
Journal of Theoretical and Applied Information Technology
31st January 2012. Vol. 35 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

242

 A DECADE OF PRODUCTIVE FPGA UTILIZATION WITH
GENETIC ALGORITHMS

1 BHARATHI NAVANEETHAKRISHNAN, 2 NEELAMEGAM P
1Asstt Prof., School of computing, SASTRA University, Thanjavur –613401

2 Prof., School of EEE, SASTRA University, Thanjavur –613401

E-mail: bharathi_n@cse.sastra.edu , neelkeer@eie.sastra.edu

ABSTRACT

Genetic algorithms are one of the best ways to deal with the optimization problems. They are precisely
suitable for mixed combinatorial problems. As genetic algorithms find the solution by producing more
number of population generations based on selection, crossover, mutation etc.,it can be further improved by
exploiting computation power of Field programmable gate arrays. The FPGAs are highly used
reconfigurable hardware, which increase the speed of genetic algorithms. In this paper, the exploitation of
FPGA to implement genetic algorithm based optimization problems in different frontiers for the past
decade is studied.

Keywords: Field Programmable Gate Array(FPGA), Genetic Algorithm(GA), Selection, Mutation,
Crossover, fitness function, Chromosome mapping.

1. INTRODUCTION

GA requires less information about the
problem. GA works well on mixed
discrete/continuous problems. Genetic Algorithms
is useful in problem domains about which there is
no sufficient knowledge for systematic solution. A
genetic algorithm for an optimization problem
consists of two major components. First, GA
maintains a population of individual corresponds to
a candidate solution and the population is a
collection of such potential solutions. Two of the
most common genetic algorithm implementations
are 'simple' and 'steady state'. Simple genetic
algorithm is a generational algorithm in which the
entire population is replaced each generation.. In
steady state genetic algorithm only a few
individuals are replaced each 'generation'. This type
of replacement is often referred to as overlapping
populations. Genetic algorithms operate on a
population of solutions. We must encode solutions
to the given problem in a structure that can be
stored in the computer. This object is a genome (or
chromosome). The simple algorithm is given as

1. Represent the solution space as chromosome.

2. Generate the initial population(t) randomly.

3. Determine fitness of population(t) based on
objective function.

4. Repeat

Select parents from population(t)

Perform crossover on parents creating
population(t+1)

Perform mutation of population(t+1)

Determine fitness of population(t+1)

until best individual is good enough

The operators of GA are selection, crossover,
mutation, replacement, fitness functions, scaling
etc. The selection operator selects the individuals to
perform crossover. Roulette wheel selection,
tournament selection, rank selection, threshold
selection are in use. Crossover is a genetic operator
that combines two chromosomes to produce a new
chromosome. One point crossover, two point
crossover, arithmetic crossover, uniform crossover
and heuristic crossover are some of the types of
crossover in practice. Alteration of one or more
gene values of the individual chromosome is called
as mutation. Its types are flip bit, boundary, non-
uniform, uniform and gaussian. Replacement
operator is to identify the individuals to replace
with new individuals. The various replacement
schemes are replace-worst, replace-best, replace-
parent, replace-random and replace most similar.
Replace-worst and replace most similar are the

Journal of Theoretical and Applied Information Technology
31st January 2012. Vol. 35 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

243

frequently using replacement schemes. Fitness
function is for ranking the individual chromosomes
on the basis of how much fit it is to participate in
successive genetic generations. The conversion of
raw objective score to scaled fitness score is called
scaling. The existing scaling techniques are linear
scaling, sigma truncation scaling, and sharing. We
code in high-level language like C and executed in
Microprocessor, but it is much slower than the
hardware implementation of FPGA. Even though
the VHDL code is not optimized to exploit the
maximum benefit of FPGA, it will be faster than
their microprocessor counter part. This paper
depicts 30 different applications with which GA
operators are implemented in FPGA. This serves
researchers in GAs to pick any one way for their
application. Initially chromosome mapping of
various applications is explained, followed by their
selection, crossover and mutation techniques.
Finally their performance analysis is discussed.

2. CHROMOSOME MAPPING

In GA, a binary string commonly represents an
individual in the population. The mapping between
solutions and binary strings is called a
“chromosome mapping”. D.V. Coury et. al.,[1]
investigated the problem of estimating the
frequency of a distorted electrical signal as a GA
based optimization problem implemented in FPGA.
A binary encoding is followed to map the
Amplitude, frequency and phase of the electrical
power system signal as ψ = {A, f, θ} [1]. Encoding
represents the parameters as sequence of bits with 8
bit, 24 bit and 12 bit for amplitude, frequency and
phase respectively. O.Hachour [7] deals with the
intelligent path planning of Autonomous Mobile
Robots(AMR) in an unknown environment, using
hardware based genetic algorithms. In that work,
the chromosomes are mapped as the path and
positions are the genes. H. Emam et. al.,[3] used
hardware genetic algorithm (HGA) for blind signal
separation with filter coefficients mapped as
chromosomes of length 64bit, 48 bit and with 16
bit fitness value. In that, the fitness function
reflects the likeness between the output of the
estimated model and the real output. Vavouras, M
et. al.,[24] specified a fully functional prototype
that supports variable population size, member and
fitness value widths. Delbem, A.C et. al[2], Souza,
S.A et.al[21][22] proposed FPGA based GAs for
measuring the frequency deviation, as well as the
voltage magnitude and phase angle of a sinusoid
wave by representing the chromosome as 3

sequences of bits for amplitude, frequency and
phase. Hamid M.S.et.al[8] applied GA in
optimizing a grey-scale soft morphological filter
implemented in FPGA with chromosome consist of
3 parts the filter value bits, the rank bits, and the
soft morphological operation bits. Zhang X et.al
[31] designed a hardware-based architecture to
perform the Genetic Algorithm in a system, called
FPGA-based Genetic Algorithm Kernel. In that,
there are 4 memory components used in the
Genetic Algorithm Kernel, and the Population
Replacement is performed by transferring each
individual in the Inter_Population Memory
component and its fitness value in the Inter_Fitness
Memory component to the Population Memory
component and the Fitness Memory component
respectively. Pedraza.C et.al [17] demonstrated a
parallel genetic programming (PGP) Boolean
synthesis implementation based on a cluster of
FPGAs and represented the chromosomes as 2D
Tree for balancing the load. 2D tree chromosome
representation is sequential bits that are divided
into several segments distributed over number of
textures[30].

Jewajinda, Y.et.al[10] realized a new way of

implementing GA as cellular compact genetic
algorithm(CCGA). It employs on probability
vectors by replacing the crossover and mutation
operators with the probability model estimation.
CCGA approach is to parallelize or divide a large
problem into smaller tasks and to solve the task
simultaneously using multiple genetic algorithms.
Wang.J et.al[26] analyzed the finite resource
optimization using FPGA resource list and task list
with scheduling list as population producing FPGA
resource utilization and task schedule. Lei.T.et.al
[14] designed GA model and implemented in
VHDL using a Xilinx XC2S100 FPGA by dividing
the hardware into six modules: control state
machine, storage module, selection module,
crossover module, mutation module and random
data generation module. Koo.J.H.et.al [12] used
genetic algorithm to find optimal solution for
image enhancement. In t hat, the chromosome
mapping of 152 bits is divided as 3 level structured
mapping with first level S1 (4 bits) represents
number of filters for image enhancement, second
level S2 (8 bits) represents type of filter, third level
S3 (133 bits) represents parameter values for filters
and 7 dummy bits to make it multiples of 8.

Wang.L.et.al [27] generates the key-sequence

in AES using GA on FPGA Hardware. The 128
bits cipher key is divided into two parts, which are

Journal of Theoretical and Applied Information Technology
31st January 2012. Vol. 35 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

the parents. In two 64-bit parents, zero bit and first
bit of second parent represent how many times the
parents should rotate right and if the second bit of
the parent is 1, the first parent should bitwise not, if
the third bit of the second parent is 1, the second
parent should bitwise not. Qu.L et.al.[18]
implemented adaptive genetic algorithm (AGA) to
optimize the parameters of PID controller and used
altera FPGA 1P1C6F256C8 to implement PID
controller. Skliarova.I.et.al [20] applied GA to
optimize the traveling sales person problem in
which the path is the chromosome and the cities are
the genes. Esmaeilian-Marnani,A.et.al [4]
suggested a new control method using GA and
FPGA for polarization control used in fiber optic
communication. Kher. S.et.al [11] proposed a
dynamic crossover (DC) mechanism whose
performance is tested by implementing in hardware
(FPGA) with convergence rate and higher fitness as
the performance metric. Since the updates are
carried out along with the population generation,
the convergence is faster.

Fernando.P.R.et.al[6] proposed a robust

parameterized genetic algorithm IP core,that is
readily synthesizable using standard FPGA design
tools and that can be easily integrated into any
design. Rubio-Solar.M.et.al [19] presented two
implementations of a GA: a sequential one and a
distributed one. The distributed implementation
realized in ring topology model in which nodes
exchange their best chromosomes after a
determined number of generations. The encoded
chromosome structure consists of a bit string,
whose length depends on the problem size (number
of CLBs and nets, size of the FPGA, etc). The
chromosome consists of a set of coordinates (Xn,
Yn), which represents each CLB position on the
FPGA. Martin.P [16] shows how a GP system can
be implemented in FPGA using a high level
language to hardware compilation technique.
Low.KS .et.al.,[15] focussed a problem with four
dimensional inputs and three output clusters. The
sepal length, sepal width, petal length, and petal
width are measured in millimeters on fifty iris
specimens from each of the three species, namely
Iris setosa, Iris versicolor, and Iris virginica. The
chromosome is formulated by concatenating the
integer codes of the features. It uses 7 bits
representation and yields an overall 28-bit
chromosome. Wang J.et.al [25] mainly focused on
demonstrating the possibility and efficiency of the
FPGA implementation of evolvable characters
recognizer and the benefits of self-adaptive
mutation rate control scheme. To self-adapt the

mutation rate, rather than fix it, the mutation rate
control parameters are also encoded into the
chromosome as additional genes.

Lau.W.S.et.al [13] proposed a hardware-
assisted combinational logic circuit learning
system. The GPP Logic Circuit Synthesizer
consists of software Evolution Engine (EE), an
FPGA-based logic circuit evaluation engine, and a
Multi-Logic-Unit Processor (MLP).
Ferlin.E.P.et.al.,[5] suggested reconfigurable
parallel architecture for GA. The chromosomes are
encoded with 25 genes (one gene for each logic
cells) and each gene has 7 bits. Each gene is
responsible for the configuration of a LC, and three
fields compose it: address A, address B and the
function. Vasicek..Z et.al.,[23] proposed
accelerator for a given instance of Cartesian
Genetic Programming (CGP) (i.e. a reconfigurable
graph consisting of u × v programmable nodes)and
it is implemented as a reconfigurable circuit on the
FPGA. Its configuration is defined using a bit
stream, which is stored in a configuration register
implemented also in the FPGA. In order to evaluate
a candidate chromosome, a controller has to store
the chromosome into the configuration register and
activate the fitness unit (FU).

Yang.M.et.al [29] resolves placement problem
in which the chromosome structure is L1, L2,.,LN
where L represents the configurable logic block
number, N depends on K, the size of an FPGA. (ie)
N = K x K. this approach utilizes the advantage of
GA and fast convergence of simulated annealing
(SA). Wong..CC.et.al., [28] suggested a fuzzy
system design based on the concepts of GA to
control three-wheeled mobile robot so that it can
move to any direction and spin at any given
rotating rate. Each individual of the population is
represented by a parameter set to determine a fuzzy
system.

3. SELECTION AND FITNESS FUCTION

Selection gives prefrence to better individuals,
allowing them to pass on their genes to the next
generation. The goodness of each individual
depends on its fitness. [1][5][12][13][16] The
selection process is based on tournament operator in
which four individuals {a,b,c,d} are chosen
randomly from the current population, parent1 is
chosen from {a,b} and parent2 is chosen from {c,d}
based on their fitness. They followed the sinusoidal
model as cost function in which the 3 parameters
{A, f, θ}, the input signal u and the time instant n
are involved.

Journal of Theoretical and Applied Information Technology
31st January 2012. Vol. 35 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

O.Hachour [7] suggested the fitness function

based on n is the code number of paths designed to
be candidates of selection of two paths; m is the
code number of all paths. Vavouras, M. et. al., [24]
implemented the optimization of six different fitness
functions on the XUPV2P platform. Delbem, A.C
et. al.[2], Souza, S.A et.al [21][22] applied selection
as tournament operator and the fitness function is
based on the individual of the population c, the
number of points n, measured signal for a point,
signal calculated for the point using parameters cf,
cv and cφ from chromosome c for measuring the
frequency deviation. Wang.J et.al.,[26] employed
roulette-wheel selection with schedule length is the
fitness function. Lei.T.et.al [14] also implemented
selection-processing module using fitness values
stored in memory and roulette-wheel selection.
Qu.L et.al.[18] selects the two individuals by the use
of random number generator module which
generates two random address signals for RAM1
and RAM2 respectively.

Skliarova.I.et.al [20] determined the fitness

function of a tour corresponds to its length with
roulette wheel selection. Fernando.P.R.et.al.,[6] uses
proportionate selection scheme to select parents
from current population. In that A threshold fitness
value is computed from the sum of the fitnesses of
all the individuals in the current population and a
random number. A cumulative sum of the fitnesses
of the individuals in the current population is
computed and compared to the threshold fitness
value. The individual whose fitness causes the
cumulative fitness sum to exceed the scaled fitness
threshold is selected as the parent. Low.KS .et.al
[15] choosed roulette wheel selection scheme for
choosing the parents for mating. Wang J.et.al., [25]
describes a training set, that includes 16 test vectors
from A to P.The fitness unit evaluates the circuits
uploaded to the virtual reconfigurable circuit unit by
reading its output vectors and comparing them
against the expected output vectors. Yang.M.et.al
[29] randomly selected based on the fitness.

4. CROSSOVER

Crossover represents mating between
individuals. the new chromosome may be better
than both of the parents if it takes the best
characteristics from each of the parents. Crossover
occurs during evolution according to a user-
definable crossover probability. D.V.Coury et.al.,
[1] suggested the crossover process for representing

the offspring from five possible values such as ψ of
parent1, ψ of parent2, mean value between ψ of
parent1and ψ of parent2, mean - δ and mean + δ
where δ is the distance between parents.
[5][6][7][14][24][26] followed single point or two-
point crossover to reproduce better chromosome for
next generation. Delbem, A.C et. al.[2], Souza, S.A
et.al [21][22] realized the crossover based on five
points including the parents and their mean values,
choosing one value with probability 20%. Zhang X
et.al [31] suggested the crossover operation
according to the condition if the crossover
probability is less than the operation threshold PC,
the component performs one point crossover.
Otherwise simply copies the two parents as
offspring. Harik.G.et.al [9], Jewajinda, Y.et.al [10]
followed probability model instead of crossover
because successive application of crossver results in
decorrelation of the population’s genes and this state
can be easily represented as probability vector
which is faster way for crossover. Koo.J.H.et.al [12]
adapted multipoint crossover and the crossover
probability was changed dynamically based on
linear interpolation.

Wang.L.et.al [27] determined the crossover

place by adding 25 to bit positions 4 to 7 in both
parents. Qu.L et.al.,.[18] calculates the crossover
probability from the biggest crossover probability,
the smallest crossover probability, the biggest
generation, current generation, the average fitness
value in current generation and the bigger fitness
value among two crossover individual.
Skliarova.I.et.al., [20] used Partially mapped
crossover (PMX) with different crossover
probabilities. Esmaeilian-Marnani,A.et.al [4] takes
the half upper part of the population matrix as
parents. Crossover between these parents makes
new populations substituting for the half lower part
of the population matrix. Kher. S.et.al [11]
suggested a crossover mechanism that dynamically
updates the number of crossover points and location
of crossover on the basis of fitness values. Rubio-
Solar.M.et.al [19] followed n-point crossover 12
points for 260 bits. Low.KS .et.al [15] performed
crossover operation in parallel on all the parents.
This will result in all m offsprings being produced
instead of 2 offspring at a time. The crossover
probability is taken as 40%. Lau.W.S.et.al [13] has
crossover probability as 0.1. Yang.M.et.al., [29]
choose a random cut point and divide the individual
into two halves, left segment and right segment. A
heuristic is used to avoid duplication of offspring.
Wong.CC.et.al., [28] uses the crossover probability:
pc = 0.9.

Journal of Theoretical and Applied Information Technology
31st January 2012. Vol. 35 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

246

5. MUTATION

Mutation is needed to avoid the premature and
to keep the population assorted. It spawns random
changes in the population. With some low
probability, a portion of the new individuals will
have some of their bits flipped. Its purpose is to
maintain diversity within the population and inhibit
premature convergence. The mutation is
implemented as either adding or subtracting 1 from
the parameters [1]. The path planning for mobile
robots suggested mutation rate as 0.1 [7]. It is a bit
is changed from 0 to 1 or 1 to 0. Vavouras, M et. al
[24] used the mutation rarely with low probability
generating a random number for each bit and
flipping this bit only if the random number is less
than or equal to the mutation probability.
[2][21][22] followed technique in which a value of 1
is to add or subtract to each gene of the chromosome
according to a mutation rate. Zhang X et.al [31]
suggested the mutation operation according to the
condition If the mutation probability is less than the
operation threshold PM, one bit of both offspring is
mutated, Otherwise not executed. Wang.J et.al.,[26]
applied mutation based on mutation probability with
randomly selecting task assignments for mutation.
Lei.T.et.al [14] implemented mutation based on
small probability and by choosing the ramdom data
for anti-operation on the mutation bit. Koo.J.H.et.al
[12] changed the mutation probability dynamically
using linear interpolation. Wang.L.et.al [27]
determined mutation bit by adding 1 to the values in
bit positions from 8 to 13 in first parents and bit
positions 14 to 18 in second parents. Qu.L et.al.[18]
calculates the mutation probability from the biggest
mutation probability, the smallest mutation
probability, the biggest generation, current
generation, the average fitness value in current
generation and the fitness value of mutation
individual. Skliarova.I.et.al [20] implements the
mutation operator by randomly picking two cities in
a path and reverses the order of the cities between
them. Esmaeilian-Marnani,A.et.al [4] applied
mutation on population matrix, by selecting random
elements to be changed from 1 to 0 or from 0 to 1.
Fernando.P.R.et.al.,[6] generated a 4-bit random
number and compares it with the selected mutation
threshold to decide if mutation should be performed.
Rubio-Solar.M.et.al., [19] taken the mutation rate as
4/gene length. Wang J.et.al [25] performed 2
mutation operators (1) to the configuration bits
strings and (2) to their additional genes that decide
the mutation rates. The bit-mutation probability [13]
is 0.002, [15] 4% and [28] 0.5. Ferlin.E.P .et.al.,[5]
executes a point-mutation operation which

complements a random bit with probability.
Yang.M.et.al [29] followed pair-wise interchange,
according to the probability of mutation rate.

6. PERFORMANCE ANALYSIS

D.V.Coury et. al., [1] approach is having an
issue of sine function. It needs large number of
multiplications, which increases the running time.
Instead the performance is improved by use of look
up table, storing 1024 sine function values, which
are calculated in workstation in advance. The FPGA
based GA implementation for path planning [7] of
AMR is showing flexibility and can be changed on
the fly to meet the different requirements of the
users. The HGA approach for blind signal
processing [3] is showing amazing real time
performance and because of the need of 360
generations execution time is highly reduced.
Implementation on a number of different high-end
FPGAs [24] outperforms other reconfigurable
systems with a speedup ranging from 1.2x to 96.5x.
Delbem, A.C et. al.[2], Souza, S.A et.al[21][22]
observed frequency estimation based on GAs is
faster and has better immunity against noise, at a
very small cost and fast enough to work in real time
by implementing in FPGA. Hamid M.S.et.al [8] got
the inference of good utilization of the device
resources. And the optimization process was
performed in a very short time. Zhang X et.al [31]
proved that the developed genetic Algorithm kernel
design for hardware is suitable for any kind of
FPGA. Pedraza.C et.al [17] got the performance
improvement of up to x500 increase in speedup over
an HPC implementation.

Jewajinda, Y.et.al [10] observed the CCGA is

more suitable for hardware-based applications
where improved quality of search is needed. In
addition, CCGA resolves a scalability issue of
genetic algorithm with problem size by increasing
network size. Wang.J et.al., [26] studied resource
utilization for different FPGA and experiment
results are tabulated. Lei.T.et.al [14] got the
inference of 1000 times better performance if GA is
implemented in FPGA with 20MHz than a
workstation with 200MHz. Koo.J.H.et.al [12]
applied various filters for image enhancement using
genetic algorithm and the experimental results
shows that proposed system has superior to impulse
noise reduction, contrast enhancement, and blurring.
Wang.L.et.al [27] proposed cryptographic system of
AES based on reconfigurable hardware and genetic
algorithm and it is implemented on Virtex-E FPGA,

Journal of Theoretical and Applied Information Technology
31st January 2012. Vol. 35 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

247

which is flexible, improves security level by
generating key sequence in every round encryption
and has high encryption speed. Qu.L et.al.[18] used
AGA to optimize parameters of PID controller. The
simulation results show that AGA improves global
search capabilities, the precision of PID parameters
optimization and has the merit of flexible design,
self-tuning on line, high reliability, low
development cycle and high speed.

Skliarova.I.et.al [20] performed the

comparative analysis between software and
hardware implementation. The software version was
C++ and executed on a PentiumIII/800MHz/256MB
running Windows2000. The hardware part was
executed on an XCV812E FPGA with a clock
frequency of 40 MHz. The experiment results show
that the PMX crossover operator is faster in FPGA
for 10-50 times than in software. Kher. S.et.al [11]
tested the dynamic crossover (DC) against various
static crossover methods. The experimental results
show that for a linear and a nonlinear objective
function, DC outperforms all static crossover
mechanism. Fernando.P.R.et.al., [6] got the
inference as the gate-level Verilog implementation
of the GA core is advantageous because it can be
directly used by commercial layout tools for chip
layout generation. The availability of preset modes
and scan-chain testability provides some basic fault
tolerance to an ASIC designed using the proposed
GA design. Rubio-Solar.M.et.al [19] obtained
results show us that the main benefit of the
distributed model is a large reduction of the
execution time. Martin.P [16] observed the
performance of the FPGA implementation is better
than the equivalent software implementation
without using parallel fitness evaluations.
Low.KS.et.al [15] proposed an approach, which has
been applied to the unsupervised clustering
problems. The results have shown that the
developed system is very flexible and scalable. Its
speed advantage makes it a potential practical
approach for real time data clustering.

Wang J.et.al [26] observed the hardware

system could evolve the target 16 characters
recognizer from scratch in relatively short time
when compared to the same algorithm described in
C language running on an AMD Athlon64 3200+
CPU. It is found in [13] that the speedup ratio
increases with the number of tournaments taken in
the evolution. In the experiments using two PEs, [5]
gives a performance improvement of 54%, or a
speedup of 1.85, reaching 92% of the ideal value is

observed. In [23] a significant speedup of evolution
was obtained in comparison with a highly optimized
software implementation of CGP. In [29]
experimental results show that the proposed GASA
is effective in improving the quality of placement
for the tested MCNC benchmark circuits. It
consumes less CPU time than GA. In [28]
experimental results indicated that the omni-
directional mobile robot had a desirable full
mobility and smooth motion.

7. CONCLUSION

GAs can be used where optimization is
needed. Perhaps the greatest value of genetic
algorithms is in the fact that they are based on the
theory of ever-evolving optimization as a response
to changing environments. To conclude genetic
algorithm can be used for an optimization problem
for which straight forward algorithms fails or no
such highly suitable domain specific algorithms. GA
can also employed to the problems in which little
optimization worth a lot. It can also be combined
with existing heuristics in order to realize the utmost
benefit.

REFRENCES:

 [1] Coury, D.V. Oleskovicz, M. Delbem,

A.C.B. Simoes, E.V. Silva, T.V. de
Carvalho, J.R. Barbosa, D.: “Frequency
Relaying Based on Genetic Algorithm Using
FPGAs”. 15th International Conference on
Intelligent System Applications to Power
Systems, pp 1 – 7 (2009)

[2] Delbem, A.C.B. Simoes, E.V. Souza, B.F.
Oleskovicz, M. Souza, S.A. Coury, D.V.: “A
Fast and Efficient Method for Frequency
Deviation Measurement Based on Genetic
Algorithms using a FPGA Approach”,
Transmission & Distribution Conference and
Exposition, IEEE/PES, pp: 1 – 6. (2006)

[3] Emam, H. Ashour, M.A. Fekry, H. Wahdan,
A.M.: “Introducing an FPGA based genetic
algorithms in the applications of blind signals
separation”, Proceedings of 3rd IEEE
International Workshop on System-on-Chip
for Real-Time Applications. pp:123 – 127.
(2003)

[4] Esmaeilian-Marnani,A. Mamdoohi, G. Abas,
A.F. Samsudin, K. Hidayat, A. Ibrahim, N.H.
“Strategy on implementing genetic algorithm
on FPGA for polarization control
application”, International Conference on

Journal of Theoretical and Applied Information Technology
31st January 2012. Vol. 35 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

248

Computer and Communication Engineering,
11-12 May 2010, pp:1-5, (2010).

[5] Ferlin.E.P, Lopes.H.S, Erig Lima.C.R,
Cichaczewski.E : “Reconfigurable parallel
architecture for genetic algorithms:
application to the synthesis of digital
circuits”, Proceedings of the 3rd international
conference on Reconfigurable computing:
architectures, tools and applications, LNCS
Springer-Verlag Berlin, Heidelberg, pp: 326-
336, (2007)

[6] Fernando.P.R, Katkoori.S, Keymeulen.D,
 Zebulum.R, Stoica.A.: “Customizable
FPGA IP Core Implementation of a General-
Purpose Genetic Algorithm Engine”, IEEE
Transactions on Evolutionary Computation,
Volume: 14 Issue:1, pp: 133 – 149, (2010).

[7] Hachour.O,: “The Proposed Genetic FPGA
Implementation For Path Planning of
Autonomous Mobile Robot” , International
Journal of Circuits , Systems and Signal
Processing, vol2 , pp:151- 167, (2008).

[8] Hamid M.S. Marshall S.: “FPGA realisation of
the genetic algorithm for the design of grey-
scale soft morphological filters”. IEEE
International Conference on Visual
Information Engineering, pp: 141 – 144.
(2004).

[9] Harik.G, Lobo.F, Goldberg.D: “The compact
Genetic Algorithm”, IEEE Transaction on
Evolutionary Computation, vol. 3, pp. 287-
309, (1999).

[10] Jewajinda, Y. Chongstitvatana, P.: “FPGA
Implementation of a Cellular Compact
Genetic Algorithm”. Proceedings of the 2008
NASA/ESA Conference on Adaptive
Hardware and Systems, Noordwijk, 22-25
June 2008, IEEE Computer Society
Washington, pp: 385 – 390, (2008)

[11] Kher. S, Ganesh.T.S, Ramesh.P, Somani.A.K,:
“Greedy Dynamic Crossover Management in
Hardware Accelerated Genetic Algorithm
Implementations using FPGA”, 11th
International Conference on Computer
Modelling and Simulation, pp: 47 – 52 (2009)

[12] Koo.J.H, Kim.T.S, Dong.S.S, Lee.C.H,:
“Development of FPGA based adaptive
image enhancement filter system using
genetic algorithms”, Proceedings of the 2002
Congress on Evolutionary Computation, 12 -
17May 2002, pp: 1480 – 1485 (2002)

[13] Lau.W.S, Li.G, Lee.K.H, Leung.K.S,
Cheang.S.M: “Multi-logic-unit processor: A
combinational logic circuit evaluation engine
for genetic parallel programming”,

Proceedings of the 10th European
Conference on Genetic Programming,
volume 4445 of LNCS. 167–177 (2005).

[14] Lei.T, Ming-cheng.Z, Jing-xia.W,: “The
hardware implementation of a genetic
algorithm model with FPGA”, Proceedings of
IEEE International Conference on Field-
Programmable Technology, 16-18 Dec. 2002,
pp: 374 – 377.(2002)

[15] Low.KS, Krishnan.V, Zhuang.H, Yau.WY :
“On-Chip Genetic Algorithm Optimized
Pulse Based RBF Neural Network for
Unsupervised Clustering Problem”, Advances
in Natural Computation LNCS series,
Springer Berlin / Heidelberg, Volume: 4222,
pp:851-860. (2006)

[16] Martin.P: “A Hardware Implementation of a
Genetic Programming System Using FPGAs
and Handel-C”, Genetic Programming and
Evolvable Machines, Vol: 2, Issue: 4 pp: 317-
343, (2001)

[17] Pedraza.C, Castillo.J, Martínez.I.J, Huerta.P,
Bosque.L.J, Cano.J: “Genetic Algorithm for
Boolean minimization in an FPGA cluster”, J
Supercomput, pp:1-9, (2010).

[18] Qu.L, Huang.y, Ling.L : “Design of Intelligent
PID Controller Based on Adaptive Genetic
Algorithm and Implementation of FPGA”,
Proceedings of the 5th international
symposium on Neural Networks: Advances in
Neural Networks part II, Springer-Verlag
Berlin, Heidelberg, pp: 542 – 551 (2008)

[19] Rubio-Solar.M, Vega-Rodriguez.M.A,
Perez.J.M.S, Gomez-Iglesias.A, Cardenas-
Montes.M, :”A FPGA Optimization Tool
Based on a Multi-island Genetic Algorithm
Distributed over Grid Environments”, Eighth
IEEE International Symposium on Cluster
Computing and the Grid, pp.65-72 (2008)

[20] Skliarova.I, Ferrari.A.B,: “FPGA-based
Implementation of Genetic Algorithm for the
Traveling Salesman Problem and its
Industrial Application”, Proceedings of the
15th international conference on IEA/AIE
'02: developments in applied artificial
intelligence, Springer-Verlag London, pp: 77-
87. (2002).

[21] Souza, S.A. Oleskovicz, M. Coury, D.V.
Silva, T.V. Delbem, A. Simoes, E.V.:
“FPGA implementation of Genetic
Algorithms for frequency estimation in power
systems”. Power and Energy Society General
Meeting - Conversion and Delivery of
Electrical Energy in the 21st Century, 2008
IEEE, pp: 1 – 6. (2008)

Journal of Theoretical and Applied Information Technology
31st January 2012. Vol. 35 No.2

 © 2005 - 2012 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

249

[22] Souza S.A, Oleskovicz.M, Coury.D.V,
Silva.T.V, Delbem.A.C.B, Simões.E.V,: “An
efficient frequency estimation methodology
using genetic algorithms in FPGA”. Proc.
2007 The 33rd Annual Conf.of the IEEE
Industry Electronics Society, pp. 2020-2025
(2007)

[23] Vasicek.Z and Sekanina.L: “Hardware
Accelerators for Cartesian Genetic
Programming”, Proceedings of the 11th
European conference on Genetic
programming, LNCS Springer-Verlag Berlin,
Heidelberg, pp:230-241(2008)

[24] Vavouras, M. Papadimitriou, K.
Papaefstathiou, I.: “High-speed FPGA-based
Implementations of a Genetic Algorithm”.
IEEE International symposium on Systems,
Architectures, Modeling, and Simulation,
SAMOS '09, pp: 9 – 16. (2009).

[25] Wang J, Piao.C.H, Lee.C.H,: “FPGA
Implementation of Evolvable Characters
Recognizer with Self-adaptive Mutation
Rates”, Adaptive and Natural Computing
Algorithms LNCS, Springer Berlin /
Heidelberg, Vol 4431/2007, pp: 286-295,
DOI: 10.1007/978-3-540-71618-1_32. (2007)

[26] Wang.J, Sin Ming Loo.S: “Case study of finite
resource optimization in FPGA using genetic
algorithm”, Proceedings of the first
ACM/SIGEVO Summit on Genetic and
Evolutionary Computation, ACM New
York,pp: 989-992 (2009)

[27] Wang.L, Wang.Y, Yao.R, Zhang.Z,:
“Hardware Implementation of AES Based on
Genetic Algorithm”, Advances in Natural
Computation LNCS, Springer Berlin /
Heidelberg, Vol 4222/2006, 904-907, (2006).

[28] Wong.CC, Lin.YH, Lee.SA, Tsai.CH,:”GA-
based Fuzzy System Design in FPGA for an
Omni-directional Mobile Robot”, Journal of
Intelligent and Robotic Systems, Volume 44,
pp: 327 – 347, (2005)

[29] Yang.M, Almaini. A. E. A, Wang.P,: “Fpga
Placement Optimization By Two-Step
Unified Genetic Algorithm And Simulated
Annealing Algorithm”, Journal of
Electronics-China, Vol. 23, Number 4, pp:
632-636, DOI: 10.1007/s11767-005-0198-3
(2006)

[30] Yu Q, Chen C, Pan C.: “Parallel genetic
algorithms on programmable graphics
hardware”. Lecture notes in computer
science. Springer, Berlin, pp 1051–1059,
DOI: 10.1007/11539902_134 (2006)

[31] Zhang X Shi C and Hui F.: “FPGA-Based
Genetic Algorithm Kernel Design”.
Proceedings of the 7th international
conference on Evolvable systems: from
biology to hardware, LNCS 4684 -Springer-
Verlag Berlin Heidelberg, pp. 426–432
(2007).

