
Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

186

EMPLOYING PERFORMANCE COUNTERS AND
SOFTWARE WRAPPER FOR MEASURING QOS

ATTRIBUTESOF WEB SERVICES

BAHAREH SADAT ARAB*, ABDUL AZIM ABD GHANI
Faculty of Computer Science and Info. Tech.,

University Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
E-mail: bahareh.arab@gmail.com , azim@fsktm.upm.edu.my

ABSTRACT

Web services have got popular for developing Service-Oriented Architectures recently. As several web
services are available to execute the same function, Quality of Service (QoS) turns into a discriminative
factor which is significantly considered in service selection and service composition approaches. In
different approaches, monitoring of services is used for evaluating QoS attributes. Custom Windows
Performance Counters (CWPC) is one of the approaches for monitoring performance of services at server-
side. However, it has some limitations and it needs to access and change a service implementation which is
not always possible in practice. In this paper, CWPC along with software wrapper is employed for
measuring different QoS attributes such as response time, throughput and reliability in order to overcome
current limitations. Additionally, it discusses how the proposed monitoring mechanism can be employed to
optimize the service provider performance. The results show that the proposed monitoring approach is
accurate in measuring QoS attributes.

Keywords: SOA, Web Service; Monitoring; Quality Of Service; Qos Measurement; Performance Counter;
Software Wrapper

1. INTRODUCTION

Web services have got popular for developing
Service-Oriented Architectures (SOA).Web
services are located and invoked across the Web
independent of platforms and programming
languages. The current service oriented architecture
contains three main roles: a service provider, a
service consumer and the Universal Description,
Discovery and Integration (UDDI) registry [9]. The
service provider publishes web service description
as well as detail information which are needed for
invoking the service in the UDDI registry. The
service consumer which refers to client user or
client program can use the UDDI registry to
discover a proper service which fulfills its
requirements. Finally, the service consumer binds
to the service provider to invoke its web service.

Quality of Service (QoS) is a combination of
several quality attributes of a service that
discriminate web services with same a
functionality. It is a measure for how well a web
service serves service consumers. QoS is a key
factor for web service consumers to compare and
select web services.

Windows Performance Counters (WPC) is one of
monitoring approaches for measuring QoS
attributes [6]. WPC provides predefined system
counters that especially regards to the Windows
Communication Foundation (WCF). However,
WPC monitoring approach has some limitations
and predefined system counters value do not map to
QoS values properly and it can be employed just for
WCF services. Custom Windows Performance
Counters (CWPC) is used for monitoring of web
services in order to overcome the current
limitations of the WPC monitoring mechanism [1].
However, it needs to change the service code which
may be impossible and sometimes there is not any
authority to access the source code of each service
and there is no guarantee that service providers will
agree to change it. This paper has three main
contributions as follows: Firstly, it proposes a web
service architecture which employs CWPC along
with software wrapper for measuring different QoS
attributes. Secondly, it evaluates the accuracy of the
proposed monitoring approach. Thirdly, it discusses
how the proposed monitoring mechanism can be
utilized to optimize the service provider
performance.

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

187

The remainder of this paper is structured as
follows. Section 2 presents related works for
monitoring of web services. Section 3 describes the
proposed architecture and Section 4 explains
monitoring mechanism for measuring QoS of web
services. Section 5 discusses about optimizing the
service provider performance. Section6 reports the
experiment results. Finally, Section 7 outlines the
conclusions and the future work.

2. RELATED WORK

In this study, monitoring of web services is

employed for measuring QoS attributes that are
uncertain at invocation time and their value changes
over time. Various researches describe the need for
monitoring of web services [5], [7], [10], [12].They
used different mechanisms for monitoring of
services that are presented in this section.

Some of approaches are based on customizing
and analyzing SOAP (Simple Object Access
Protocol) massages [2], [4], [8], [11]. A Data Mart
approach is presented for monitoring and evaluation
of service provider performance [2]. In the
proposed Web Services Log Architecture, SOAP
intermediaries are used for implementing web
services log. [4] describes an Automatic Web
Services Testing Tool. The proposed automatic
testing tool tracks and analysis extended SOAP
messages. [8] presents automatic web service
monitoring technique. In their approach, handlers
are applied for processing and analyzing SOAP
messages for measuring quality attributes of web
services such as reliability, throughput and latency.
[11] proposes a mechanism for automatic
measurement of QoS attributes which set up on low
level packet monitoring, proxy, and SOAP engine
library modification. The low level packet
monitoring is implemented by tracking SOAP
packets. However, its implementation is hardware
dependent. The proxy is a communication mediator
which is responsible for measuring performance
attributes. It is located between the service provider
and the service consumer. As a result, the service
consumer code should be configured and changed
to use the proxy. In the SOAP engine library
modification, the SOAP engine library should be
modified for logging measured information which
needs to distribute SOAP library modification on
different implementations and platforms.

Some of approaches use software wrapper for
monitoring of web services [3], [13]. In [3] the
Parallel Performance Monitoring Service (PPMS)
for monitoring the performance of media web

services at runtime is proposed. The software
wrapping technique is used for monitoring of
response time of services at server-side. The
wrapper custom messages exchanged between the
consumer and the web service in order to calculate
response time as a delay between service requests
and the completion time of operation. [13] describes
a wrapping-based monitoring at client-side. In their
approach, software wrapping is applied for
monitoring of web services during the service
invocations. The wrapper is applied to evaluate a
service for its response time. The main advantage of
wrapping-based monitoring approaches is its easy
implementation which can be custom based on
consumer’s needs.

In [1], Custom Windows Performance Counters
(CWPC) is defined for monitoring of web services.
However, it needs to change the source code of
each service. In this study, CWPC along with
software wrapper is applied to overcome current
limitations for measuring different type of QoS
attributes such as response time, throughput and
reliability. The proposed architecture and the
monitoring mechanism are presented in next
sections.

3. THE PROPOSED ARCHITECTURE

The proposed web service architecture enables
monitoring and discovery of web services based on
QoS requirements of the service consumer.
Consequently, the traditional service-oriented
architecture which composes the service provider,
service consumer and UDDI registry is extended as
shown in Figure 1.

In the proposed architecture, the service provider
publishes their service information and QoS
attributes via the Publish Manager. Web service
information is published in the UDDI registry
whereas QoS information is not supported by
current UDDI registries. In this work, the QoSDB is
used for storage of QoS values that were obtained
by monitoring of web services. The monitoring is
performed by the Monitoring Entity which applies
performance counters. The result of monitoring
would be stored as a log file. The performance
counter log files should be gathered from the
service provider for further analysis. The log
information is transformed to XML format and
scheduled for sending to the QoS Manager by the
Log Convertor and Sender. The collected
information from the service provider needs to be
processed and then used to update QoS values in
the QoSDB. The QoS Manager computes and
updates values for each QoS attribute. In addition, it

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

188

is responsible for sending notifications and reports
to the service provider for its performance which is
useful for determining the future trends such as
taking QoS policy decisions. Ultimately, the service
consumer sends its requirements to the Discovery
Manager in order to find a service which meets its
functional and QoS requirements. The Discovery
Manager checks UDDI information and the QoSDB
to discover a service which meets service consumer
requirements and returns the results to the service
consumer. Subsequently, the service consumer
sends a service request to the service provider to
invoke the selected service.

4. MONITORING MECHANISM

In this work, three most important QoS attributes
such as reliability, response time and throughput
are considered for monitoring of web services.

Response time: the required time for completing
a service request. It is also related to the execution
duration of a service.

Throughput: the number of service requests that
a service provider can serve in a specified time
interval.

Reliability: the ability of a service to execute its
required functions under stated conditions for a
specified time interval.

Performance counters along with software
wrapper is utilized for monitoring and measuring
the mentioned QoS attributes. The monitoring
mechanism is presented in detail in next two
subsections.

4.1. Performance Counters

CWPC must be defined to windows in order to
measure QoS attributes of a web service at runtime.

The System Monitor utility provides set of
predefined counters which can monitor system
performance and track different processes in real
time. A performance counter represents data for a
particular component of the system or service. For
our approach, performance counter framework is
extended for custom counters and each service has a
set of counters that track particular information for
measuring its QoS attributes. Table 1 presents
different performance counters and their types for
evaluating related QoS criterion.

Table 1. Counters setting information

Counter Name Counter Type QoS
Criterion

ResponseTime AverageTimer32 Response
time

Throughput RateOfCounts
PerSecond32

Throughput

SuccessfulExecution NumberOfItems32 Reliability

FailedExecutions NumberOfItems32 Reliability

TotalExecutions NumberOfItems32 Reliability

Applications Performance log enables capturing
counter data for later analyzing. Counter log files
can be built on a regular schedule for automatic
logging process. The log file contains measured
data or counters values which would be used for
calculating QoS values of a service as follows.

Response time presents the average required time
that was taken to complete the service request at
different successful invocation times.

Response time =
n

RT
n

i∑
1 (1)

Where, iRT is the historical ResponseTime
counter data at the specific measurement time and n
is the number of historical ResponseTime counter
data for successful invocations.

Throughput is the average actual number of
requests that the service provider served at different
measurement times.

Throughput =
n

TP
n

i∑
1 (2)

iTP is the historical Throughput counter data at
the particular measurement time and n is the
number of historical Throughput counter data.

Reliability is the probability of a request is
responded correctly. It is measured by considering
the number of failures of a service in a time
interval. It is also can be calculated as the ratio of
successful executions and total executions during
total measurement time.

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

189

Reliability =

tionsTotalExecu#
ExecutionSuccessful#

tionsTotalExecu#
utionsFailedExec#1 =− (3)

In this paper, three QoS attributes are considered
in measurement process, although other QoS
attributes can be calculated simply by further
analyzing of the counters log file.

4.2. Software Wrapping

The benefit of using system performance
counters is that, their value changes automatically
whereas the value of CWPC should be set to
change by an application.

There are two possible ways for setting counter’s
values. The first technique is to add increment
methods in a service code directly which needs to
access and change the web service implementation.
The second technique is to apply software wrapping
at server-side. The software wrapper can be applied
in order to increment counters values and the
service provider receives service requests through
the wrapper. By contrast with the first technique,
there is no need to change the service code and its
implementation in the software wrapping
technique. The software wrapping technique is used
to wrap a web service with a supplementary
software layer that hides the detail of service
implementation and provides additional functions
to adjust and increment counters values.

Figure 2 demonstrates a sample of employing
software wrapper and custom performance counters
for monitoring of a web service. The wrapper is
applied between web service consumers and the
web service for setting and incrementing of
performance counters.

Figure 3. Pseudo-code of counters setting

Figure 3 demonstrates the pseudo-code of a
wrapper program and its descriptions. It shows the
wrapper increments performance counters based on
the QoS attribute definitions.

5. OPTIMIZING THE SERVICE PROVIDER
PERFORMANCE

The proposed monitoring mechanism can be

utilized to optimize and improve the service
provider performance. One of the facilities that the
system monitor provides is alerts. Alerts can be
scheduled in monitoring process of web services to
record an event or log other system performance
counters when an especial event occurred. It is used
for setting an action that will be performed when a
specified counter reaches a given value. A threshold
for a counter value is defined and the alert will
trigger as the counter value exceeds or falls below
the specified value so a cause of the change will be
investigated by further analysis. Different actions
can be set to perform when an alert triggers such as
logging the event, sending a network message,
starting performance data log or running an especial
program. Alert is beneficial to recognize the system

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

190

bottlenecks and it can be adjusted for performance
counters by considering various scenarios that are
important and crucial for the service provider. For
instance, using alerts is helpful when a response
time of a web service takes too long. In this case,
there is a need for logging and checking other
performance values of the system in order to find
the reason of this event. Moreover, recorded events
or collected data that was logged by the alert can be
analyzed for generating reports. The analytical
reports assist the service provider to determine the
future trends and take management decisions for
improving its performance.

Another important aspect that should be
considered for server-side monitoring is the
monitoring overhead. Monitoring impose overhead
on the system as it consumes machine resources
which degrade the service provider performance.
Consequently, some factors should be considered in
monitoring process in order to reduce the
monitoring overhead on the system. One of the
factors is decreasing the number of counters that are
applied in monitoring process. For instance, there is
no need to create a counter for counting the number
of service execution failure if the reliability is
calculated based on the number of successful
service invocations divided by the total service
invocations. Another significant factor is setting
suitable monitoring interval. Choosing short
monitoring interval leads to more data collection
and more often sampling in compare of long
monitoring interval. However, by reducing
monitoring interval more machine resources would
be consumed which may leads to degrade the
service provider performance. Therefore, the
monitoring interval should be adjusted properly for
the system. The impacts of monitoring intervals on
the service provider performance and QoS attributes
will be discussed in the experimental results
section.

6. EXPERIMENTAL RESULTS

The main purpose of the experiments is to assess
and evaluate the proposed monitoring mechanisms.
The implementation was done in a simulation
environment. Simulations were performed in two
phases, according to the goals of experiments. The
next subsections explain the experiments, analyses
and results.

6.1 Assessing the Accuracy of The Monitoring
Approach

The goal of this phase of experiments is to
evaluate the accuracy of the presented monitoring
mechanism. To reach the goal, the accuracy of the
proposed monitoring approach which employs
performance counter along with software wrapper
was compared with similar approaches in terms of
response time, throughput and reliability. The
accuracy of measuring response time was compared
with applying software wrapper at server-side.
Furthermore, the throughput and execution failure
of a service were measured up to windows
performance counters. In this experiment, a local
WCF service was defined which can be monitored
by the other compared monitoring approaches. In
order to simulate a real service that is typically
used, 1 second was set for the service method
execution time and the probability of failure for
service execution is 10%.A simulator program was
run which used multi-threading to simulate
different service consumers that sent service
requests to the service at the same time. The service
was monitored for 10,000 service requests with rate
of 20 req/second the monitoring interval was set as
30 seconds.

Figure 4 presents the result of average response
time by the CWPC monitoring and software
wrapper in different monitoring intervals. The
average response time for CWPC is 4.07 second
and for the wrapper is 4.26 second. Additionally,
the standard deviation for CWPC is 3 milliseconds
whereas the standard deviation for software
wrapper approach is 11 milliseconds. The result
indicates that CWPC is more accurate for
measuring response time of the service since the
wrapper registers system time two times to compute
and record response time to the performance report
for each service request. Whereas, the average
response time for different service requests
computes automatically by the performance
counters in CWPC approach and counter data was
logged and recorded at each monitoring interval.

The result of Throughput for CWPC monitoring
was evaluated with WPC monitoring which use
predefined system counter as CallsPerSecond
counter for measuring how often a service had been
invoked.

Figure5provides the average throughput that was
measured by both of monitoring approaches. The
average measured values for CWPC is 17.86 while
WPC is 17.66. The average of throughput by our

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

191

approach is little bit higher however the results
shows the average throughput or the number of
service requests that can be processed in a second is
approximately seventeen transactions per second by
both monitoring approaches. The difference
variation of values during monitoring time is
because of the different incremental time of
counters.

In WPC, CallsFailedPerSecond counter
represent the number of calls that have unhandled
exceptions, and are received by this service in a
second. The counter can be used for counting
unsuccessful service invocations. Also,
FailedExecution counter is used in CWPC for
counting failures of the service requests in order to
compute the reliability of services.

Figure 6 illustrates the counters values in
different time interval. As can be seen from the
above figure, both of counters shows same values
in different monitoring intervals which was
expected. The reliability of the service can be
measured by considering the number of service
failures. As a result, the reliability of monitored
service is 91% which is confirmed by both
approaches. The results of CWPC monitoring in
terms of throughput and failed executions are
similar to WPC however the proposed CWPC can
be used for monitoring different type of services as
simple web services, XML web services or WCF
services whereas the WPC can be applied just for
WCF services.

6.2 Assessing the Performance Impact of
Monitoring

This phase of simulations has the goal of
evaluating the impact of CWPC monitoring on the
service provider performance and provided QoS.
For our approach, a local web service was defined.
1 second was set for its method execution and the
probability of failure for web service’s execution is
10% to simulate a real web service that is typically
used. Three different service request rates as high,
intermediate and low (high=20 req/sec,
intermediate= 10 req/sec and low=5 req/sec) were
adopted in this experiment. The web service was
monitored for three request rates by considering
different monitoring intervals (5, 15, 30, 45 and 60
seconds). The logging was performed for about
10,000 service requests.

Figure7 presents that average response time of
the web service increases for higher number of
service requests. As a result, high volume of service
requests degrades the service provider performance.

The result confirms the importance of load
balancing which balances the workload among the
similar services from different service providers.
Additionally, it is suggested to prevent selecting a
service provider in its peak time mode. The result
expresses that the response time decreases for the
high service requests rate when the monitoring
interval is extended. Monitoring at server-side
consumes system resources so longer monitoring
interval leads to use less machine resources and the
monitoring has lower overhead on the system.
However, low monitoring interval does not impact
the performance of the service for low service
requests rate. As shown in the figure, the average
response time values for the 10 request rate became
steady for 30 seconds and higher monitoring
intervals and it indicates monitoring does not have
significant overhead in normal working state of the
service provider.

Figure 8 shows throughput which is the number
of completed requests per second. Throughput
values significantly increase for high request rate
when the monitoring interval is extended. As
monitoring degrades the service provider
performance, longer monitoring interval has less
overhead and more services could be served at per
unit of time.

The service is considered to perform well when
its throughput is high and it has a faster response
time. In low request rate, monitoring has not
notable overhead on the service provider and values
of response time and throughput do not change for
different monitoring intervals. Accordingly,
minimum monitoring interval is desirable for
normal working time of the system as gathered
information is more accurate when measurement
interval is cut down. In high request rate, the
monitoring overhead significantly impact QoS
values. Consequently, long monitoring interval for
high volume of service requests and peak working
time mode of the system is recommended (in this
case longer than 60 second).In intermediate request
rate, average QoS values likely become steady after
30 second monitoring interval so longer than 30
second monitoring interval is preferable in this
case. As a result, a compromise must be found
between the performance of a service provider and
freshness of measured data.

According to Figure 9, average reliability values
slightly decrease by increasing of monitoring
intervals. Reliability is related to the number of
failed service executions. The failure probability of
service invocations seems to exceed in extended
time duration.

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

192

Results show that some nondeterministic QoS
values depend on the measurement period. It
indicates the importance of choosing proper
monitoring interval. The effect of monitoring is
more significant on QoS attributes such as response
time and throughput.

7. CONCLUSION AND FUTURE WORK

The monitoring mechanism which is based on
applying custom windows performance counters
and software wrapper for measuring QoS attributes
was described. The results indicate that the
proposed monitoring mechanism is an accurate
monitoring approach which supports different type
of services. The monitoring mechanism can be
utilized to improve the service provider
performance. Additionally, the findings indicates
that adjusting suitable monitoring interval is a
critical factor for reducing monitoring overhead and
improving performance of the service.

The work described in this paper can be extended
for automatically predicting QoS based on the
pattern of historical QoS values which measured by
monitoring of services. Furthermore, more QoS
attributes will be considered for monitoring and
prediction process for future research.

REFRENCES:

[1] Arab BS, Abdul Ghani, A.A., “Performance

Counter Monitoring Mechanism for Measuring
QoS Attributes in SOA”, International Journal
of Computer Science and Information Security
(IJCSIS), vol. 8, no. 2, 2010, pp.56-62.

[2] da Cruz SMS, Campos LM, Campos MLM,
Pires PF., “A data mart approach for monitoring
Web services usage and evaluating quality of
services”, In Proceeding of the Twenty-Eighth
Brazilian Symposium on Databases, 2003, pp.
267-80.

[3] Kalavathy GM, Seethalakshmi P., “Parallel
Performance Monitoring Service for
Dynamically Composed Media Web Services”,
Journal of Computer Science, vol. 5, no. 7,
2009, pp.487-92.

[4] Li Y, Li M, Yu J., “Web Services Testing, the
Methodology, and the Implementation of the
Automation-Testing Tool”, Lecture Notes in
Computer Science, 2004, pp.940-947.

[5] Maximilien, E. M., & Singh, M. P., “A
framework and ontology for dynamic web

services selection”, Journal of IEEE Internet
Computing, 2004, pp.84-93.

[6] Michlmayr A, Rosenberg F, Leitner P, Dustdar
S., “Comprehensive QoS Monitoring of Web
Services and Event-Based SLA Violation
Detection”, In Proceeding of the International
Middleware Conference, USA, 2009, pp. 1-6.

[7] O'Brien L, Merson P, Bass L., “Quality
attributes for service-oriented architectures”, In
Proceeding of the International Workshop on
Systems Development in SOA Environments
IEEE Computer Society,2007, pp. 20-26.

[8] Raimondi F, Emmerich W., “Efficient online
monitoring of web-service SLAs”, In
Proceeding of the 16th ACM SIGSOFT
International Symposium on Foundations of
software engineering ACM New York, NY,
USA, 2008, pp. 170-80.

[9] Ran S., “A model for web services discovery
with QoS”, Journal of ACM SIGecom
Exchanges, vol. 4, no. 1, 2003, pp.1-10.

[10] Saxena N, Goel A., “A Probe-based
Observability Mechanism for Monitoring of
Web Services” Journal of Recent Trends in
Engineering, vol. 1, no.1, 2009, pp. 600-602.

[11] Thio N, Karunasekera S., “Automatic
measurement of a QoS metric for Web service
recommendation”, In Proceeding of the
Australian Software Engineering Conference,
Australia, 2005,pp. 202-211.

[12] Yeom G, Tsai WT, Bai X, Min D., “Design of a
Contract-Based Web Services QoS
Management System”, In Proceeding of the
29th IEEE International Conference on
Distributed Computing Systems Workshops,
Montreal, Québec, Canada, 2009,pp. 306-311.

[13] Yu L., “Applying software wrapping on
performance monitoring of web services”,
INFOCOMP Journal of Compute Science, vol.
6, no. 3, 2007, pp. 1-6.

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

193

LIST OF IMAGES WHICH NEED TO BE PRINTED IN COLOR

Figure 2. An example of using wrapper

Figure 4: Average Response Time

Figure 5: Average Throughput

Figure 6: Failed Executions/Calls Failed Per Second

Figure 1. The proposed web service architecture

Journal of Theoretical and Applied Information Technology
31st December 2011. Vol. 34 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

194

Figure 7: Average response time

Figure 8: Average throughput

Figure 9: Average Reliability

