
Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

215

THE DESIGN OF BLOCK-BASED MASHUP TOOL FOR END-
USERS MASHUP APPLICATIONS DEVELOPMENT

1RODZIAH LATIH, 2AHMED PATEL, 3ABDULLAH MOHD. ZIN
Center for Software Technology and Management,
 Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia, 43600Bangi, Selangor, Malaysia
E-mail: 1rodziah@ftsm.ukm.my , 2apatel@ftsm.ukm.my , 3amz@ftsm.ukm.my

ABSTRACT

A mashup application is a web application that combines contents from several sources into an integrated
web experience A mashup tool is a software tool to assist users in developing web mashup application.
Most of these tools are developed by employing end-users development approaches such as scripting, wire,
widget, spreadsheet, and Programming by Demonstration. However, although these tools are based on
end-users development approaches, they are still difficult to be used by most of end-users since they require
end-users to have some programming background. In this paper, we present the design of Whip mashup
tool. The aim of this mashup tool is to allow end-users to develop web mashup application easily by using
Block-Based Software Development approach. This development approach enables end-users to develop
software or web applications by combining several programming blocks together.

Keywords: Web Mashup, Block-Based Software Development, End User Development, Web Services
Aggregation

1. INTRODUCTION

Over the past few years, mashup applications
have received a significant attention as one of the
most supportive web applications. Users develop
mashup meta-application to track events like
hurricane, crimes, stock market, etc. There are
three main reasons for this new trend. The first one
is the availability of tools that have enabled end-
users to develop mashup applications. The second
reason is the availability of Web technologies that
support this activity. The third reason is the interest
and acceptance of mashup application development
by enterprise users. Organizations are beginning to
realize that they can use mashup to coordinate their
services with other existing services, either internal
or external, as well as to provide new and
interesting views of the data.

A mashup application is a web application that
combines contents from several sources into an
integrated web experience [23]. A mashup
application aggregates multiple services with each
services serving its own purposes into a new
service that serve a new purpose [10]. For example,
Kangaroo
(http://groups.csail.mit.edu/uid/kangaroo/) is a
mashup application that extends the capability of
webmail systems (such as Gmail). This application

helps to alleviate problems of sending e-mails to
wrong recipients by automatically displaying
pictures of the selected recipients while the user is
composing an e-mail message. Pictures are taken
from Google images and Facebook
(www.facebook.com). This application can be a
useful security feature for webmail systems that
helps to prevent people from sending wrong
information to the wrong recipient.

Mashup tools are software tools that assist users
in developing mashup applications. There are a
number of mashup tools currently in the market,
for example, Yahoo Pipes
(http://pipes.yahoo.com), Dapper
(http://open.dapper.net), Intel Mashmaker [4],
IBM Mashup Center (www-
01.ibm.com/software/info/mashup-center/),
Marmite [22], and Vegemite [9]. Different mashup
tools targeted at different types of users; developer
or non-developer. Developer is a group of users
that have a skill in programming. Non-developers
are end users that do not have programming skill
however they may have knowledge about
computers and Internet.

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

216

2. PROBLEM STATEMENT AND
PROPOSED SOLUTION

Studies by [14-15] show that although most of

mashup tools are developed to support end user
development, they are not easy to be used by end
users since they require end users to have a
knowledge of computer programming. In order to
solve this problem, we propose a new mashup tool
called Whip that is based on Block-based Software
Development (BBSD) approach. In this approach,
end users can develop software applications by
combining several programming blocks together.
BBSD is a simple concept that allows end users to
develop application without computer
programming background.

3. METHOD

The design of Whip presented in this paper is
carried out in five stages as follows: study of the
currently available mashup tools, understanding the
concept of block-based programming approach,
analyze the requirement specification, develop the
system architecture, and finally present the system
design.

4. REVIEW OF MASHUP TOOLS

There are two approaches for categorizing
mashup tools. The first approach is to categorize
them based on types of supports provided while the
second approach is to categorize based on types of
environment provided.

4.1 Types of Support

From this aspect, mashup tools can be

categorized into automated, semi automated and
scripting.

4.1.1 Automated Mashup Tools

This category of mashup tools is normally
support the development of situational mashup
applications. A situational application is an
application that is developed rapidly to address an
immediate need of an individual or small
community [3]. It is created for a specific situation
and it is utilized only for short periods of time
while the situation exists. It is a Just-in-time
solution but not necessarily short-lived.

A mashup application is a type of situational
application if it is developed for a specific situation
[23]. For example, HomePriceRecords
(homepricerecords.com) is a mashup application

that combines home sales data with Google maps.
This mashup application lets users check the price
of the house for sale in the United States.
2RealEstateAuction
(www.2realestateauctions.com) is a mashup
application that let users see all real estates
(residential, land, commercial and timeshares
properties) in the United States that are currently
being auctioned in eBay (www.ebay.com) by using
Google maps.

Examples of mashup tool that support the
development of situational mashup applications are
MaxMash [18] and Automatic Mashup of
Composite Application [2]. MaxMash composes
selected features of networked application and
generates the source code for mashups application
that can integrate those features. On the other hand,
Automatic Mashup of Composite Application is a
framework that supports automatic creation of
mashup which allows for composition of non web
service based components such as portlets, web
applications, native widgets, legacy systems, and
Java Beans. Users’ situation can be configured
depend on user location and schedule [5], and it
will help users to select the web source easily and
quickly.

4.1.2 Semi-Automated Mashup Tools

Semi-automated mashup tools were developed to
support end user development of mashup
applications. Thus, more of mashup tools in this
category were developed based on end-user
development (EUD) paradigms. EUD paradigms
provide programming capabilities for everyone by
pushing on different aspects of computing
technologies [13]. There are four EUD paradigms
identified used in mashup tools as shown in Table
1: wiring, Programming By Demonstration (PBD),
spreadsheet and widget.

Wiring or dataflow paradigm is where several
selected modules or widgets that support particular
functions (i.e. data retrieval, data presentation, etc.)
are connect together. Such tools are Pipes and
Marmite.

PBD is a EUD paradigm that let the users
demonstrate the desired task going through several
steps as actions that should be performed on the
data. The system records these actions and
concludes a generalized program that can be used
upon new data. For example, in Vegemite users
start with an empty table. Users demonstrate a
series of actions on how to fill the spreadsheet-like
table manually or copied from an existing source or

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

217

extracted from an existing web page using
Vegemite direct-manipulation tool. These actions
are recorded into scripts, which can be re-executed
immediately for other rows in the table and used
later to refresh the data in the table.

Spreadsheet paradigm is also another EUD
paradigm that implemented in several mashup tools
like Spreadsheet-based Web Mashups [8],
Vegemite, Marmite, Mashmaker, and
SpiderCharlotte [20]. In spreadsheet paradigm, a
spreadsheet-like table is used to display the data.
Cell in the table is referring by its column and row
coordinates, and users manipulate their data
directly using drag-and-drop fashion. For instance,
Spreadsheet-based Web Mashups use spreadsheet-
like table to display the query result from the Web.
Users then can specify the constructing data views.
Vegemite also use a spreadsheet-like table called
VegeTable to display all the data accessed from the
web.

Widget paradigm is a paradigm that has gained
wide popularity because it allows end users to
create mashup easily. Each widget represents a
particular function. User just needs to select the
widget and use it. However, this approach has
several limitations such as the number of widgets
increases to support more operations, locating the
right widget for the task can be confusing and time
consuming. On the other hand, the advantage of
using widget is that it can promote customization
where users can tailor their systems to match their
personal work practice or preference [11]. Such
tools that use widget paradigm are iGoogle and
Netvibes.

4.1.3 Scripting Mashup Tools

This category of tools implies that the
development of mashup applications requires some
form of programming or coding. The coding
process is simplified by using scripting languages
rather than the normal programming languages.
However, non-programmer end users will find that
this approach is still difficult because it requires
users to know basic program structure and the
syntax of the language. An example of a mashup
tool in this category is Web Mashup Scripting
Language (WMSL) [17].

Table 1: EUD paradigms used in mashup tools.

EUP
paradigm

Description Mashup tool

Wiring
paradigm

Wire together
selected widgets.

Pipes

PBD Users demonstrate
desired task to be
repeated by the
tool.

Vegemite

Spreadsheet
paradigm

Data is inserted into
a spreadsheet-like
table.

Spreadsheet-
based Web
Mashups

Widget
paradigm

Each widget
contains different
data.

iGoogle,
Netvibes

4.2 Types of Environment

In general, as shown in Table 2, there are three
types of environment of mashup tools; visual
mashup editor, browser extension application, and
web portal mashup tools.

A visual mashup editor is a tool that lets users
create a mashup application by manipulating
program elements graphically rather than by
specifying them textually. Yahoo Pipes is an
example of a mashup tool that let users to develop
mashup applications via a visual editor by selecting
a few modules and wire them together. Yahoo
Pipes editor consist of three panes; the library,
canvas and debugger. The library pane shows a list
of all the available modules and user’s favorite
Pipes from other users. Modules are grouped by
functionalities; data source (like RSS Feeds, Yahoo
Search, etc.), user’s inputs field that can be filled in
at runtime, operators (like sort, count and filter),
URL (for building and manipulating URLs), strings
(for handing strings data type) and date (for
manipulating dates).

Table 2: Three Types of Environment of Mashup tools

Types Description Mashup Tools
Visual
editor

Editor with visual
programming
environment

Pipes

Browser
extension

Plug-in application
to web browser

Mashmaker,
Marmite,
useKit,Vegemite

Mashup
portal

Web portal with a
dashboard full of
mashup widget

iGoogle, Netvibes

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

218

A browser extension application mashup tool is a
tool that is developed as a plug-in application to
web browsers. By using this tool, users can
develop a mashup while browsing the web. For
example, Intel Mashmaker, an application that is a
plug-in to Firefox web browser. Mashmaker let
users develops mashup applications while
browsing the web. It is equipped with a capability
to suggest to users on what type of data that need to
be integrated. Other browser extension mashup
tools are useKit [16], Marmite and Vegemite.

Web portal mashup tools like iGoogle
(www.google.com/ig), MyYahoo (my.yahoo.com),
Windows Live (www.live.com), Netvibes
(www.netvibes.com), PageFlakes
(www.pageflakes.com) and Facebook are simple
tools that provide users with a dashboard full of
widgets ready to be mashed. Users can stream their
emails from Gmail, get local and world weather
information, and pull RSS from their favorite sites.
In this type of mashup tool, data sources are
aggregate into a single layout. However some of
these data sources may themselves consist of
multiple data sources integrated into a single list or
view.

iGoogle allows users to add to their iGoogle
page any number of widgets or RSS feeds that
contain data from other sources and arrange these
widgets by dragging them from one location on
their page and dropping them onto another
location. Each widget has its own settings that can
control the amount of data gets displayed and the
source of that data. Users can create their own
widget and share any widget on their page with
other users. However, iGoogle only support data
sources from Google. Netvibes is one of the early
AJAX based personal content aggregators.
Netvibes allows users to create their own website
within the Netvibe domain and customize both its
content and appearance. Each widget has its own
settings that can control its appearance, how much
data it displays and where that data comes from.
Netvibes also allow users to share with others their
Netvibes pages.

5. BLOCK-BASED SOFTWARE
DEVELOPMENT (BBSD) APPROACH

BBSD is an approach that allows users to

develop application by combine several program
blocks together [12] [1] [6]. The applications can
be developed quickly and within estimated cost.
The main aim of this approach is to allow the end
users that lack of programming skill to develop the
application by simply combining several selected

blocks. BBSD approach adopts the idea of
component-based development (CBD) approach
where it simplifies the process of CBD to make it
suitable for the end users.

An individual block is defined as a program
component, a software package, or a module that
support certain task or function. Unlike
components in CBD, block is a single level of
program component where a block cannot be a
component of other blocks. However, blocks can
be reused. Users are also allowed to customize the
blocks before integrate those blocks to form a
required application. The elements of BBSD
approach are interfaces, attributes, behaviors and
GUI elements [1] (Table 3). Interface is like a
communication contract between the blocks.
Attribute is a characteristic of the block. Behavior
is a set of functions for the block to perform. GUI
elements are features for building graphical user
interfaces i.e. buttons, sliders, etc.

Table 3: Elements of BBSD Approach.

Elements Description
Interface A communication contract

between the blocks.
Attributes The characteristics of the block.
Behaviors A set of functions for the block to

perform.
GUI element A group of features for building

graphical user interfaces i.e.
buttons, sliders, etc.

There are two types of developers in BBSD
approach; block developer and application
developer. Blocks developer is a people that
developed the blocks. Application developer will
use these blocks to develop the application.
Therefore, in BBSD approach, end users also can
be an application developer. The development
processes of block-based applications are separated
from development processes of the blocks. The
blocks should already been developed and possibly
used in other applications when the application
development processes start. Figure 1 illustrate the
development process model of BBSD approach [1].

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

219

Figure 1: BBSD Approach Model.

Figure 2 shows the comparison between
traditional approach in mashup development with
BBSD approach. In traditional approach,
developing mashup involve five processes which
are data retrieval, data cleaning, data modeling,
data integration and data visualization [19, 23].
While using BBSD approach, these processes will
be simplified where users just need to select the
block from the block catalog, customized it if
needed, integrate the blocks and display. Blocks
integration is also an option where user can
integrate the block with other block if required. For
example, user can integrate the ‘searching’ block
with ‘RSS feed’ block or integrate photo from
Flickr block with Google map block or just let
those blocks function separately.

Figure 2: Comparison of traditional approach in
developing mashup with BBSD approach.

The implementation of BBSD approach offer
advantages such are:

• Existing blocks are made possible to be
reused.

• Application can be developed adaptive to
individual or specialized user.

• BBD approach allows for rapid software
development and therefore decrease the
overall development cost.

• Programming skills are not required.
• Application that developed using BBSD

approach is flexible and extensible.
• Software development tool that support

BBSD approach can be a general purpose
software development tool and thus many
types of applications can be developed.

6. REQUIREMENT SPECIFICATION OF
WHIP

Whip is a mashup tool that is based on Block-

based Software Development (BBSD) approach.
The design of Whip is guided by the requirements
as shown in Table 4.

7. WHIP ARCHITECTURE

Figure 3 shows the architecture of Whip. Whip is
a client-side application. Upon request, Whip
application is sent to the user’s computer by the
web server. The user’s web browser executes the
script and display the output. The data sources
composition to make a mashup application is taken
place at the client side. The data source can be
accessed from internal and external sources.

Whip also supports web services access from
multi-platform like Google, Yahoo, etc. Web

Block

Developer

Analysis

Identification

Implementation

Testing

Application
Developer

Selection

Customization

Integration

Testing

Bloc

Bloc

Bloc

Bloc

Block Catalog

Traditional approach

Data retrieval

Data cleaning

Data modeling

Data integration

Data visualization

BBSD approach

Customization

Block selection

Integration

Data visualization

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

220

services like Google search, Yahoo search, Google
map, Yahoo map, Google News, etc. are available
as predefined blocks in blocks catalog.

8. DESIGN OF WHIP

The design of Whip is done in two stages: the
design of Whip mashup tools and the design of
blocks. The design of Whip mashup tools involves
the use case analysis, interaction analysis and user
interface design.

8.1 Use Case Diagram

Basic functionalities that required by Whip are:

• Create the website with default blocks. A
new user can create a website with default
blocks like Google search, Youtube
channel, Map Location, CNN News, etc.

• Search blocks in blocks catalog. Block
catalog is where all the pre-defined blocks
are listed. Users can search the block based
on the block’s name.

• Add block into user’s canvas. Users add
blocks into user’s canvas by selecting
blocks from a list of pre-defined blocks in
block catalog. The selected blocks will

appeared on the display area of user’s
canvas.

• Delete block from user’s canvas. The
displayed blocks on the user’s canvas can be
deleted. Users select the block to be deleted
and choose the delete function.

• Customize the selected block. The block can
be customized. For example in CNN news
block, rather than display the title,
description, publication date and item link,
user just can opt to display the title and the
description only.

The use case as shown in Figure 4 illustrates those
functionalities supported in Whip.

8.2 Activity Diagram

Whip support both type of developer; application
developer and block developer. Block developer
will develop a mashup block and placed it on
blocks catalog. Application developer then can
select these blocks to make a mashup application.
Each block is a separate web services or web data.
The overall process of mashup development using
Whip is shown in Figure 8 activity diagram.

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

221

Table 4: Requirement Specification for Whip

Requirement Description
R1: Developed for the end
users.

Mashup tool is developed for the end users; a group of users that may not have a
computer knowledge and skill. Thus it must provide an environment that allows end
users to make mashup quickly and effortlessly. This can be done by remove the
coding phase in the mashup development process and BBSD approach support this
aim by let the users develop the mashup by select the block, customize, integrate and
display.

R2: User’s preference. To promote freedom and flexibility in EUD, users should be given a list of options to

choose that suitable to their requirements. For instance, options of data sources,
functionalities, etc.

R3: User’s learning curve. Mashup tools should be developed exhibit a gently-sloped of learning curve [7].
Therefore users with very little programming experience can quickly learn and
familiar with the process and capable to build the mashup on their own.

R4: Data integration and
aggregation.

Generally there are two types of mashup based on its process; mashup by integration
and mashup by aggregation [21]. Mashup by integration is involving ‘cross data’
where one resource becomes the input for processing by another. Most of this type of
mashup use API to integrate like WikiCrimes (www.wikicrimes.com). While mashup
by aggregation just simply a collection of web content that live side by side within the
aggregator like in iGoogle, NetVibes, MyYahoo and PageFlakes. Therefore, develop
mashup by aggregation is easier and require no programming skill compare to
develop mashup by integration [15].

R5: Web technologies. Mashup is an emerging technology on the Web 2.0 like Representational State
Transfer (REST) Web services, RSS or Atom feeds, XML data formats, etc.
Therefore, mashup tools should compatible with these latest technologies.

R6: Rapid development. Mashup application must be developed rapidly. Iterative and collaborative
development technique can shorten the traditional edit-compile-test-run development
life cycle.

R7: Availability of
Internet connection.

Mashup is a Web-based application and Internet connection should available during
the development and implementation.

R8: Availability of API. APIs are used to glue together contents, functionalities and presentation to make
mashup. Most of websites nowadays provide their own API.

R9: Availability of data
sources.

Data sources should available during the mashup development and implementation. It
requires updates for mashup tool from time to time, by block developer. If any data
source is no longer providing information, the block developer is responsible to figure
out the replacement data source, in order to provide the same outcome as the previous
unavailable source.

R10: Web browser for
runtime environment.

Mashup can be assembled at server side and client side. Both approaches require Web
browser to display the output.

R11: Consistencies of data
models.

Not all websites use the same structured data model. Some websites may use
unstructured data while others use structured data. Data integration can be done if
only the data model is consistence.

R12: Sharing and Reuse. The developed web mashup application should can be shared and reused across users
so that other user also can benefit from that mashup.

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

222

Figure 3: Whip Architecture

Figure 4: Use Case for Whip

Block developer

Mashup
Server

Mashup
Block

User / application developer

WHIP Login:

Add
block

Google
Search

CNN
News

Yahoo
News

Youtube Google
Weather

Google
Map

Wiki
search

Wiki
Translate

Google
Calendar

Blocks Catalog

Google search

Yahoo search

Wiki search

Google News

Yahoo News

Etc.

Data sources

Databases

XML codes

Web Services

Syndicated Feeds

Create blocks

Block
developer

Application
developer

Create application

Search blocks

Add blocks

Delete blocks

Customize blocks

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

223

Figure 5: Whip Activity Diagram

8.3 User Interface Design

Whip user interface is simple where it just
consists of two main panes; the menu and the
canvas as shown in Figure 6. The menu consists of
list of functions supported in Whip like add new
block. The canvas is where the mashup blocks are
integrate to form a mashup.

Figure 6: Whip user interface.

8.4 Block Definition

In Whip, blocks can be any web services or web
data. Different blocks representing different web
services and data. Examples of Whip’s blocks are
Google Search, Google News, Yahoo Search,
Youtube Channel, Google Map, Music player,
Wiki Translate, Wiki Search, and RSS feeds. The
definition of block mashup is present in the
following.

type block = (webServices,
webData)

type blockCatalog = [Google
Search, Google News, Yahoo
Search, Youtube Channel, Google
Map, Music player, Wiki
Translate, Wiki Search, RSS
feeds]

A list of blocks will form a mashup. The member
of list must be of the same type however blocks in
mashup can be of any types. Therefore, we can
write mashup as a list of tuple as in the following.

type mashup = [(block)]

Application Developer Block Developer

Search block

Delete block

Log-in

Add block

Log-out

Customize block

Create
block

:block
catalog

Canvas

Menu Canvas

WHIP Login:

Add
block Google

Search
CNN
News

Yahoo
News

Youtube Google
Weather

Google
Map

Wiki
search

Wiki
Translate

Google
Calendar

Change
layout

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

224

If user want to add a new block into mashup, that
block must either a type of web service or web
data.

mashup x = [(x)| x<-block]

Some blocks can be used to control other blocks
like Google search can be used to search a keyword
in CNN News or Google News.

mashup x y = [(x,y) | x<-block,
y<-block]

9. CONCLUSION

In this paper we present a design of Whip, a
mashup tool that allows user to develop mashup
through BBSD approach. BBSD approach is a
combination idea of EUP paradigm and CBD
approach where it let users to develop a mashup
application by aggregate several blocks. The block
is either a web service or web data retrieved from
various sources. Through BBSD approach, users
that lack of programming skill can easily develop a
mashup for their own used or shared with other
users. Besides the Whip architecture, and UML
Use Case diagram to illustrate functionalities in
Whip, we also present the activity diagram to
demonstrate the process of making mashup using
Whip. The design of blocks and requirements for
developing Whip also presented.

REFERENCES

[1] Rokiah Bahari, Marini Abu Bakar, Norleyza

Jailani, and Abdullah Mohd Zin, "A
Technique to Identifying Blocks for
Developing E-commerce Application "
presented at the National Conference on
Programming 2009 (Atur'09), Putrajaya,
Malaysia, 2009.

[2] Michael Pierre Carlson, Anne H.H. Ngu,
Rodion Podorozhny, and Liangzhao Zeng,
"Automatic Mash Up of Composite
Applications," in International Conference on
Service-Oriented Computing (ICSOC’08),
2008, pp. 317-330.

[3] Luba Cherbakov, Andy J.F. Bravery, and
Aroop Pandya. (2007, April 19). SOA Meets
Situational Applications, Part 1: Changing
Computing in the Enterprise. Available:
www.ibm.com/developerworks/webservices/l
ibrary/ws-soa-situational1/

[4] Rob Ennals and Minos Garofalakis,
"MashMaker: Mashups for the Masses," in

SIGMOD’07, Beijing, China, 2007, pp. 1116-
1118.

[5] Angus F.M Huang, Shin Bo Huang, Lee
E.Y.F., and Stephen J.H. Yang, "Improving
End User Programming with Situational
Mashups in Web 2.0 Environment," in IEEE
International Symposium on Service-Oriented
System Engineering 2008 (SOSE'08), Jhongli,
2008, pp. 62-67.

[6] Afizah Ismail, Marlinawati Djasmir, Nazlia
Omar, and Abdullah Mohd Zin, "Designing
and Implementing Blocks for Developing
Educational Software for Children with
Learning Disabilities," presented at the
National Conference on Programming 2009
(ATUR'09), Putrajaya, Malaysia, 2009.

[7] Caitlin Kelleher and Randy Pausch,
"Lowering the Barriers to Programming: a
survey of programming environments and
languages for novice programmers," ACM
Computing Surveys, vol. 37, pp. 83-137, June
2005.

[8] Woralak Kongdenfha, Boualem Benatallah,
Julien Vayssière, Régis Saint-Paul, and Fabio
Casati, "Rapid development of spreadsheet-
based web mashups," in The 18th
international conference on World wide web
2009 (WWW '09), Madrid, Spain, 2009, pp.
851-860.

[9] James Lin, Jeffrey Wong, Jeffrey Nichols,
Allen Cypher, and Tessa A. Lau, "End-User
Programming of Mashups with Vegemite," in
13th International conference on Intelligent
User interfaces (IUI’09), Sanibel Island,
Florida, USA, 2009, pp. 97-106.

[10] Giusy Di Lorenzo, Hakim Hacid, and Hye-
young Paik, "Data Integration in Mashups,"
SIGMOD Record, vol. 38, p. 8, March 2009.

[11] Allan MacLean, Kathleen Carter, Lennart
Loustrand, and Thomas P. Moran, "User-
Tailorable Systems: Pressing the Issues with
Buttons," in SIGCHI Conference On Human
Factors In Computing Systems: Empowering
People, Washington, United States, 1990, pp.
175 - 182.

[12] Siti Nor Hafizah Mohamad, Ahmed Patel,
Yiqi Tew, Rodziah Latih, and Qais Qassim,
"Principles and Dynamics of Block-based
Programming Approach," in 2011 IEEE
Symposium on Computers and Informatics
(ISCI 2011), Kuala Lumpur, Malaysia, 2011,
pp. 340-345.

[13] Brad A. Myers, Andrew J.Ko, and Margaret
M. Burnett, "Invited Research Overview: End
User Programming," in CHI'06 Extended

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

225

Abstracts on Human Factors in Computing,
Montreal, Quebec, Canada, 2006, pp. 75-80.

[14] Abdallah Namoun, Tobias Nestler, and
Antonella De Angeli, "End User
Requirements for the Composable Web," in
ComposableWeb'10, 2010, pp. 396-407.

[15] Ahmed Patel, Liu Na, Rodziah Latih,
Christopher Wills, Zarina Shukur, and Rabia
Mulla, "A Study of Mashup as a Software
Application Development Techniquewith
Examples from an End User Programming
Perspective," Journal of Computer Science,
vol. 6, pp. 1406-1415, 2010.

[16] Sven Rizzotti and Helmar Burkhart, "useKit -
Lightweight Mashups for the Personalized
Web," in WWW2010, Raleigh, North
Carolina, 2010.

[17] Marwan Sabbouh, Jeff Higginson, Salim
Semy, and Danny Gagne, "Web Mashup
Scripting Language," in 16th International
Conference on World Wide Web (WWW
2007), Banff, Alberta, Canada, 2007, pp.
1305-1306.

[18] Maxim Shevertalov and Spiros Mancoridis,
"A Case Study on the Automatic
Composition of Network Application
Mashups," in 23rd IEEE/ACM International
Conference on Automated Software
Engineering L'Aquila, 2008, pp. 359-362.

[19] Rattapoom Tuchinda, Pedro Szekely, and
Craig A. Knoblock, "Building Mashups by
Example," in International Conference on
Intelligent User Interfaces, Gran Canaria,
Spain, 2008, pp. 139-148.

[20] Guiling Wang, Shaohua Yang, and Yanbo
Han, "A Spreadsheet-like Construct for
Streamlining and Reusing Mashups," in The
9th International Conference for Young
Computer Scientists, 2008.

[21] Kevin Wiliarty. (2008, July 5). Educational
Mashups 2. Available:
http://www.academiccommons.org/commons
/review/educational-mashups-2

[22] Jeffrey Wong and Jason I. Hong, "Making
mashups with Marmite: Towards End-User
Programming for the web," in SIGCHI
Conference on Human Factors in Computing
Systems (CHI'07), New York, USA, 2007,
pp. 1435-1444.

[23] Jin Yu, Boualem Benatallah, Fabio Casati,
and Florian Daniel, "Understanding Mashup
Development," IEEE Internet Computing,
vol. 12, pp. 44-52, 2008.

