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ABSTRACT 
 

This research focuses on artificial intelligence (AI) techniques on mapping the lightning strike area in 
Peninsular Malaysia. Three AI techniques such as fuzzy logic, neural network and neuro-fuzzy techniques 
are selected to be explored in classifying the characteristics of  lightning strike which are based on; level of 
strike (high, medium, low) and category of lightning (positive cloud-to-ground, negative cloud-to-ground, 
flash). Nine predefined areas in Peninsular Malaysia were chosen as a case study. The analysis was carried 
out according to twelve months lightning data strikes which had been made available by Global Lightning 
Network (GLN). All three AI techniques have successfully demonstrated the ability to mapping and 
classify lightning strikes.  Each technique has shown very good percentage of accuracy in term of 
determining the area and characterizing the lightning strikes. The finding of this research can be made use 
in risk management analysis, lightning protection analysis, township planning projects and the like.  
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1. INRODUCTION 
 
Lightning strike comes about every day in the 
world. The lightning strike towards the surface 
on earth has been estimated at 100 times every 
second. Thus, almost every governments suffer 
major loses because of this phenomenon every 
year. It also would cause horrific injury and 
fatality to humans and animals. The lightning 
may affect almost every organ system as the 
current passes through the human body taking 
the shortest pathways between the contact points. 
There are 25.9% of lightning strike occurrences 
for victims who have sheltered under trees or 
shades, whereas 37% at open space area. Head 
and neck injury are two common areas which 
have an effect on the lightning strike victims 
with 77.78% and 74% respectively. Only 
29.63% of the cases presented with ear bleeding 
[1].  United State National Lightning Safety 
Institution reported that Malaysia has highest 
lightning activities in the world whilst the 
average-thunder day level for Malaysia’s capital 
Kuala Lumpur within 180 - 260 days per annum 

[2, 3]. The isokeraunic level is approximately 
200 thunderstorm days a year. The lightning 
ground flash density is about 15-20 strike per 
km2 per year.  
 
Lightning has an extremely high current, high 
voltage and transient electric discharge. It is 
transient discharge of static electricity that serves 
to re-establish electrostatic equilibrium within a 
storm environment [1]. Malaysia lies near the 
equator and therefore it is categorized as prone to 
high lightning and thunderstorm activities [2]. 
Observations performed by the Malaysian 
Meteorological Services indicate that thunders 
occur 200 days a year in Malaysia. 
Thunderstorms have been suspected to have 
caused between 50% and 60 % of the transient 
tripping in the transmission and distribution 
networks for Tenaga Nasional Berhad (TNB), 
Malaysia’s electric power provider. The main 
reason could be short of precise and consistent 
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Figure 3: Input membership function for 
fuzzy logic technique 

 
 

 

 

 

 

 
 

Figure 4: Output membership function for 
fuzzy logic technique 

 
 

Table 3: Fuzzy rules for the region 
classification 

 
No. 
of  

Rule 

Input Output 
Latitude Longitude Region 

1 A1 B1 North West 
(NW) 

2 A1 B2 North (N) 
3 A1 B3 North East 

(NE) 
4 A2 B1 West (W) 
5 A2 B2 Central (C) 
6 A2 B3 East (E) 
7 A3 B1 South West 

(SW) 
8 A3 B2 South(S) 
9 A3 B3 South 

East(SE) 
 

 

ii) Neural Network  
 
The implementation of neural network for 
classification problems is dependable on their 
structure and functions. By considering a set of 
classes, the objective in classification is an 
assignment of a random sample to one of this 
class with minimum probability error. Each 
sample is described by a set of parameter which 
then forms a vector, usually referred as the 
feature vector. The development of such 
classification system can be achieved as a result 
of neural network training so that it produces the 
output which corresponds to one of these classes. 
However, the training sample must have similar 
form as its input that is belong to the same class. 
 
 The ability of neural network to correctly 
classify the test sample is subjected to it 
generalization ability. Back propagation method 
has been used to train the data from Global 
Lightning Network (GLN) database. The 
network consists of an input layer, one hidden 
layer and an output layer. The input layer 
consists of 2 input neurons which represent the 
longitude and latitude as it input, hidden layer 
with 16 hidden neurons while the output layer 
represent the 9 output regions that need to be 
classified their distributions. Each neuron in the 
hidden layer and output layer has a bias which is 
connected via weight matrix to the previous 
layer. The number of hidden layer depends on 
the performance index of the system. Trial and 
error approached has been implemented to get an 
accurate number of hidden layers for the system. 
It begins with a modest number of hidden 
neurons and gradually increasing the number if 
the network fails to reduce the error. A much 
used approximation for the number of hidden 
neurons for a three layered network is; 

 
N =1/2(j + k) +P,   

   (2) 
 

where N is the number of neuron, j and k are the 
number of input neurons and P is the number of 
patterns in the training set. As the pattern is set 
to 1 the number of hidden layer begins with 6 
and amplifies to 16. 

 
Optimum weight was calculated using Widrow-
Hoff Rule. The algorithm of the Widrow-Hoff 
Rule shows that the network weights are moved 
along the negative of the gradient of the 
performance function. The derivative of the 
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Figure 8: Percentage of lightning’s level 
current for 12 month 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Graph number of lightning 
incidence corresponds to the types of lightning 

 
From the results, 90% of the lightning incidence 
occurred are negative lightning. Meanwhile, 
there are no flash occurred. This is because flash 
occurred between the clouds and do not strike 
the ground as shown in Figure 9.  
The number of lightning incidence occurred in 
each month are analyzed corresponds to their 
region. Table 5 show the sampled of classified 
data for lightning strike for each month. From 
the analysis results, October 2009 has the highest 
number of lightning incident with 94628 strikes 
followed by April 2010 with 87459 strikes. The  
least number of lightning occurred in February 
2009 with 7056 strikes. In October 2009, the 
lightning strike the most in Region Central (C) 

with 15919 strikes, followed by Region South 
(S) with 15764 strikes. The state which included 
in these regions are Wilayah Persekutuan Kuala 
Lumpur, Melaka, Selangor, Johor, Negeri 
Sembilan, Perak and Pahang. A high level of 
lightning current which occurred in locations 
such as Kuala Lumpur and Selangor have the 
possibilities to cause a flash flood. This is due to 
the locations which is situated in the center of 
city. 

 

Table 5: Samples of classified data 
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The obtained results are then mapped into the 
Malaysian map using Google Earth as shown in 
Figure 10. This figure shows the locations where 
the lightning strike and Figure 11 shows the 
mapping of lightning characteristics for one 
month data. The light blue, purple and red icons 
indicate low, medium and high level of current 
respectively. By clicking the icon, a dialog box 
as shown in figure below appeared. It tells user 
the lightning current value, level of current and 
also the region its corresponds to. Based on the 
mapping, most of the lightning occurred at the 
west coast of Peninsular Malaysia. Most of the 
states in the west coast of Peninsular  Malaysia 
are catogarized as a developed states. Thus, a 
high population density and plenty of industrial 
location attract the lightning strike. 

 

 
Figure 10: Mapping of the lightning strike 

locations

 
Figure 11: Mapping of the lightning 

characteristics 

 
The developed classifier program are able to 
classify the lightning parameters according to the 
desired characteristics. Based on the statistical 
analysis, 90 % percent of lightning incidence are 
negative lightning. Meanwhile, the majority of 
the levels of lightning current are Low level. 
Areas that are situated in the west coast of 
Peninsular Malaysia have a higher number of 
lightning incidence compared to the east coast.  
There are some limitations found in mapping the 
lightning characteristics using Google Earth.  
 
3.2 Neural Network Analysis 
 
The data is classified into nine regions as 
follows; 

• Southern Regions:  
 S1-latitude =10 to 2.50 & longitude = 

990 to 100.50 
 S2-latitude =10 to 2.50 & longitude = 

100.50 to 103.50 
 S3-latitude =10 to 2.50 & longitude = 

103.50 to 1050 
• Center Regions:  

 C1-latitude =2.50 to 5.50 & longitude = 
990 to 100.50 

 C2-latitude =2.50 to 5.50 & longitude = 
100.50 to 103.50 

 C3-latitude =2.50 to 5.50 & longitude = 
103.50 to 1050 

• Northern Regions:  
 N1-latitude =5.50 to 70 & longitude = 

990 to 100.50 
 N2-latitude =5.50 to 70 & longitude = 

100.50 to 103.50 
 N3-latitude =5.50 to 70 & longitude = 

103.50 to 1050 
 
The system stops at 250 epochs with MSE of 
0.0462 as shown in Figure 12.     

 
Figure 12:   The Mean Square Error change 

with the change in epoch value 
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(ii) Data Analysis 
 

From the analysis, lightning were mainly strikes 
at the Central region with an average of 5172 
strikes during September 2009 to October 2010. 
The Southern region was identified the second 
largest lightning strikes area with an average of 
4096.5 strikes per year. Meanwhile, the lowest 
area was identified at Northern East region with 
average of 435.7 strikes per year. However, the 
lightning strikes were very minimal during 
November to March 2010.  

 
The level of lightning strike has shown that 
Peninsular Malaysia has received a relatively 
low strike with average of 17380.8 strikes per 
month. May 2010 was considered a good month 
because it has a well balance of lightning strike 
level distribution. The Low strike recorded at 
38.86%, Medium at 34.51% and High at 26.63%.  
The medium and high Strike was very minimal 
during November 2009 until February 2010. 
However, the high Strikes were extended until 
April 2010.  
 
4.  CONCLUSION 
 
Fuzzy logic has been successfully applied in 
order to characterize the location into eight 
regions to identify the location where the 
lightning strikes. Moreover, Basic ‘IF rule’ has 
been successfully implemented to characterize 
the other two characteristics which are type of 
lightning and level of lightning current.  The 
fuzzy logic and ‘IF rule’ are successfully 
implemented and mapped into Malaysian map 
using Google Earth. The paper successfully 
designs the proposed back propagation neural 
networks that combine with properties of IF 
THEN Rules that performs as the classifier. They 
are trained and tested to classify lightning 
characteristics. It also included the design of a 
software tool suitable for the training and testing 
NN for dataset. The results have shown 
considerable degree of confidence of 97% of 
accuracy in classification by referring to the 
graph of MSE. It was evident that as the number 
of epoch increased, the MSE will reduces with 
certain parameter been initialize first. The 
proposed neuro-fuzzy system has achieved 
73.5% accuracy. The proposed neuro-fuzzy  is 
able to classify the data. Thus further study to 
increase the accuracy could be done to enlighten 
prospective of lightning classification with 
artificial intelligence method. 
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