convert the
integer to an octet string, and if the field is F2

m,
view the coefficients of the polynomial as a bit
string with the highest degree term on the left and
convert the bit string to an octet string. Formally
the conversion routine is specified as follows:
Input: An element a of the field Fq.
Output: An octet string M of length
mlen =[(log2 q)/8] octets.
Actions: Convert a to an octet string
M = M0M1 …Mmlen-1 as follows:

1. If q =p is an odd prime, then a is an
integer in the interval[0,p-1]. Convert a to
M using the conversion routine specified
in Section 4.7. Output M.

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

2. If q=2m then
 is a

binary polynomial. Convert a to M as
follows:

2.1. For , let:
 Mi=

2.2. Let M0 have its leftmost

8(mlen-)m bits set to 0,
and its rightmost
 8-8(mlen m) bits set to

.

2.3. Output M.

2.6 OctetString-to-FieldElement Conversion

Octet strings should be converted to field
elements as described in this section. Informally the
idea is that, if the field is Fp, convert the octet
string to an integer, and if the field is , use the
bits of the octet string as the coefficients of the
binary polynomial with the rightmost bit as the
constant term. Formally the conversion routine is
specified as follows:
Input: An indication of the field Fq used and an
octet string M of length mlen =[(log2 q)/8] octets.
Output: An element a in Fq, or ‘invalid’.
Actions: Convert with

to a field element a as follows:
1. If q = p is an odd prime, then a needs

to be an integer in the interval
[0,p-1][Convert M to an integer a
using the conversion routine specified
in Section4.8. Output ‘invalid’ and
stop if a does not lie in the interval [
0,p-1]], otherwise output a.

2. If q = 2m, then a needs to be a binary
polynomial of degree m-1 or less. Set the
field element a to be

 with:

Output ‘invalid’ and stop if the leftmost
8(mlen) m bits of M0 are not all 0,
otherwise output a.

2.7 Integer-to-OctetString Conversion

Integers should be converted to octet
strings as described in this section. Informally the
idea is to represent the integer in binary then
convert the resulting bit string to an octet string.

Formally the conversion routine is specified as
follows:
Input: A non-negative integer x together with the
desired length mlen of the octet string. It must be
the case that:
Output: An octet string M of length mlen octets.
Actions: Convert

represented in base to an octet string
as follows:

1. For , set:

 2. Output M.

2.8 OctetString-to-Integer Conversion

Octet strings should be converted to
integers as described in this section. Informally the
idea is simply to view the octet string as the base
256 representation of the integer. Formally the
conversion routine is specified as follows:
Input: An octet string M of length mlen octets.
Output: An integer x.
Actions: Convert to an
integer x as follows:

1. View Mi as an integer in the range [0,255]
and set:

 2. Output x.

2.9 FieldElement-to-Integer Conversion

Field elements should be converted to
integers as described in this section. Informally the
idea is that,if the field is F p no conversion is
required, and if the field is Ffirst convert the
binary polynomial to an octet string then convert
the octet string to an integer. Formally the
conversion routine is specified as follows:
Input: An element a of the field Fq.
Output: An integer x.
Actions: Convert the field element a to an integer
x as follows:
 1. If q = p is an odd prime, then a must be an
integer in the interval[[0,P 1]]. Output x = a.
 2. If q = 2m then a must be a binary polynomial of
degree m-1,i.e.

 , Set:

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

30

 Output x.

3. GOLOIS FIELD ARITHMETIC: GF(25)

GF(25) can be viewed as a vector space of
dimension 5 over the field GF(2). There are several
bases known for GF(25) . The most common bases
are polynomial bases and nonmal bases . with a
polynomial basis , the field elements are
represented by binary polynomials modulo an
irreducible binary polynomial of degree 5 . given an
irreducible polynomial

An element A is represented either as

A() or as (, where

 and , the root of [28]-[29]. Here

the basis is { 1, . It has been proved that

there always exists a normal basis for the given
finite field GF(25) which is of the form

N={ } where is aroot of the

irreducible polynomial over

GF(2) and elements of the set are linearly
independent . we say that generates the normal

basis N , or is a normal elements of

. will equal to for some . Then every

element A is represented as

Where GF(2). A field element can thus be

represented in a bit vector of length 5. Hence we
have;

S.N
O

BIT
STRI
NG

POLYNOMIAL
FORM

NORM
AL
FORM

1 00000 0

2 00001

3 00010 1
4 00100

5 01000

6 10000

7 00011

8 00101

9 01001

10 10001

11 11000
12 10100
13 10010
14 00110
15 01100
16 01010
17 00111
18 01011
19 10011
20 11100
21 11010
22 01110
23 10110
24 11001
25 10101
26 01101
27 01111
28 10111
29 11011
30 11101
31 11110

32 11111

The following properties of a Golois field with
normal basis are useful in application:

1. For any element A

.

This implies that normal basis
representation of 1 is (11111).

2. For any element A

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

31

.

 addition:

(a4,a3,a2,a1, a0) ± (b4,b3,b2,b1, b0) =(c4,c3,c2,c1,c0),

where ci = ai  bi overGF(2)

Note that in GF(25), since (a4,a3,a2,a1,a0) +(
a4,a3,a2,a1,a0) = (0,0,0,0,0) , each element
(a4,a3,a2,a1,a0)is its own additive inverse. Addition
and Subtraction can be implemented efficiently as
component wise exclusive OR in the NB
representation.

 squaring

By the second property of normal basis ,squaring of
an element a in NB representation is a cyclic shift
operation . So the hardware implementation of
squaring operation multiplication

 Let A and B be two arbitrary elements in

in a NB representation and C= A.B be the product

of A and B. we denote as a vector

A=(a0,a1,a2,a3,a4) , as a vector B =

(b0,b1,b2,b3,b4) where C=

(c0,c1,c2,c3,c4) , then the last term c4 of C is a logic
function of the components of A and B, that is, c4=

(a0,a1,a2,a3,a4; b0,b1,b2,b3,b4).

Since squaring in NB representation is a cyclic shift
operation, we have C2=A2.B2 or equivalently

(c4 ,c0,c1,c2,c3)= (a4 ,a0,a1,a2,a3). (b4 ,b0,b1,b2,b3).
Hence, the last component c3 can be obtained by the
same function that is, c3= (a4 ,a0,a1,a2,a3; b4

,b0,b1,b2,b3). By squaring C repeatedly , we get

c4= (a0,a1,a2,a3,a4; b0,b1,b2,b3,b4)

c3= (a4 ,a0,a1,a2,a3; b4 ,b0,b1,b2,b3)

:

C0= (a1,a2,a3, a4, a0; b1,b2,b3, b4, b0)

By the above equation define the Massey-Omura
multiplier in normal basis representation. In the
multiplier, the same logic function for computing

the last component of c4 of the product’c’

Can be used to get the remaining components c3, c2,
c1, c0 of the product sequentially. In parallel
architechture, we can use 5 identical logic function

for calculating all components of the products of

the product simultaneously .the product of A and B
in the field is

C =A*B=

Thus, we can get ,

.

The 5 5 matrices () whose elements

, can be obtained if we know the

transformation between the elements of the PB and
the elements of NB ,that is, the normal basis
representation of the elements of the PB.

For a normal basis there always exist a
multiplication table T(corresponding to the
irreducible polynomial),which is given

by .

Corresponding to aT matrix , there always exists a

matrix for any of the product c , for the

given irreducible polynomial which defines the
normal basis in . After the multiplication

table T is obtained , the matrix can be

calculated according to the above method.

 invertion

We know from Femat’s theorem that for any non-

zero elements , , that is, .

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

. Hence ,

. That is an inversion

requires 4squaring 3 multiplication. This could be
reduced further by alternative methods[12],[13].

4. ELLIPTIC CURVE GROUP OPERATION:

Elliptic group operations includes point negation,
point subtraction, point doubling, and scalar
multiplication.

Let GF(25) be a characteristic 2 finite
field. Then a (non-super singular) elliptic curve
E(GF(25)) over GF(25) defined by E:

consists of the set of

solutions or points P=(x,y) for x,y  GF(25) .

E: in GF(25)

together with an extra point O called the point at
infinity.

The number of points on E(GF(25)) is
denoted by # E(GF(25)). The Hasse Theorem states
that:

25 + 1 - 2 ≤ # E(GF(2m)) ≤ 25 + 1+ 2 .

It is again possible to define an addition rule to
add points on E as the addition rule is specified as
follows:

1. Rule to add the point at infinty to itself:
O + O =O

2. Rule to add the point at infinity to any
other point:

(x,y) + O = O +(x,y)= (x,y) for all (x,y) 
GF(25)

3. Rule to add two points with the same x–
coordinates when the points are either
distinct or have x-coordinates 0:

(x,y) + (x,x + y)= O for all (x,y) GF(25)

4. Rule to add two points with different x-
coordinates: Let (x1,y1)  GF(25) and
(x2,y2)  GF(25) be two points such that

x1≠x2. Then (x1,y1)+ (x2,y2)= (x3,y3) ,
where:

 x3=λ
2+ λ+x1+x2+a in GF(25), y3 = λ.(x1+x3) +x3 +

y1 in GF(25), and λ  1 2

1 2

y y

x x




in GF(25).

5. Rule to add a point to itself (double a
point): Let (x1,y1)  GF(25) be a point
with x1 ≠ 0. Then (x1,y1) + (x1,y1) =(x3,y3)
,where:

 x3=λ
2+ λ+a in GF(25) , y3 = x2

1+ (λ +1)x3 in

GF(25) , and λ =x1 +
1

1

y

x
in GF(25).

The set of points on E(GF(25)) forms an
abelian group under this addition rule. Notice that
the addition rule can always be computed
efficiently using simple field arithmetic.
Cryptographic schemes based on ECC rely on
scalar multiplication of elliptic curve points. As
before given an integer k and a point P  GF(25) ,
scalar multiplication is the process of adding P to
itself k times. The result of this scalar multiplication
is denoted ‘kP’.

5. SCALAR MULTIPLICATION :

In the scalar multiplication just we used
the binary method and generated a cyclic group.
We propose a non-super singular elliptic curve

 defined over GF(25). Let
the primitive polynomial chosen for constructing
the finite field be x5+x2+1. For example Assume

that :P = (x 1 , y 1) and Q = (x 2 , y 2) are two

distinct points on the elliptic curve E:
----(1) . when Q -P,

the operation P + Q=(x 3 , y 3) can then be derived

as shown in the following ,in which part (a)
corresponds to the point addition and part (b) for
the point doubling operation.

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

 

 )7(

)6(

)5(

)&()(

)4(

)3(

)2(

)&()(

13313

2
2

3

1

1
1

2121

13313

221
2

3

21

21

2121

yxxxy

ax

x

y
x

yyxxQPb

yxxxy

axxx

xx

yy

yyxxQPa



























Since the field multiplication and field inversion
/division are much more complicated than the field
addition, we can ignore the effect of field addition
operation and conclude the following observations:

 (i) the value of  can be computed by first

finding the inverse of 1 2 11/() 1/x x or x

and then multiplying the denominator

121)(yoryy  .we can also get by directly

employing the field division operation[8][12].

 (ii) whether (a) or (b), P+Q will be computed in a
sequential manner based on data dependent

relationship among 33 ,, yandx . And, as seen

from Eqs. (2) and (5),the computation of  in the
next iteration can start before the completion of y3
in the current time, if the inverse operation is used
instead of employing the division operation.

(iii) Equations (6) can be viewed as the degenerate
case of Eq.(3) as x1+x2=0 over GF(2^5) when
P=Q; therefore, Eqs.(3)and (6) can share the same
hardware implementing

axxx  21
2

3 

In essence, the elliptic curve cryptographic scheme
requires the scalar multiplication defined as
follows.

PPPkPQ  ... , k times

where P denotes a point on the elliptic curve and k
is a random integer with

12)(1  mPorderk . Algorithm-1 gives

the well-known double and add algorithm, also
referred to as the binary method, to compute kP
assuming that Q is initialized as an infinite point
denoted by the symbol O.

Algorithm. ; scalar multiplication-binary method

Input: k and P

Output: Q = kP

/*convert the integer k into the binary
representation */

}1,0{);,...,,(;. 021   itt kkkkkPkQ

1. Q=O;
2. for i from t-1 down to 0 do
3. Q=Q+Q;

4. if ik =1, then Q=Q+P;

5. return Q:
 Double –and-add algorithm.

As seen from algorithm 1, the expected number of
point additions is approximately 0.5t and the
number of doubles is exactly t. The expected
number of point additions is actually equivalent to
the average number of nonzero coefficients of k.
hence the cyclic group generated is;

Using the algorithms above a elliptic curve points
can be constructed from the curve E:

.Consider the base point ,

(12,11),means (where is the root of

polynomial x5+x2+1. Order of the base point is 11.
Hence it is generated 110 random out put points for
different seed value, that is,
(12,11),(12,29),(24,22),(17,13),(3,15),(6,21),(17,23
),
(6,30),(17,13),(17,23),(3,26),(17,23),(24,27),(12,29
),(24,27),(24,22),(24,27),(17,23),(3,26),(6,21)……..

6. ELLIPTIC CURVE DOMAIN
PARAMETERS OVER

Elliptic curve domain parameters over are a
sextuple:

T = (m, f (x),a,b,G,n,h)

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

consisting of an integer m specifying the finite field
 an irreducible binary polynomial f (x) of

degree m specifying the representation of ,
two elements a,b specifying the elliptic
curve E() defined by the equation:

E: over
a base point G = (xG,yG) on E(), a prime n
which is the order of G, and an integer h which is
the
cofactor h = #E()/n ;that is,

Where m=5
f(x)=x5+x2+1(irreducible)

a=1
b=1(

n=11
G=(12,11)

h=110/11=10

Elliptic curve domain parameters over .
precisely specify an elliptic curve and base point.
This is
necessary to precisely define public-key
cryptographic schemes based on ECC.
Section 6.1.2.1 describes how to generate elliptic
curve domain parameters over , and Section
6.1.2.2 describes how to validate elliptic curve
domain parameters over .

 6.1.2.1 Elliptic Curve Domain Parameters over

 . Generation Primitive

Elliptic curve domain parameters over . should
be generated as follows:
Input: The approximate security level in bits
required from the elliptic curve domain parameters
.
Output: Elliptic curve domain parameters over

 .
T = (m, f (x),a,b,G,n,h)

such that taking logarithms on the associated
elliptic curve is believed to require approximately 2t
operations.
Actions: Generate elliptic curve domain parameters
over as follows:

 1. Selecting a binary irreducible polynomial f (x)
of degree m from to determine the representation of

 .
 2. Selecting elements a,b to determine
the elliptic curve E() defined by the
equation:

E : y2+xy = x3+ax2+b in .

 a base point G = (xG,yG) on E(), a prime
n which is the order of G, and an integer h which is
 the cofactor h = #E() n , subject to the
following constraints:

 in

 #E() .

 (mod n) for any 1
B < 20.

 h 4.

 3. Output T = (m, f (x),a,b,G,n,h).
This primitive also allows any of the known curve
selection methods to be used. However to foster
interoperability it is strongly recommended that
implementers use one of the recommended elliptic
curve domain parameters over .

6.1.2.2 Validation of Elliptic Curve Domain
Parameters over .

Frequently it is either necessary or desirable for an
entity using elliptic curve domain parameters over

 to receive an assurance that the parameters
are valid—that is that they satisfy the arithmetic
requirements of elliptic curve domain parameters—
either to prevent malicious insertion of insecure
parameters, or to detect inadvertent coding or
transmission errors.
There are four acceptable methods for an entity U
to receive an assurance that elliptic curve domain
parameters over are valid. Only one of the
methods must be supplied, although in many cases
greater security may be obtained by carrying out
more than one of the methods.
The four acceptable methods are:

 1. U performs validation of the elliptic curve
domain parameters over . itself using the
validation primitive described in Section
6.1.2.2.1.

 2. U generates the elliptic curve domain
parameters over itself using a trusted
system using the primitive specified in Section
6.1.2.1.

 3. U receives assurance in an authentic manner
that a party trusted with respect to U’s use of the
 elliptic curve domain parameters over .
has performed validation of the parameters using
the

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

35

 validation primitive described in Section
6.1.1.2.1.

 4. U receives assurance in an authentic manner
that a party trusted with respect to U’s use of the
 elliptic curve domain parameters over .
generated the parameters using a trusted system
using the primitive specified in Section 6.1.2.1.

6.1.2.2.1 Elliptic Curve Domain Parameters

over . Validation Primitive

The elliptic curve domain parameters over .
validation primitive should be used to check elliptic
curve domain parameters over . are valid as
follows:
Input: Elliptic curve domain parameters over .

T = (m, f (x),a,b,G,n,h)
Output: An indication of whether the elliptic curve
domain parameters are valid or not — either ‘valid’
or ‘invalid’.
Actions: Validate the elliptic curve domain
parameters over as follows:

 1. Check that f (x) is a binary irreducible
polynomial of degree m .
 2. Check that a, b, xG, and yG are binary
polynomials of degree m-1 or less.
 3. Check that b 0 in .
 4. Check that yG

2+xGyG = xG
3+axG

2+b in .
 5. Check that n is prime.
 6. Check that h 4, and that

.

 7. Check that nG = O.
 8. Check that (mod n) for any 1 B <
20, and that nh .
 9. If any of the checks fail, output ‘invalid’,
otherwise output ‘valid’.

Steps 1 and 8 above excludes the known weak
classes of curves which are susceptible to either the
Menezes-Okamoto-Vanstone attack, or the Frey-
Ruck attack, or the Semaev-Smart-Satoh-Araki
attack,or to attacks based on the Weil descent. If the
elliptic curve domain parameters have been
generated verifiably at random using SHA-1 as
described in ANSI X9.62 [24], it may also be
checked that a and b have been correctly derived
from the random seed.

6.2 Elliptic Curve Key Pairs

All the public-key cryptographic schemes described
in this document use key pairs known as elliptic
curve key pairs.
Given some elliptic curve domain parameters T =
(p,a,b,G,n,h) or (m, f (x),a,b,G,n,h), an elliptic
curve key pair (d,Q) associated with T consists of
an elliptic curve secret key d which is an integer in
the interval [1,n-1], and an elliptic curve public key
Q = (xQ,yQ) which is the point Q = dG.
Section 4.2.1 describes how to generate elliptic
curve key pairs, Section 4.2.2 describes how to
validate elliptic curve public keys.

 6.2.1 Elliptic Curve Key Pair Generation

Primitive

Elliptic curve key pairs should be generated as
follows:
Input: Valid elliptic curve domain parameters T =
(p,a,b,G,n,h) or (m, f (x),a,b,G,n,h).
Output: An elliptic curve key pair (d,Q) associated
with T.
Actions: Generate an elliptic curve key pair as
follows:
1. Randomly or pseudo randomly select an integer
d in the interval [1,n-1].
2. Calculate Q = dG.
3. Output (d,Q).

6.2.2 Validation of Elliptic Curve Public Keys

Frequently it is either necessary or desirable for an
entity using an elliptic curve public key to receive
an assurance that the public key is valid — that is
that it satisfies the arithmetic requirements of an
elliptic curve public key — either to prevent
malicious insertion of an invalid public key to
enable attacks like small subgroup attacks, or to
detect inadvertent coding or transmission errors.

There are four acceptable methods for an entity U
to receive an assurance that an elliptic curve public
key is valid. Only one of the methods must be
supplied, although in many cases greater security
may be obtained by carrying out more than one of
the methods.

The four acceptable methods are:
1. U performs validation of the elliptic curve public
key itself using the public key validation primitive
described in Section 6.2.2.1.

2. U generates the elliptic curve public key itself
using a trusted system.

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

36

3. U receives assurance in an authentic manner that
a party trusted with respect to U’s use of the
elliptic curve public key has performed validation
of the public key using the public key validation
primitive described in Section 6.2.2.1.

4. U receives assurance in an authentic manner that
a party trusted with respect to U’s use of the
elliptic curve public key generated the public key
using a trusted system.

Usually whenU accepts another party’s assurance
that an elliptic curve public key is valid, the other
party is a CA who validated the public key during
the certification process. Occasionally U may also
receive assurance from another party other than a
CA. For example, in the Station-to-Station protocol
described in ANSI X9.63 [4], U receives an
ephemeral public key from V. V is trusted with
respect to U’s use of the public key because U is
attempting to establish a key with V and U only
combines the public key with its own ephemeral
key pair. It is therefore acceptable in this
circumstance for U to accept assurance from V that
the public key is valid because the public key is
received in a signed message.

6.2.2.1 Elliptic Curve Public Key Validation

Primitive

The elliptic curve public key validation primitive
should be used to check an elliptic curve public key
is valid as follows:
Input: Valid elliptic curve domain parameters T =
(p,a,b,G,n,h) or (m, f (x),a,b,G,n,h), and an elliptic
curve public key Q = (xQ , yQ) associated with T.
Output: An indication of whether the elliptic curve
public key is valid or not—either ‘valid’ or
‘invalid’.
Actions: Validate the elliptic curve public key as
follows:
 1. Check that Q O.
 2. If T represents elliptic curve domain parameters
over Fp, check that xQ and yQ are integers in the
 range [1,p-1], and that:

yQ
2 xQ

3+axQ+b (mod p):
 3. If T represents elliptic curve domain parameters
over , check that xQ and yQ are binary
 polynomials of degree at most m-1, and that:

yQ
2+xQyQ = xQ

3+axQ
2+b in ,

 4. Check that n Q = O.
 5. If any of the checks fail, output ‘invalid’,
otherwise output ‘valid’.

 In the above routine, steps 1, 2, and 3 check that
Q is a point on E other than the point at infinity,
 and step 4 checks that Q is a scalar multiple of G.

7. ENCRYPTION SCHEMES
This section specifies the public-key

encryption schemes based on ECC supported in this
document.Public-key encryption schemes are
designed to be used by two entities — a sender U
and a recipient V —when U wants to send a
message M to V confidentially, and V wants to
recover M.

Here public-key encryption schemes are

described in terms of an encryption operation, a
decryption operation, and associated setup and key
deployment procedures. U and V should use the
scheme as follows when they want to communicate.
First U and V should use the setup procedure to
establish which options to use the scheme with,
then V should use the key deployment procedure to
select a key pair andU should obtain V’s public
key—U will use V’s public key to control the
encryption procedure, and V will use its key pair to
control the decryption operation. Then each timeU
wants to send a message M to V, U should apply the
encryption operation to M under V’s public key to
compute an encryption or ciphertext C of M, and
convey C to V. Finally whenV receives C,V should
apply the decryption operation to C under its key
pair to recover the message M.

Loosely speaking public-key encryption

schemes are designed so that it is hard for an
adversary who does not possess V’s secret key to
recover information about messages (other than
their length) from their ciphertexts. Thus the
schemes provide data confidentiality.

The public-key encryption schemes

specified in this section may be used to encrypt
messages of any kind. They may be used to
transport keying data from U to V, or to encrypt
information data directly. This flexibility allows the
schemes to be applied in a broad range of
cryptographic systems. Nonetheless it is envisioned
that the majority of applications will apply the
schemes for key transport, and subsequently use the
transported key in conjunction with a symmetric
bulk encryption scheme to encrypt information
data. This is the traditional usage for public-key
encryption schemes.

The only public-key encryption scheme supported
at this time is the Elliptic Curve Integrated

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

37

Encryption Scheme (ECIES). ECIES is specified in
Section7.1.

7.1 Elliptic Curve Integrated Encryption

Scheme

The Elliptic Curve Integrated Encryption Scheme
(ECIES) is a public-key encryption scheme based
on ECC. It is designed to be semantically secure in
the presence of an adversary capable of launching
chosen-plaintext and chosen-ciphertext attacks.

(Note that the Elliptic Curve Integrated Encryption
Scheme has a complex naming history. It is
occasionally known instead as the Elliptic Curve
Augmented Encryption Scheme or simply the
Elliptic Curve Encryption Scheme.)

The setup procedure for ECIES is specified in
Section 7.1.1, the key deployment procedure is
specified in Section 7.1.2, the encryption operation
is specified in Section 7.1.3, and the decryption
operation is specified in Section 7.1.4.

7.1.1 Scheme Setup

U and V should perform the following setup
procedure to prepare to use ECIES:

1. V should establish which of the key derivation
functions to use, and select any options involved in
the operation of the key derivation function. Let
KDF denote the key derivation function chosen. (In
this edition the only possibility is ANSI-X9.63-
KDF with the option SHA-1[27].)

2. V should establish which of the MAC schemes
(Loosely speaking, MAC schemes are designed so
that it is hard for an adversary to forge valid
message and tag pairs so that the schemes provide
data origin authentication and data integrity.The
list of supported MAC schemes at this time is:
HMAC–SHA-1–160 with 20 octet or 160 bit keys
HMAC–SHA-1–80 with 20 octet or 160 bit keys
Both these MAC schemes are specified in IETF
RFC 2104 [21] and ANSI X9.71 [26] based on the
hash function SHA-1 specified in FIPS 180-1 [22])
to use, and select any
options involved in the operation of the MAC
scheme. Let MAC denote the MAC scheme chosen,
mackeylen denote the length in octets of the keys
used by MAC, and maclen denote the length in
octets of tags produced by MAC.

3. V should establish which of the symmetric
encryption schemes to use,and select any options

involved in the operation of the encryption scheme.
Let ENC denote the encryption scheme chosen, and
enckeylen denote the length in octets of the keys
used by ENC.

4. V should establish whether to use the ‘standard’
elliptic curve Diffie-Hellman primitive , or the
elliptic curve cofactor Diffie-Hellman primitive .

5. V should establish elliptic curve domain
parameters T = (p,a,b,G,n,h) or (m, f (x),a,b,G,n,h)
at the desired security level. The elliptic curve
domain parameters T should be generated using
the primitive specified in Section 6.1.1.1 or the
primitive specified in Section6.1.2.1. V should
receive an assurance that the elliptic curve domain
parameters T are valid using one of the methods
specified in Section 6.1.1.2 or Section 6.1.2.2.

6. U should obtain in an authentic manner the
selections made by V — the key derivation function
KDF, the MAC scheme MAC, the symmetric
encryption scheme ENC, the elliptic curve domain
parameters T, and an indication whether to use the
‘standard’ elliptic curve Diffie-Hellman primitive
or the cofactor Diffie-Hellman[27]. U should also
receive an assurance that the elliptic curve
domain parameters T are valid using one of the
methods specified in Section 6.1.1.2 or Section
6.1.2.2.

7. U should establish whether or not to represent
elliptic curve points using point compression.

7.1.2 Key Deployment

U and V should perform the following key
deployment procedure to prepare to use ECIES:
1. V should establish an elliptic curve key pair (dV
,QV) associated with the elliptic curve domain
parameters T established during the setup
procedure. The key pair should be generated using
the
primitive specified in Section 6.2.1.

2. U should obtain in an authentic manner the
elliptic curve public key QV selected by V. If the
‘standard’ elliptic curve Diffie-Hellman primitive is
being used,U should receive an assurance that
QV is valid using one of the methods specified in
Section 6.2.2, and if the elliptic curve cofactor
Diffie-Hellman primitive is being used, U should
receive an assurance that QV is at least partially
valid using one of the methods specified in Section
6.2.2 or Section 6.2.3.

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

38

7.1.3 Encryption Operation

U should encrypt messages using ECIES using the
keys and parameters established during the setup
procedure and the key deployment procedure as
follows:

Input: The input to the encryption operation is:
1. An octet string M which is the message to be
encrypted.
2. (Optional) Two octet strings SharedInf o1 and
SharedInf o2 which consist of some data shared by
U and V.

Output: An octet string C which is an encryption
of M, or ‘invalid’.
Actions: Encrypt M as follows:

1. Select an ephemeral elliptic curve key pair (k,R)
with R=(xR,yR) associated with the elliptic curve
domain parameters T established during the setup
procedure. Generate the key pair using the key pair
generation primitive specified in Section 6.2.1.

2. Convert R to an octet string R using the
conversion routine specified in Section4.3. Decide
whether or not to represent R using point
compression according to the convention
established
during the setup procedure.

3. Use one of the Diffie-Hellman primitives
specified [27] to derive a shared secret field
element z from the ephemeral secret key k and
V’s public key QV obtained during the key
deployment procedure. If the Diffie-Hellman
primitive outputs ‘invalid’, output ‘invalid’ and
stop.
Decide whether to use the ‘standard’ elliptic curve
Diffie-Hellman primitive or the elliptic curve
cofactor Diffie-Hellman primitive[53] according to
the convention established during the setup
procedure.

4. Convert z to an octet string Z using the
conversion routine specified in Section 4.5.

5. Use the key derivation function KDF established
during the setup procedure to generate keying
data K of length enckeylen+mackeylen octets from
Z and [SharedInf o1]. If the key derivation
function outputs ‘invalid’, output ‘invalid’ and stop.

6. Parse the leftmost enckeylen octets of K as an
encryption key EK and the rightmost mackeylen

octets of K as a MAC key MK.

7. Use the encryption operation of the symmetric
encryption scheme ENC established during the
setup procedure to encrypt M under EK as
ciphertext EM. If the encryption scheme outputs
‘invalid’,
output ‘invalid’ and stop.

8. Use the tagging operation of the MAC scheme
MAC established during the setup procedure to
compute the tag D on EM [SharedInf o2] under
MK. If the MAC scheme outputs ‘invalid’, output
‘invalid’ and stop.

9. Output C = R EM D.

7.1.4 Decryption Operation

V should decrypt ciphertext using ECIES using the
keys and parameters established during the setup
procedure and the key deployment procedure as
follows:
Input: The input to the decryption operation is:
1. An octet string C which is the ciphertext.
2. (Optional) Two octet strings SharedInf o1 and
SharedInf o2 which consist of some data shared by
U and V.
Output: An octet string M which is the decryption
of C, or ‘invalid’.
Actions: Decrypt C as follows:

1. If the leftmost octet of C is 0216 or 0316, parse the
leftmost octets of C as an octet
string R, the rightmost maclen octets of C as an
octet string D, and the remaining octets of C as an
octet string EM. If the leftmost octet of C is 0416,
parse the leftmost octets of C as an
octet string R, the rightmost maclen octets of C as
an octet string D, and the remaining octets of C
as an octet string EM. If the leftmost octet of C is
not 0216, 0316, or 0416, output ‘invalid’ and stop.

2. Convert the octet string R to an elliptic curve
point R = (xR,yR) associated with the elliptic curve
domain parameters T established during the setup
procedure using the conversion routine specified in
Section4.4. If the conversion routine outputs
‘invalid’, output ‘invalid’ and stop.

3. If the ‘standard’ elliptic curve Diffie-Hellman
primitive is being used[27], receive an assurance
that R is a valid elliptic curve public key using one
of the methods specified in Section 6.2.2. If the

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

39

elliptic curve cofactor Diffie-Hellman primitive is
being used, receive an assurance that R is at
least a partially valid elliptic curve public key using
one of the methods specified in Section 6.2.2
Section 6.2.3. If an appropriate assurance is not
obtained, output ‘invalid’ and stop.

4. Use one of the Diffie-Hellman primitives to
derive a shared secret field element z from V’s
secret key dV established during the key deployment
procedure and the public key R. If the Diffie-
Hellman primitive outputs ‘invalid’, output
‘invalid’ and stop. Decide whether to use the
‘standard’ elliptic curve Diffie-Hellman primitive
or the elliptic curve cofactor Diffie-Hellman
primitive [27]according to the convention
established during the setup procedure.

5.Convert z to an octet string Z using the

conversion routine specified in Section 4.5.

6. Use the key derivation function KDF established
during the setup procedure to generate keying
data K of length enckeylen+mackeylen octets from
Z and [SharedIn f o1]. If the key derivation
function outputs ‘invalid’, output ‘invalid’ and stop.

7. Parse the leftmost enckeylen octets of K as an
encryption key EK and the rightmost mackeylen
octets of K as a MAC key MK.

8. Use the tag checking operation of the MAC
scheme MAC established during the setup
procedure
to check that D is the tag on EM [SharedIn f o2]
under MK. If the MAC scheme outputs ‘invalid’,
output ‘invalid’ and stop.

9. Use the decryption operation of the symmetric
encryption scheme ENC established during the
setup procedure to decrypt EM under EK as M. If
the encryption scheme outputs ‘invalid’, output
‘invalid’ and stop.

10. Output M.

Note that when implementing the above decryption
operation on a constrained device, it may be
desirable to perform the symmetric decryption
operation (step 9) before the tag checking operation
(step 8). This variant is allowed. However
implementers of this variant should guard against
the possibility that the output of step 9 is available
to attackers regardless of the output of step 8.

8. CONCLUTION:

Elliptic curve over finite field are being extensively
used in the design of public-key cryptographic
schemes. Due to the emerging market of electronic
commerce public-key cryptosystem gain more and
more attention. Unlike for military purposes there is
a need of flexible user groups. By this article we
contributed a secure cryptosystem choosing the
non-super-singular-curve
E: over as per the
guidelines given the ear liar works.

9. LIMITATION AND FUTURE WORK:

In our article, we tried our level best to implement
The Elliptic curve cryptography in the finite field
GF(2^5) . We plan to generalize the results ,that is
, implementation in the binary field GF(2^ n). Also
the speed of the computations can be compared
between normal and polynomial basis..

REFERENCES :

[1] E.R.Berlekamp, Algebraic Coding Theory,
NY, McGraw-Hill, 1968

[2] I.Blake, G.Seroussi, and N.Smart, Elliptic
Curves in Cryptography, Cambridge
University Press,1999.

[3] P.Buhler,H.W.Lenstra, and C.Pomerance.
The development of the number field
sieve, volume 1554 of lecture Notes in
Computer Science, Springer-Verlag, 1994.

[4] W.Diffie and M.E.Hellman, “New
directions in cryptography,” IEEE Trans.
On Information Theory, IT-22:pp.644-
654,1976.

[5] D.M.Gordon, “A Survey of fast
exponention methods,”
J.Algorithms,27,1998,pp.129-146.

[6] J.Guajardo and C.Paar,”Efficient
Algorithms for Elliptic Curve
Cryptosystems,” Advances in Cryptology-
CYYPTO,97,LNCS 1462,pp.342-356.

[7] Y.Han,P.leong,P.Tan,a nd J.Zhang, “Fast
Algorithmsfor Elliptic Curve
Cryptosystems over Binary Finite Field,”
Advances in Cryptology-CRYPTO’99
LNCS 1716,pp 75-85.

[8] T.Itoh and S.Tsujii, “A fast Algorithm for
Computing Multiplication inverses in
GF(2^m) Using Normal Bases,”
Information & Computation,
78,1988,pp.171-177.

[9] T.Kobayashi,H.Morita,K.Kobayashi,and
F.Hoshino, “Fast Elliptic Curve Algorithm

Journal of Theoretical and Applied Information Technology
15th February 2012. Vol. 36 No.1

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

40

Combining Frobenius map and Table
referenced to Adapt to higher
Characteristic,” Advances in Cryptology-
CRYPTO’99,LNCS 1592,pp.176-189.

[10] N.Koblitz, A Course in Number Theory
and Cryptography, 2nd Eds., Springer-
Verlag, 1994.B.Schneier,”Applied
Cryptography,”2nd ed.,J.Wiley &
Sons,Inc.,1996.

[11] N.Koblitz, Introduction to Elliptic Curves
and Modular Forms, 2nd Ed., Spinger-
Verlag,1993.

[12] N.Koblitz, Elliptic Curve Cryptosystems,
Math.Compu.Vol.48,No.177, Jan,1987,pp
203-209.

[13] ZhiLi, JohnHiggins, Mark Element
“Perfomance of Finite Field Arithmatic in
an Elliptic Curve Crypto Systems” IEEE
Transactions, pp 249-256, 0-7695-1315-
8/01,2001.

[14] D.E.Knuth, Seminumerical Algorithms,
MA, Addison-Wesley,1981.

[15] D.F.Lawden, Elliptic Functions and
Applications, Springer-Verlag,1989.

[16] 16]A.Menezes. T. Okamoto, and
S.Vanstone, “Reducing Elliptic Curve
Logorithms to Logorithms in a Finite
Fiels,” IEEE Transactions on Information
Theory, 39(5): 1639-1646, September,
1993.

[17] F. Morain, J. Olives, Speeding up the
computations on an elliptic curve using
addition-subtraction chains, RAIRO
Theoretical Information and Applications
24 (1990) 531-543.

[18] R.L.Rivest, A.Shamir, and
L.M.Adleman,”A Method for obtaining
Digital Signatures and Public-Key
Cryptosystems,” Communications of the
ACM, v.21,n.2, Feb 1978,pp.120-126.

[19] K.Sakurao and H.Shizuya, “A Structural
Comparison of the Computational
Difficulty of Breaking Discrete log
Cryptosystems,” J.Cryptology(1988) 11:
29-43.

[20] A.Schroeppel, H.Orman, S.O.Malley, and
O.Spatschek,”Fast key Exchange
 with Elliptic Curve Systems,” Advances
in Cryptology-CRYPTO’95,LNCS 963,
Springer-Verlag, 1995, pp.43-56.

[21] H. Krawcyzk, M. Bellare, and R. Canetti,
HMAC: Keyed Hashing for Message
Authentication.
Internet Engineering Task Force, Internet
RFC 2104, 1997. Available from:
http://www.ietf.org/

[22] FIPS 180-1. Secure Hash Standard,
Federal Information Processing Standards
Publication 180-1,1995. Available from:
http://csrc.nist.gov/

[23] ANSI X9.52-1998: Triple Data
Encryption Algorithm Modes of
Operation. American Bankers
Association,1998.

 [24] ANSI X9.62-1998: Public Key
Cryptography for the Financial Services
Industry: the Elliptic Curve Digital
Signature Algorithm (ECDSA). American
Bankers Association, 1999.

[25] ANSI X9.63-199x: Public Key
Cryptography for the Financial Services
Industry: Key Agreement and Key
Transport Using Elliptic Curve
Cryptography. October, 1999. Working
Draft.

[26] ANSI X9.71-199x: Keyed Hash Message
Authentication Code. March, 1998.
Working Draft.

[27] W. Diffie and M. Hellman. New
directions in cryptography. IEEE
Transactions on Information Theory, IT-
22(6): 644–654, November 1976.

[28] A.R.Rishivarman, B. Parthasarathy, and
M.Thiyagarajan, : An e_cient perfor-

 mance of GF(2^5) arithmatic in an elliptic
 curve cryptosystem, International Jour-
 nal of Computing and Applications, 4(2),
 111-116 (2009).
 [29] A.R.Rishivarman, B. Parthasarathy,
 and M.Thiyagarajan,: A Montgomery
 repre- sentation of elements in GF(25)
 for e_cient arithmetic to use in
 ECC. InternationalJournal of Advanced
 Networking and Applications, 1(5), 323-
 326 (2010).

