
Journal of Theoretical and Applied Information Technology
15th December 2011. Vol. 34 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

57

MULTICORE PARALLEL LOOSELY COUPLED
FRAMEWORK FOR PROCESSING MOBILE OBJECTS

JAWDAT ALSHAER1, IBRAHIM AL-OQILY2, SULIEMAN BANI-AHMAD1, ADNAN ALRABEE1

1 Dept. of Computer Information Systems, Faculty of Information Technology. Al-Balqa Applied
University, Salt, Jordan

2 Faculty of Prince Al Hussein Bin Abdullah II for Information Technology, Hashemite University, Jordan.

E-mail: jawdat_alshaer@hotmail.com, izaloqily@hu.edu.jo, sulieman@bau.edu.jo, adnan_alrabea@yahoo.com

ABSTRACT

Large numbers of mobile objects and continuous queries about them characterize mobile object
applications. Efficient and parallel evaluation of queries about mobile objects that continuously move is
important for achieving acceptable response times. In such applications, the traditional approaches suffer
from the need for parallel updates processing and real time querying and visualization. This results in poor
performance in such critical systems. The emerging multicore and manycore microprocessing technologies
have the potential to offer scalable performance improvement. How to explore the multicore resources to
speed up mobile objects applications is thus a natural question but also a huge challenge for Moving
Objects Applications (MOA). In this paper, we propose and evaluate a methodology to explore parallelism
via multi-threading, transactional loosely coupled methodology design, and to implement it on multicore
processors for Moving Objects Applications. We apply the proposed methodology of the loosely coupled
strategy, which has been identified as the key strategy in many design optimizations for different data
dependency types, to time-constrained location applications. A parallel framework and its implementation
on multicore processors for the proposed strategy have been developed based on multi-threaded concepts.
Experiments of using loosely coupled multithreaded parallelization to produce mobile objects parallel
query processing and visualization showed clear improvement in terms of speed and efficiency.

Keywords: Mobile Objects, Parallel Programming, Spatial Temporal, Loosely Coupled Parallel

Processing, Multicore Applications.

1. INTRODUCTION
Research in mobile objects application (MOA)
technology has become increasingly important and
popular due to recent advances in the technologies
of mobile computing, wireless communications,
sensor networks, and location services. Many
spatial temporal access methods have been
proposed. These methods include R-Tree [1], R+-
Tree [2], STR-Tree [3] and TPR-Tree [4]. These
methods ignore constraints on mobile objects by the
underlying transportation networks, speed of
objects and the huge processing requirements. In
fact, the new trends in multicore programming and
the multithreaded programming can be used to
efficiently manage network constrained mobile
objects. The strategy used in our previous work in
[5] to develop TNR+-Tree which manages mobile
objects on transportation networks, in regard to
their past and current movements and provide
support for querying this information reduces

number of updates from mobile objects to the
database server. Although, it is important to be able
to answer queries regarding past and current
movements, it is also important to be able to answer
queries regarding future movements of mobile
objects and visualize these movements; the
previous work in this paper is enhanced by merging
the proposed algorithms with the multicore
technology to efficiently visualize queries about the
movement of objects using multi threaded
framework to parallel processing parts of the
network that concern queries about current state of
traffic and predicted future ones. This work is new
enhancement to real-time applications concerned
with tracing mobile objects as in [24] and in [25].
Taking advantage of the new trends of multicore
computing helps in solving the delays of
transmission and processing the continuous
movement of mobile objects which leads to the
ability of monitoring huge amounts of mobile

Journal of Theoretical and Applied Information Technology
15th December 2011. Vol. 34 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

58

objects. This task was not feasible in unicore
processors in the past. This research promises
reimplementing the traditional single threaded
systems with multi-threaded ones to take advantage
of the multicore trends.

2. RELATED WORK.
The applications of locating mobile objects attracts
a lot of researchers. Wolfson et al. in [6, 7] firstly
proposed a Moving Objects Spatio-Temporal
(MOST) model which is capable of tracking the
current and near future position of moving objects.
Chon et al. in [8] proposed a Space-Time Grid
Storage model for moving objects. However, none
of these works have considered the constraints on
moving objects by the underlying transportation
networks and the overhead of the concurrent events
in handling locations of moving objects(MO).
Vazirgiannis and Wolfson [9] first introduced a
model for moving objects on road networks, which
connects the moving object’s trajectory model with
the road network representation. In [10], the authors
presented a computational data model for network
constrained moving objects in which the road
network has two representations namely a two-
dimensional representation and a graph
representation to obtain both expressiveness and
efficient support for queries. In this model, the
moving objects treated as query points are
represented by graph points located on edges or
edges. Ding et al. [11] proposed a MOD model,
based on dynamic transportation networks. They
model transportation networks as dynamic graphs
and moving objects as moving graph points. In
addition, Papadias et al. in [12] presented a
framework to support spatial network databases.
However, these models capture movement
information of objects only by their speed and
assume the linear movement using serial
implementation, which limit applicability in a
majority of real applications. Prediction methods
for future trajectories of moving objects play an
important role in indexing and querying current and
anticipated future positions. Most existing
prediction methods, used in the indexing and
querying, assume linear movement and serial
implementation, which cannot reflect the real
movement. Aggarwal et al [13] introduced a non-
linear model that uses quadratic predictive function.
Tao et al [14] proposed a prediction method based
on recursive motion functions for objects with
unknown motion patterns. In [15], Tao et al
developed Venn sampling (VS), a novel estimation
method optimized for a set of pivot queries that
reflect the distribution of actual ones. These

prediction methods improve the precision in
predicting the location of each object, but they
ignore the constrained movements and the effect of
the movement of an object on the others, and thus
may not reflect the realistic traffic scenario. Et al in
[16] introduced a cellular automaton model
describing traffic flow vehicles on transportation
network. In Location aware applications for mobile
objects , the traditional approaches suffer from the
need for the parallel frequent updates processing
and real time querying and visualization thereby
results in poor performance.. This challenge can
potentially be mitigated by emerging multicore and
manycore systems.
Since 2004, multicore microprocessor has become
the main engine of mainstream servers and personal
computers [17], [8]. Nowadays, it is rare to see uni-
core processors even in laptop computers, and
servers often come with eight cores on one or two
CPUs. Therefore, it is natural to hope that
manycores available in modern computers may be
effectively utilized to speed up MO programs.
However, numerous unsuccessful past attempts
have shown that, programming model has great
influence on usable parallelism; without exploring
concurrency in application design, it is impossible
to achieve reasonable speedup in multicore or
manycore systems. Recently, multicore parallel
applications has drawn significant attention in the
design automation field [19], [20]. Various existing
techniques to explore program concurrency have
been borrowed for parallel programming.
Automated parallelization is a compilation
approach that extracts parallelism from a sequential
program. It has been extensively investigated for
many years, but has shown limited success [21].
The general consensus in the community is that a
program’s automatically exploitable concurrency is
generally fixed by the programming or the
programmer’s way of thinking. Conventional
sequential programming heavily limits a program’s
usable concurrency. Message passing approaches
explicitly implement a computation by multiple
processes that work in separate memory spaces and
synchronize via passing messages. It is easy to
understand. However, the programming model is at
a low abstraction level, closer to the physical
platform. Similar to assembly language
programming, it requires the programmer to think
in physical details and the (even more difficult)
concurrent execution of processes. Furthermore,
such a program needs to be redesigned for different
generations of many-core processors.

Journal of Theoretical and Applied Information Technology
15th December 2011. Vol. 34 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

59

Threading (or multithreading) implements a
computation using multiple threads that share a
common memory space and can be executed
concurrently. Thread synchronizations are most
commonly achieved by locking. However, coarse-
grain locking does not perform well, while fine-
grain locking is error-prone. Common problems in
fine-grain locking include deadlock and the
inability to compose program fragments that are
correct in isolation [9]. In addition, it is not known
how a programmer can come up with a
multithreaded program with correctness guarantee.

3. FRAMEWORK FOR MOBILE OBJECT
APPLICATIONS (MOA)
Our modeling of mobile objects on dynamic
transportation networks is composed of two steps:
first step is the modeling of the Database that stores

and indexes transportation network edges and
historical and present locations of objects mobile on
these edges. For this purpose we used TNR+-Tree
as in [5]. Every time an object finishes moving on
an edge and starts moving on another, it sends an
update of location to the database .The speed on
these edges is known and stored. The traffic
condition is stored too. In case of change of
condition, the edge information should be updated.
The second step is to simulate movements of
vehicles on the edges of the network (only edges
that crossing query window) considering all factors
and infrastructures that affect these movements. For
this purpose we used Cellular Automation as in
[16].The structure of the proposed architecture for
MOA is shown in Fig. 1

FIGURE 1: MOA ARCHITECTURE

N

Step 1 :search 2D R+-Tree
for segment p

Step 2 :insert object oid in
1D R+-Tree

Root

Leaf

Root

Leaf

M

segment P

segment Q

Moving Object Trajectory

p1

p2
object oid

t2

FIGURE 2: TNR+-TREE (INSERTING EDGES AND OBJECTS)

Journal of Theoretical and Applied Information Technology
15th December 2011. Vol. 34 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

60

The TNR+-Tree is used in our proposed model to
serve as essential database for the network. Stores
all necessary information about the network and
vehicles moved in edges of this network in
different timestamps. The state of the network is
stored and efficiently indexed using TNR+-Trees
to provide states of edges of the network that is
required by queries to be processed by the CA.
The general idea for TNR+-Tree is that for a road
network consisting of n parts, the TNR+-Tree can
be thought of as forest of several 1D TNR+-Trees
on bottom of a single 2D TNR+-Tree. The 2D
TNR+-Tree is used to index the spatial data of the
network (e.g. roads consisting of line edges), while
each one of the 1D TNR+-Trees corresponds to a
leaf node of the 2D TNR+-Tree and is used to
index the time intervals that any mobile vehicle
was mobile on a given link of the network.
Therefore, the 2D TNR+-Tree remains static
during the lifetime of the TNR+-Tree as long as
there are no changes in the network. In the TNR+-
Tree structure two different kinds of insertion are
allowed (see Figure 2):

• Network insertion is performed to
construct the transportation Network. The
algorithm for network insertion is very
simple: just insert the network edges in
the top spatial 2D R+-Tree. The network
insertion algorithm takes as arguments the
network edge identification, the next
network edges identifications, length of
the edge, the maximum allowed speed
and the minimum allowed speed.

• Movement insertion algorithm takes as
arguments the mobile vehicle
identification , the finished edge
identification , the new edge
identification, the last movement
coordinates p as in (1) :

p=(p1, p2). (1)

 Where p1 is the start point and p2 is the end point
and the corresponding movement time interval t as
in (2):

t=(t1,t2). (2)
To Search a given spatial-temporal query window
(x1, x2, y1, y2, t1, t2) for query of the form: “find all
objects that have crossed the area r (x1, x2, y1, y2),
during the time interval t = (t1, t2)”.
The search algorithm receives a spatial-temporal
query window (w) and proceeds in three steps:

1. Searching the 2D TNR+-Tree in order to
find the line edges of the network
contained in the spatial query window.
Locate the corresponding 2D TNR+-Tree
leaves. Store these line edges in main
memory.

2. Searching the 1D TNR+-Trees that
correspond to the leaf nodes of Step 1.
Retrieve all entries in leaf nodes.

3. Output entries of Step 2, that have line
edge identifications equals to edge line
identifications in step 1.

3.1. Simulating the State of Transportation
Network Edges using CA
In order to process queries about the status of
vehicles moving on transportation network edges,
We modeled the movements of vehicles on these
edges using the Cellular Automation model (CA)
which was introduced in this context in [16]
.According to this model the edge of network is
subdivided into cells, which can be either empty or
occupied by one vehicle. The vehicle location is
the number of cells behind it to the start node (start
point of transportation edge that the vehicle mobile
on). Every vehicle has a non-negative integer
velocity that represented as (time, location). Fig. 2
shows an example of CA for 3 edges of the
network. Each node represents intersection
between road edges .The road edge is a CA that
connected many cells.

FIGURE 3: REPRESENTING NETWORK EDGES AS CA

Journal of Theoretical and Applied Information Technology
15th December 2011. Vol. 34 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

61

Let i be vehicle moving on an edge. Let v(i) be its
velocity, x(i) its position, gap(i) the number of
empty cells ahead (forward gap), and Pd(i) a
randomized slowdown rate which specifies the
probability it slows down. vmax is the maximum
velocity on the edge. For each update of the road
the following four steps are performed
simultaneously for all vehicles:

1. Acceleration. The vehicle
accelerates until reaching the
maximum speed as in (3):
v(i)=min (v(i)+1, vmax). (3)

2. Avoiding crashes. The vehicle
behind other vehicle slow down as
in (4) :
v(i)=min (v(i),gap(i)).

 (4)
3. Random deceleration(rand). When

v(i) needs adjustment, driver may
actually overreact and reduce the
speed a little more than
requirement. v(i) will be reduced
to v(i)-1 with a random
deceleration probability Pd. As in
(5):

 If rand < Pd(i) then
v(i)=max (v(i)-1,0). (5)

4. Update. The new position of
vehicle: Each vehicle is advanced
v(i) cells.

3.2. Querying the MOA Structure
Query processing in MOA structure is
straightforward. For a client to query the MOA

structure, in his handheld device, he clicks the
transportation network edge that he wants to query
its status, then the top level 2D TNR+ -Tree in the
MOA is searched to get the edges of the network
that related to the query and then the bottom level
1D TNR+ -Tree to retrieve all vehicles moved on
these edges at current time. This information is
supplied to CA simulator. User can use the time
control in simulator to view past , present or future
status of the selected edges, besides the
infrastructure objects in these edges.

4. IMPLEMENTING THE MOA USING
MULTIPLE LOOSELY COUPLED
TASKS

MOA as a Multiple Loosely Coupled Tasks is a
slight variation on the theme of multiple
independent tasks in parallel processing ,where the
tasks are different, but they work together to form
a single application. Some applications do need to
have multiple independent tasks running
simultaneously, with each task generally
independent and often different from the other
running tasks. However, the reason this is an
application rather than just a collection of tasks is
that there is some element of communication
within the system. In MOA the communication
runs from central single task to the other task
controllers, or the tasks might report some status
back to a status monitor. In MOA, the tasks
themselves are largely independent. They may
occasionally communicate, but that
communication is likely to be asynchronous or
perhaps limited to exceptional situations. Fig. 4
shows the proposed MOA system running 5
application tasks. Task T is a reporter to the other
four loosely coupled tasks, and tasks (T1,..,T4) are
a controller tasks to task T.

FIGURE 4: PARALLEL REPRESENTATION FOR MOVING OBJECTS APPLICATION

Journal of Theoretical and Applied Information Technology
15th December 2011. Vol. 34 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

62

5. PERFORMANCE OF THE MULTIPLE
LOOSELY COUPLED MOA

The performance of the application depends on the
activity of these individual tasks. As the CPU-
consuming parts of the “application” has been split
off into a separate tasks,
then the rest of the components become more
responsive the single-threaded application ,T is
responsible for database storing and querying MO
and the other tasks are responsible for the
enhanced querying of MO including visualization
and predicting future locations.
The performance gain arises in this case because
we have shared the work between Multiple
threads. The data storing task only has to process
MO and does not get delayed by the other
activities. The location processing tasks does not
get stalled reading or writing data. If we assume
that it takes 1ms to read and forward the location
and another 1ms to store to DB, then with the
original code, we can process a new MO every
2ms (this represents a rate of 5,000 MO per
second).

6. EXPERIMENT RESULTS
We have implemented the multicore MOA
application in C++ programming language with
Intel Threading Building Blocks [22]. All the
experiments are carried out on a Linux server with
two dualcore 3.0GHz CPUs and 2GB RAM, which
supports up to 4-core parallelism. The multicore
program is compiled once and runs with a user-
specified number of cores. First, we measured the
update cost and query performance for the
multicore structure against the single cored.
Datasets were generated by the Network-based
Generator in [23]. The page size was set to 1024
bytes .The node capacity 100. For the
transportation network we produced trajectory
datasets of 500, 750, 1000, 1500, 2000.And 10 K,
…, 100 K moving objects(vehicles), where each
object’s position was sampled 400 times. We
demonstrate the effectiveness of performance
improvement techniques described in Section 5.
Because of no determinacy in runtime, the
program is run for 30 times on every test case and
the results are reported in Table I. The run time is
computed against the single core program.

TABLE 1: THE EXECUTION TIME FOR
PROCESSING DIFFERENT MO NUMBERS.

N
um

ber
of M

O

Single
Thread
running
tim

e

4 Threads
running
tim

e

Speed
up

500 1.39 0.22 6.32
750 3.22 0.62 5.19
1000 8.32 1.45 5.74
1250 10.21 1.88 5.43
1500 11.41 2.12 5.38

 The results of the experiments showed that
running the application of storing the MO then
applying some information processing on these
MOs as a multithreaded tasks on multicore is in
average 5 times faster than running all application
in a single thread. This is because the operating
system sechdules each thread to be executed on a
different core. However, a single-thread
application runs on one core.

7. CONCLUSION AND FUTURE WORK
It is desperately needed for computationally
intensive MO applications to speed up according
to the reality with the increasing number of cores
in each generation of microprocessors, since their
operating frequencies are largely flattened. We
proposed in this paper to use Loosely Coupled
approach to explore parallelism in the application
design for tracking large number of continuously
moving objects; this approach can be successfully
used in grouping different types and sometimes
unrelated queries(tasks) about mobile objects in
one application that efficiently use the multicore
technologies. The proposed approach effectively
used the multithreaded paradigm applying loosely
coupled parallelism to successfully speed up the
mobile object processing. This gives the real life
system the ability of tracking and monitoring
relatively large number of MOs.

REFERENCES
[1]. Guttman A. ”R Trees A dynamic index

structure for spatial searching”. In Proc.
13th Association for Computing Machinery
SIGMOD Conference on Management of
Data, , 1984; 13:47-57.

[2]. Sellis T, Roussopoulos N, and Faloutsos C.
”The R+ Tree: A Dynamic Index for Multi-
Dimensional Objects”. In Proc. 13th
International Conference on Very Large
Data Bases, 1987; 13:507-518.

Journal of Theoretical and Applied Information Technology
15th December 2011. Vol. 34 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

63

[3]. Pfoser D, Jensen C S, and Theodoridis Y.
”Novel Approaches to the Indexing of
Moving Object Trajectories”. In Proc. 26th
International Conference on Very Large
Databases, 2000; 26:395-406.

[4]. Saltenis S, Jensen C S, Leutenegger S T,
and Lopez M A. “Indexing the Positions of
Continuously Moving Objects”. In Proc.
2000 ACM SIGMOD International
Conference on Management of Data, 2000;
331-342.

[5]. Alshaer J, Gubarev V .”Indexing Moving
Objects on Transportation Network”. In the
10th International Workshop on Сomputer
Science and Information Technologies
(IFOST 2008), NSTU,
Novosibirsk,Russia,2008.

[6]. Sistla P, Wolfson O, Chamberlain S, Dao S.
“Modelingand Querying Moving Objects”.
In Proc. 13th Int. Conf. on
DataEngineering, 1997; 13:422-432.

[7]. Wolfson O, Xu B, Chamberlain S, Jiang L.
“Moving Object Databases: Issues and
Solutions”. In Proc. of the Tenth
International Conference on Science and
Statistical Database Management
(SSDBM’98), 1998; 10: 111-122.

[8]. Chon H D , Agrawal D,. Abbadi A E.
“Using Space Time Grid for Efficient
Management of Moving Objects”. In
Proceedings of the 2nd ACM International
Workshop on Data Engineering for
Wireless and Mobile Access, 2001; 2:59-65

[9]. Vazirgiannis M, Wolfson O. “A
Spatiotemporal Model and Language for
Moving Objects on Road Networks”. In
Proc. of the 13th annual ACM international
workshop on Geographic information
systems , 2001; 13:20-35.

[10]. Ding Z, G.uting R H. “Managing Moving
Objects on Dynamic Transportation
Networks”. In proceedings of the
International Conference on Scientific and
Statistical Database Management, 2004;
287-296.

[11]. Chen J, X. Meng X, Y. Gut Y, S.
Grumbach S, H. Sun H. “Modeling and
Predicting Future Trajectories of Moving
Objects in a Constrained Network”. In
Proceedings of the 7th International
Conference on Mobile Data Management
(MDM 2006), Nara, Japan. IEEE Computer
Society 2006: 156.

[12]. Papadias D, Zhang J, Mamoulis N, Tao
Y. “Query Processing in Spatial Network
Database”. In Proc. of the 29th Conf. on
Very Large Databases, 2003; 29: 790-801.

[13]. Aggarwal C, Agrawal D. “ Nearest
Neighbor Indexing of Nonlinear
Trajectories”. In PODS, 2003; 252-259.

[14]. Tao Y, Faloutsos C, Papadias D, Liu B. ”
Prediction and Indexing of Moving Objects
with Unknown Motion Patterns”. In Proc.
of ACM Conference on Management of
Data , 2004; 611-622.

[15]. Tao Y, Papadias D, Zhai J, Venn Q L.
”Sampling: A Novel Prediction Technique
for Moving Objects”. In Proc. of the 21st
IEEE International Conference on Data, In
ICDE, 2005; 21:680-691.

[16]. Nagel K, Schreckenberg M. “ A cellular
automaton model for freeway traffic“. In
Journal Physique 1992; I 2. 2221-2229.

[17]. J. F. et al. Design of the
Power6TMmicroprocessor. In ISSCC,
2007.

[18]. U. G. et al. An 8-core 64-thread 64b
power-efficient SPARC SoC. In ISSCC,
2007.

[19]. B. Catanzaro, K. Keutzer, and B. Y. Su.
Parallelizing CAD: A timely research
agenda for EDA. In DAC, 2008.

[20]. W. Dong, P. Li, and X. Ye. Wavepipe:
Parallel transient simulation of analog and
digital circuits on multi-core shared-
memory machines. In DAC, 2008.

[21]. J. P. Shen and M. H. Lipasti. Modern
Processor Design: Fundamentals of
Superscalar Processors. McGraw-Hill
Professional, 2005.

[22]. Intel. Threading building blocks.
http://www.threadingbuildingblocks.org/.

[23]. Brinkhoff T. ”Generating Network-Based
Moving Objects”. In Proc. 12th Int'l
Conference on Scientific and Statistical
Database Management, 2000; 12:253-255.

[24]. Anind Dey, Jeffrey Hightower, Eyal de
Lara, Nigel Davies (2010): Location-Based
Services. Pervasive Computing 1/2010, 11-
12

[25]. D. Quercia, I. Leontiadis, L. McNamara,
C. Mascolo, and J. Crowcroft. SpotME If
You Can: Randomized Responses for
Location Obfuscation on Mobile Phones. In
Technical Report of The University of
Cambridge, 2010.

Journal of Theoretical and Applied Information Technology
15th December 2011. Vol. 34 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

64

AUTHOR PROFILES:

Jawdat Jamil Alshaer
received the BSc degree from
the Department of Computer
Science, Mu’ta University,
Jordan, in 1993, MSc degree
from the Department of
Computer Science, Wichita

State University, USA, in 2003, and PH.D.
degree from the Department of Computer
Science, Novosibirsk State Technical
University, Russian federation. He is currently
working as a full time He is presently a full-time
lecturer at Al-Balqa Applied University. Alshaer
research interests cover topics from Spatial
temporal Databases to parallel programming.

Sulieman Bani-Ahmad has
received his B.Sc. degree in
Electrical Engineering /
Computer Engineering from
the department of Electrical
Engineering Jordan
University of Science and

technology in 1999. He received an MS in
Computer Science from the school of
Information Technology at Al-Albayt University
in Jordan, in 2001. He received his Ph.D. degree
in Computing and Information Systems from the
department of Electrical Engineering and
Computer Science at Case Western Reserve
University, Cleveland - Ohio, USA, in 2008. He
is presently an assistant professor at Al-Balqa
Applied University. Bani-Ahmad's research
interests cover topics from Web-computing and
high performance computing.

Ibrahim Al-Oqily received
the BSc degree from the
Department of Computer
Science, Mu’ta University,
Jordan, in 1993, MSc degree
from the Department of

Computer Science, Jordan University, Jordan, in
2003, and PH.D. degree from the Department of
Computer Science, the School of Information
Technology and Engineering, University of
Ottawa, Canada. He is currently working as a
vice dean at the IT faculty in the Hashemite
university. He also served as a chair for the
software engineering department, computer
science department, and computer information
science department at the IT faculty in the
Hashemite University. His current research
interests include Overlay Networks
Management, Autonomic Management, and
policy-based network management. He is a
member of the IEEE since 2006.

Adnan Ibarahim Alrabea
received the PH.D.Eng.
Degree in 2004 from the
Electronic and
Communication Department,
Faculty of Engineering,
Donetsk University, Ukraine.

He is a visiting Assistant Professor and Assistant
dean of Prince Abdullah Bin Ghazi Faculty of
Science and Information technology at Al-Balqa
Applied University, Alsalt, Jordan. His research
interests cover: analyzing the various types of
analytic and discrete event simulation
techniques, performance evaluation of
communication networks, application of
intelligent techniques in managing computer
communication network, and performing
comparative studies between various policies and
strategies of routing, congestion control, sub
netting of computer communication networks.

