
Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

42

A COMPARATIVE SURVEY OF DATASHARING
APPROACHES AND THEIR APPLICATIONS IN
DISTRIBUTED COMPUTING ENVIRONMENTS

1SOFIEN GANNOUNI, 2HASSAN MATHKOUR, 3MUTAZ BERAKA

1Asstt Prof., Department of Computer Science, King Saud University, Riyadh, KSA
2Professor, Department of Computer Science, King Saud University, Riyadh, KSA

3M.S. in Computer Science and IT Specialist, Department of Computer Science, King Saud University,

Riyadh, KSA

E-mail: gnnosf@ksu.edu.sa,mathkour@ksu.edu.sa, mutaz999@hotmail.com

ABSTRACT

The Internet or distributed computing has evolved from a simple file sharing mechanism to data source
sharing and dynamic services. This evolution has made data source sharing an urgent necessity at the
present time. Therefore, we should benefit from distributed data sources that are spread across a network
and address current data sharing challenges, which include masking the heterogeneity between data
sources, and between disparate clients and different communication protocols and formats. In the recent
past, efforts have been made by researchers and private companies to propose approaches for accessing
remote, heterogeneous and autonomous data sources to share them across a network. Other efforts are
looking at these approaches and concepts with the aim of developing applications in both centralized and
decentralized environments to provide uniform access to and sharing of data sources. In this paper, we
review four data sharing approaches that have been proposed, namely Transaction Processing Monitors,
Tuplespace, Resource Description Framework and Data Service Approach. For each approach, we will
present its architecture, limitations and problems, as well as applications that have been developed based on
its concepts. Moreover, the most important open problems related to data sharing systems are briefly
highlighted.

Keywords: Data Sources, Data Sharing Approaches, Transaction Processing Monitor, Tuplespace,
Resource Description Framework, Data Service Approach, Open-Source Applications,
Proprietary Applications.

1. INTRODUCTION

In distributed computing, data is the lifeblood of
business enterprises and private users, especially
data stored in heterogeneous and autonomous data
sources. Additionally, many scientific researches
are achieved through the analysis of large amounts
of scientific data retrieved from multiple data
sources. Sharing existing data sources across
network make us take advantage of the enterprise
data stored in these sources and open-up the
opportunity to integrate data from multiple data
sources to gain the holistic understanding about
data integration. Therefore, the demand of data
sources sharing in distributed computing is more
important now than ever before.

By sharing and integrating heterogeneous data
sources, the following benefits become gain as
follows [1]:
• Eliminates data sources heterogeneity
• Provides valuable resources, which are data

sources that available for users
• Accesses and retrieves data from multiple data

sources at the lowest cost and short time
• Promotes innovation and potential new data

uses
• Leads to new collaborations between data

providers and data consumers in distributed
computing

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

43

The proposed approaches, Transaction Processing
Monitor (TPM) [2], Tuplespace [3], Resource
Description Frameworks (RDF) [4] and Data
Service Approach (DSA) [5], attempt to achieve
this type of data sharing in different ways. These
approaches differ in the way they deal with the
challenges that face users and companies during the
development of data sharing systems. However,
data sharing approaches realize data locked into
heterogeneous data sources and make them
available for users to share and exchange in
distributed manner. Implementation of these
approaches in centralized and decentralized
environments produce different applications that
attempt to provide a comprehensive solution for
data sharing and to address relevant aspects and
challenges. These applications can be classified
generally into proprietary applications, which
require licenses for use, or open-source
applications, which are available free for use and
allow the use to modify source-code. From an
implementation perspective, these data sharing
approaches may suffer from some limitations and
problems that make development of applications
using one approach easier and more useful in
certain respects than the other approaches. In
addition, other related aspects should be considered
when selecting an appropriate approach for
developing an application.

So far, the current researches did not mention
these approaches in one research. Hence, these
researches described approaches of data sharing
separately without in-depth review and
comprehensive study. In addition, most of these
researches ignore review almost applications that
have been developed to implement concepts found
in these approaches. In this paper, we review and
explain in detail approaches of data sharing that
have been proposed during the last decade, and
related challenges, problems and limitations for
each one. In addition, we present applications that
have been developed based on these approaches to
share data stored in heterogeneous data sources.

The remainder of this paper is structured as follows.
Section 1 gives an introduction to the importance of
data, share this data and data sharing approaches in
distributed computing. Sections 2, 3, 4 and 5 each
review one approach to data sharing in detail,
including the architecture, some limitations and
problems in the approach, and existing applications
that have been developed during the last decade.
Finally, we present a discussion of these approaches

as well as a brief overview of the most common
open problems and a conclusion.

2. TRANSACTION PROCESSING
MONITORS

A TPM provides an infrastructure for building and
administering complex transaction processing
systems with a large number of clients and multiple
servers[6]. In other words, it considers a standard
interface that provides functions to process and
execute queries among distributed components.
TPM supports mainly services for submitting user
queries, routing them through servers for
processing, coordinating the two-phase commit
when transactions are running over multiple servers
and ensuring that each transaction satisfies the
Atomicity, Consistency, Isolation and Durability
(ACID) properties [2]. These properties guaranty
the database's consistency over time and guard
against hardware and software errors [6].

As a database middleware, TPM provides a set of
tools and an environment to develop and deploy
applications that retrieve data from multiple
Database Management Systems (DBMSs)
distributed over a network. This role discharges the
DBMSs from managing data consistency and
correctness. However, using the tools provided
make integration an easy process because the
functionality is directly supported by the TPM [2].
TPM is independent of the persistent layer
(databases). It supports flexible and robust business
modeling and designs that allow modular, reusable
routines and Application Programming Interfaces
(APIs) to be added to support other components [7].
Moreover, the flexibility of TPM architecture
allows adding and modifying components in a
distributed system.

There are three alternative TPM technologies,
which are as follows [7]:

• TPM technology is session based
TPM treats transactions that come from users
as messages [7]. The single server provides the
services of both database and transaction
processing. The session server sends messages
to the user to ensure it is still alive until
processing and executing the query and
sending back the result.

• TPM technology is remote data access
Remote data access centers allow users to
communicate with back-end database servers
[7].

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

44

• TPM technology is the database approach
TPM provides functions to a specific database
and its architecture is locked to that database
system [7].

Finally, TPM addresses the problems of sharing
data from enterprise repositories, providing
interfaces and ensuring the ACID properties [2]. In
addition, it infers the functions of transaction
manager, which are locking, scheduling, logging
and recovery, and controls the execution of
distributed transactions. Furthermore, TPM may
perform load-balancing techniques to enhance
performance and throughput [2]. TPM provides a
set of administrative tools for administrative
functionalities [2].

2.1 Architecture Of TPM

The general architecture of TPM provides an
abstract interface that allows developers and
programmers to adapt and implement it according
to specific application needs. The TPM architecture
is shown in Figure 1 [7].

Figure 1. TPM architecture

2.2 Implementation Of TPM

In this paper, we consider only the implementation
of TPM that supports sharing and integrating data
from multiple data sources. Other implementations
are outside the scope of this paper. However, one
possible implementation of TPM is as a database
middleware system. This system is placed between
the application and the database server to provide a
standard interface for submitting user queries and
applying them on database servers as transactions.
In addition, this system may support the integration
of collections of data sources distributed over a
computer network. We classify the developed
applications into proprietary applications and open-
source applications.

2.2.1 Proprietary TPM Applications

In this sub-section, we present the proprietary
applications, which are commercial applications
that implement the TPM approach.

Frameworks/Systems

Active Mediator Object System (AMOSII): itis a
DBMS and a distributed mediator system [8]. It
provides all database facilities such as a storage
manager, transaction manger and AMOSSQL as an
object-oriented query language [8]. AMOSII
transforms various data models into object-oriented
models [8]. In addition, it provides mechanisms for
integrating data from data sources. It is a product of
research work developed in the EDSLAB at the
University of Linköping, Sweden.

Middleware Based On a Code SHipping
Architecture (MOCHA): itis a novel database
middleware system designed to interconnect data
sources distributed over a network [9]. It runs on
top of Oracle and Informix and is self-extensible
because new application-specific functionalities
needed for query processing are deployed to remote
sites in an automatic-fashion by the middleware
itself [9]. It is a product of research work at the
University of Maryland, USA.

Distributed Information Search COmponent
(DISCO): itis a system that deals with
heterogeneous distributed database systems that
allows users to submit their queries [10]. It provides
special features to make integration of multiple data
sources having the same type easier [10].

Garlic: itis a database middleware system that
integrates multiple databases without changing how
or where the data is stored [8][11]. It uses a uniform
object-oriented data model to represent data from
various data sources, and uses an object-oriented
SQL as its query language [8]. Garlic is a product
of research work at IBM’s Almaden Research
Center.

Peer Agent System: it is an agent-based transaction
in peer-to-peer (P2P) architecture. It provides the
ability to exchange data and solves data
management heterogeneity problems [12]. Peer
agent system is a product of research work at
University of Ancona, Italy.

P2P database network (P2PDBN): itimplements
the TPM approach in a P2P environment.It is a
network of peers without a global transition
coordinator, where each peer has their own
databases and participates in the network to

Processing
Runtime

Transaction
Processing

Monitor

 Client

Client

Client

Client

Client

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

45

exchange and share data with other peers [13].
P2PDBN is a product of research work at
University of Ottawa, Canada.

Projects/Middleware’s

The Stanford-IBM Manager of Multiple
Information Sources (TSIMMIS): it provides a set
of tools that facilitate the rapid integration of
heterogeneous information sources whether the data
is structured and unstructured [14]. It allows access
to integrated data and ensures this information is
consistent [14]. It is a product of research work at
Stanford University, USA.

2.2.2 Open-source TPM Applications

In this sub-section, we presentonly one open-source
application that implements the TPM approach.

Projects/Middleware’s

Concept Relation Assay Value Explorer (CRAVE):
it is a database middleware and visualization
system that allows users to search, retrieve, and
visualize ontologies of phenotypes held in custom
database [15].

2.3 Limitations and problems of TPM

The architecture of TPM requires a transaction
manager that is responsible for creating and
maintaining transaction context, and a resource
manager that is responsible for managing the
associated database, and for participating in the
two-phase commit and recovery protocol [6][16].
Therefore, TPM is a complex system and replacing
such a system is not easy so it has a long lifetime.
In addition, TPM systems must be able to extend
with the changing needs of an enterprise [16].

A limitation of TPM is that the functionality is not
well-defined and is based on a specific domain, and
it is taught-coupled (system dependent) [2].
Additionally, the implementation cost of TPM
technology is not cheap, but is cost-effective,
because the result provides significant savings [7].
Regarding the implementation code of TPM, it is
usually written in a lower-level language and it is
not widely available in visual toolsets [7].

The main problem with TPM as middleware or as a
system is satisfying the ACID properties when
transactions are running over multiple servers. This
requires tracking all transactional operations and
databases operated upon. In addition, the
transaction context between components should be

controlled, the status of transactions monitored and
the association between database connections and
transactions maintained [16]. Another problem with
TPM is performance, especially when serving a
large number of users. The load-balancing
technique should be implemented to enhance
performance and provide fast response times.

Other problems in the TPM technologies mentioned
before are described as follows. The session-based
technology is not as scalable because when the
number of users grows the number of messages
increases which effects performance [7]. Remote
data access technology also faces the problem of
scalability [7]. The database server approach faces
the problem of custom implementation of TPM,
because TPM provides functions for a specific
database.

3. TUPLESPACE

Tuplespace was initially introduced in the Linda
parallel programming language [3], which was
developedbyDavidGelernterandNicholasCarrieroat
YaleUniversity
[17].Itprovidesasetofprimitiveoperationsforinserting
,fetchingandretrievingdatafromasharedspace
storingusers’data. It allows the data providers to
post their data as tuples in the shared space called
Tuplespace, and allows data consumers to fetch and
retrieve data in these tuples, which matches a
certain pattern from that space. Accordingly,
Tuplespace is a multiset of tuples, where each tuple
is sequence of typed fields, for example,
<”Ahmed”, “Programmer”, “$3000”>[3].

Processes running the users’ programs
communicate through Tuplespace by writing and
reading tuples in and out of the shared space [3].
These communications are space decoupling
because communication is established in
anonymous mode (without knowing the references
the other users) [3]. In addition, these
communications are time decoupling because two
parties of communication should not be available at
the same time. Some of the services that
Tuplespace provides are [18]:
• Reading a tuple from the shared space with or

without removing it. In this case, the calling
process is blocked until a matching tuple
appears.

• Reading a tuple from the shared space with or
without removing it and without blocking.
Unlike the previous service, the operation

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

46

returns null if no matching tuple exists in the
shared space.

• Writing a tuple in Tuplespace.

Tuplespace as a model of computing can be
implemented in various programming languages, so
it relies on the associated programming languages
that developers decide to use. For example,
Tuplespace has been implemented in various
programming languages such as Java, Ruby,
Prolog, the .NET Framework and more.

3.1 Architecture of Tuplespace

The Tuplespace approach can be deployed in a
centralized way with one server or in a distributed
way with multiple servers. The architecture of
centralized Tuplespace is shown in Figure 2[19]
and the architecture of distributed Tuplespace is
shown in Figure 3. More detail about this
classification will be described in the next section.

Figure 2. Centralized Tuplespace architecture

Figure 3. Distributed Tuplespace architecture

3.2 Implementation of Tuplespace

During the last few years, the original model of
Tuplespace has been modified and many tuple
space applications have been developed [17]. These
applications can be classified into two main groups
according to the way in which tuples are stored
[17]:

• Centralized Tuplespace applications, which
store all tuples in a single server.

• Distributed Tuplespace applications, in which
tuples in the same space can be stored on
different servers and load-balancing techniques
can be applied to enhance performance. In
other words, the system supports multiple
Tuplespaces.

In this paper, we use the above classification of
Tuplespace applications and divide them into two
groups according to application license: proprietary
and open-source applications.

3.2.1 Proprietary Tuplespace Applications

This sub-section summarizes the commercial
applications that implement centralized and
distributed Tuplespace.

3.2.1.1 Centralized Tuplespace

Projects/Middleware’s

Tspaces: A network middleware combines
database, Tuplespace, mobile computing and Java
technology for the next generation of Tuplespace-
based systems[20]. In other words, it combines
database functionality and Tuplespace with
communications middleware to create platform
independent repository that be able to perform new
functions and handle new types[20].

3.2.1.2 Distributed Tuplespace

Frameworks/Systems

TIBCO ActiveSpaces: it is a distributed P2P in-
memory data grid using virtual shared space. It
allows sharing, exchanging and processing of data
in real time [21]. This system provides APIs written
in Java and C++.

GigaSpaces: it is a platform solution for end-to-end
scalability of the application and its data. It also
allows cross-language access, which includes the
Java, .Net and C++ programming languages [22].

Java PeerSpaces (JPS): it is a system that
implements proposed coordination model named
PeerSpaces based on the JXTA framework in Java
programming language [23]. Peers in a JPS
network are connected together, with each peer
maintaining local data space, neighbor storage and

Tuples
Space

Tuples

Tuples

Spac

Provide
Consume

Consume

Provider
Consume

Provider

Spac

Provider

Tuplespace

Provider

Consumer

Consumer

Tuple <”1”, “AA”>

Tuple <”3”, “CC”>

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

47

connection pool [23]. JPS is a product of research
work at the University of Bologna, Italy.

Blossom: it is a system that implements distributed
Tuplespace in the C++ programming language.
Blossom programs do not need a pre-complier to
compile them [17] [24]. Blossom is a product of
research work in cooperation between Thela Thesis
and the Tinbergen Institute.

MTS-Linda: it is an implementation of distributed
Tuplespace based on the original Linda model
[25][26]. It combines multiple Tuplespaces as first
object classes and allows the programmer to
maintain them to achieve application specific needs
[25][26]. MTS-Linda is a master thesis for Brian
Nielsen and Slrensen, Aalborg University,
Denmark.

WCL: it is a co-coordination language and runtime
systems for geographically distributed agents [25]
[27]. It consists of tuple space server, where each
server hosts one or more tuple spaces, agents access
to tuple spaces through using servers [25] WCL is
a product of research work at Cambridge
University, UK.

Projects/Middleware’s

Comet: it is the communication infrastructure for
automated middleware and represents a distributed
Tuplespace implementation for Grid like
environments [17] [28]. It is research product at
Rutgers University, USA.

Tuples On The Air (Tota): it is a middleware for
supporting adaptive context-aware applications in
dynamic network scenarios [29]. Communication
between agents in the Tota network occurs through
a distributed Tuplespace [17]. It provides an API
that interacts with the middleware easily [29]. Tota
is a product of research work at the University of
Modena and Reggio Emilia, Italy.

SwarmLinda: it is based on the ant colonies model
(swarm intelligence) and implements distributed
tuplespace to increase systems scalability [17]. In
this model, tuples are considered as food and
templates as ants, where an ant tries to find the food
[17]. SwarmLinda is a product of research work.

Tupleware: it is a scalable and efficient cluster
middleware that implements distributed Tuplespace
[25]. It is based on coordination language and
incorporates additional techniques to solve
scalability and performance problems [25].

Tupleware is a product of research work at the
University of Tasmania, Australia.

3.2.2 Open-sourceTuplespace Applications

This sub-section present centralized and distributed
Tuplespace open-source applications
3.2.2.1 Centralized Tuplespace

Frameworks/Systems

JavaSpaces: it is a platform for building and
developing distributed applications based on the
concept of shared Tuplespace (the paradigm of
Linda distributed computing) [17] [30].

LighTS: it is a Java implementation of Linda-style
Tuplespace [31]. It provides an
extensibleframework that makes it easy to
introduce extensions tothe Tuplespace, and in
general customize the Tuplespace
implementation[31].In addition, it provides an
adaption layer to allow different Tuplespace
implementations to be accessed through it [31].

Projects/Middleware’s

Blitz Project: it is an open-source pure Java edition
that uses JavaSpaces and JINI thorough the running
of essential resources [32].

Rinda: it is a Ruby implementation of the
Tuplespace approach (the paradigm of Linda
distributed computing) [33].

3.2.2.2 Distributed Tuplespace

Frameworks/Systems

Grinda: it is an implementation of distributed
Tuplespaces in structured P2P networks [17]. The
server-side is implemented in the Java
programming language and the client-side is
implemented in the Java and C++ programming
languages [17].

Projects/Middleware’s

LinuxTuples: it is a C-based open-source
Tuplespace server, with a client API written in
Python, designed to run on a networked cluster of
Linux/Intel boxes [34].

PyLinda: It is an implementation of a distributed
tuple space (a paradigm of Linda distributed
computing) in the Python programming language

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

48

[35]. It supports the implementation of the most
widely proposed extensions to the tuple space
approach including distributed tuple spaces,
garbage collection, sane non-blocking primitives,
and bulk tuple operations [35]. However, this
system has recently been removed from the
PyLinda Web page.

SemiSpace: it is a Java-based open-source
interpretation of a distributed tuple space / object
space based on JavaSpaces technology [36]. It
supports a single space and a cluster of spaces using
the Terracotta Integration Module (TIM). The key
features offered by SemiSpace are as follows [36]:
easy to configure, few dependencies, easy to
integrate with Java 2 Enterprise Edition (J2EE)
applications, support for generics, ability to
distribute space and its content, support multiple
tuple spaces and provides a comted-based interface
to a SemiSpace Web application.

Linda in a Mobile Environment (LIME): it is a
Java-based middleware uses ideas found in the
Tuplespace approach and adaptsLinda
communication model to provide a coordination
layer for designing mobilityapplications[37]. In
other words, it is designed to extend the
implementation of Tuplespace to support both
wired and ad-hoc networks [17][37].

SQLSpaces: it is an implementation of the
Tuplespace approach that keeps its API clear and
simple [38]. SQLSpaces is intended for relational
databases, with the Tuplespace server written in
Java and the client API written in the following
languages: Java, C#, PHP, Prolog and Ruby [38].

PeerWare: it is a middleware that is designed to
support P2P and mobile systems [39]. It adapted the
coordination model to allow peers to share data
with each other, and allows a set of components to
share data and react to any change occurring in
these data. It is an open-source middleware.

Fly Object Space: it is a lightweight Object Space
can manage information on clusters of computers
(multiple tuplespaces) in the form of Objects [40].
This project can use Java, Ruby and Scala via
language bindings.

3.3 Limitations and problems of Tuplespace

A limitation of Tuplespace is the representation of
information in the form of tuples. Thus, there is no
possible distinction between the actual information

in tuples and its representation in shared space
(there is no standard tuple space interface) [41].
Accordingly, the deadlock problem arise in
Tuplespace, which happens when a set of blocked
consumers are each holding a tuple and are waiting
to acquire a tuple held by another consumer in the
set. The implementation of Tuplespace should solve
this problem by agreeing on a locking protocol
[41].

Tuplespace as a coordination-based model is
related to the fixed behavior of the coordination
medium. This behavior is set once and for all by the
model, and it is not possible to customize it for a
specific application [41]. This problem is a clear
indication of the control capabilities typically
lacking in data-driven coordination models [41].

Another problem with Tuplespace is the amount of
memory required for shared Tuplespace. Sharing
large amounts of data requires more memory space,
which directly affects the performance of the
system. This problem in centralized Tuplespace
applications leads to a bottleneck [17], whereas in
distributed Tuplespace applications affects
performance [17]. Therefore, load-balancing
techniques should be used to separate the loading,
but operation will then be more expensive [17].

A further problem with Tuplespace is the need for
expressive matching algorithms to enhance the
search for and retrieval of a matching tuple from
the space, and to avoid dirty reads and retrieving
inconsistent data [3]. A weak matching algorithm
will cause scalability problems due to the in()
operation (take operation), which blocks if there is
no matching tuple [3]. Therefore, a better algorithm
means better matching of tuples and a higher level
of scalability.

4. RESOURCE DESCRIPTION
FRAMEWORK

RDF is an infrastructure that enables and promotes
the encoding, exchange and reuse of structured
metadata [4]. It is a product of W3C for
representing and storing any kind of data as a Web
resource on the Web [42]. RDF makes heavily use
of XML after adding some constraints on that use
that provide unambiguous methods for expressing
semantics. In contrast with other approaches, RDF
allows human-readable and machine-parseable
vocabularies, and is designed to support the reuse

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

49

of metadata semantics and these vocabularies
among different information communities [4].

In RDF, the represented and described Web
resources have properties and can be identified by
Uniform Resource Identifiers (URIs). These URI
references are formed by a URI namespace and a
local name [43]. The properties associated with
resources are identified by property type, and
property types have corresponding values. The
values can be atomic (literal) in nature or other
Web resources identified by URIs [4].

4.1 RDF Model

The data model of RDF is used to describe
resources. This model is shown in Figure 4 [44].

Figure 4: Overview of the RDF model.

RDF provides remote access to unstructured and
structured data stored in repositories and has
strongly supporting relational databases. It masks
the heterogeneity between data sources by exposing
them as RDF resources on the Web. This is
achieved through two approaches: direct mapping
and indirect mapping [45]. The direct mapping
approach translates the schema of structured
databases such as relational databases to RDF [45],
while the indirect approach uses APIs and the
application logic provided by Content Management
Systems (CMS) as a source of information to be
exposed in RDF [45]. In this case, developers of
applications are far away from any updates that are
performed on the storage layer, because they are
using the APIs. From an implementation point of
view, there are two approaches to translating
relational databases to RDF resources [43]:
1- The static approach, which applies the concept

of the extraction, transformation and load
(ETL) approach to create the RDF repository
from relational databases using mapping rules.

2- The dynamic approach is a query-driven
dynamic implementation, which implements
mapping dynamically in response to a query.

Finally, RDF as a standard is well suited to
representing structured, semi-structured or un-
structured data. The representations are suitable for
Web semantics and support smart queries about
data.

4.2 Implementation of RDF

RDF gains wide acceptance through the many
frameworks, systems, APIs and tools that have been
developed to create, edit and update RDF models,
and to share and query data from those models.
These prototypes allow developers to deal with
RDF easily and use interfaces provided during
development of the application. In this paper, we
are concerned only with applications of RDF and
no other tools, APIs, and so on. The reader may
refer to the W3C RDF homepage to read about
these tools. We classify these applications into
proprietary applications and open-source
applications.

4.2.1 Proprietary RDF Applications

In this sub-section, we present the commercial
applications that implement the RDF approach.

Frameworks/Systems

Piazza: it is a peer data management system that
allows users to share heterogeneous data in a P2P
environment [46][47]. It solves the problems of
sharing data in a distributed and scalable way[48].
Piazza is a product of research work in cooperation
between University of Washington and University
of Pennsylvania

PeerDB: it is a P2P-based system that is based on
the BestPeer platform for sharing distributed data
stored in relational databases without any schema
knowledge [46] [49]. PeerDB is a product of
research work at the National University of
Singapore and University of Fudan.

GridVine:it is a system that uses P-Grid, a P2P
overlay network, to realize semantic overlays [46]
[50][51][52]. It addressed issues of semantic
interoperability and scalability. GridVine is a
product of research in cooperation between Swiss
Federal Institute of Technology (EPFL) and
Linköping University.

pSearch: it is a system that implements the
Distributed Hash Table (DHT) algorithm to solve
the problem of data semantic diversity between

Resource 3 Resource 2 Resource 1

PropertyName 3

Atomic Atomic

PropertyName 4 PropertyName 2

PropertyName 3

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

50

peers [51]. In pSearch, machines are organized into
a semantic overlay that offers an information
retrieval service [53]. pSearch is a product of
research work at the University of Rochester and
HP Laboratories.

GrouPeer: it is a system that focuses on the
problem in a random flat unstructured peer-
database system [54]. It allows peers in the system
to benefit from information or to learn about other
peers with similar interests [51]. GrouPeer is a
product of research work at the National Technical
University of Athens, Greece.

PIER: it is a database-style query engine built on
top of DHT, which is intended for querying the
Internet [55]. It allows distributed sharing and
querying fingerprint information [46]. PIER is a
product of research work at the EECS Computer
Science Division, UC Berkeley and the
International Computer Science Institute

Generic Interoperability Framework: it uses the
RDF interface as a generic representation for
protocols, languages, data and interfaces. It does
not provide creation and manipulation, but provides
access to RDF models through a query interface
(SQL) [44]. This framework is a product of
research work.

Hyperion System: it is a system that is built on top
of JXTA to support data sharing for a network of
independent Peer Relational Database Management
Systems (PDBMSs) [56]. The Hyperion system is a
product of research work at University of Toronto,
University of Ottawa, University of Edinburgh and
University of Trento.

AllegroGraph: it is a system for loading, storing
and querying RDF data [57]. It a persistent graph
database that supports SPARQL, RDFS++ and
Prolog reasoning from several client applications. It
is available in a paid edition and a free edition.

Oracle Spatial 11g: it is an RDF management
platform based on a graph data model. RDF data
(triples) are persisted, indexed and queried, similar
to other object-relational data types[57].

4.2.2 Open-source RDF Applications
This sub-section summarizes non-commercial
(open-source) applications that implement the RDF
approach.

Frameworks/Systems

Bibster: it is an open source P2P-based system built
on top of the JXTA framework for exchanging
bibliographic data among researchers [58]. It
exploits ontologies in order to share these data [58].

Redland: it is a flexible and efficient RDF system
that provides object-oriented interfaces for storing
and retrieving RDF data [59]. These interfaces are
written in C, Perl, Java, Tcl, Python and other
programming languages [59]

D2RQ Platform: it an open source platform treating
non-RDF databases as virtual RDF graphs. It
consists of the D2RQ mapping language, a D2RQ
engine and a D2R server [60].

Sesame: it is an open source framework for parsing,
storing, interfacing, and querying RDF schema and
RDF data [61]. It provides an easy-to-use API for
connecting to RDF storage solutions [61].

Jena: it is an open-source Java framework
developed by HP for RDF models. It supports
statements and resource-centric RDF views [44]
and provides an API for RDF, RDFS and OWL,
SPARQL and includes a rule-based inference
engine.

Projects/Middleware’s

Edutella: it is an open-source project that is
intended for semantic Web design and implements
a schema based P2P system [46]. It allows peers to
exchange RDF metadata and query RDF
repositories across the network [46][62].

4.3 Limitations and problems of RDF

RDF as a data sharing approach requires extensive
representation for describing data sources in RDF
data and schema models. In addition, reconstructing
the RDF graph is not a trivial task. Additionally,
RDF is an expensive language because it may
impose further semantic conditions in addition to
those described in the standard RDF. These
conditions are imposed on the meanings of terms in
practical vocabularies of RDF.

Another problem with RDF is the implementation
of the query language to return results from RDF
syntax. The developers decide whether the
implementation is statement-centric (asking for
matching statements) or node-centric (parsing

ISSN:

graph
node)
many
implem
be us
algorit

Anoth
memo
data s
model
Sharin
memo
perfor

There
These
and se
focus
seman
seman
interop

5. D

Servic
enterp
system
hetero
exchan
distrib
compa
expose
masks
data s
by pro
layer i
structu
exposi
repres
servic
that it
applic
source

DSL i
provid
layer
access
hetero
data se
and de
source
at leas

Jo

1992-8645

representation
[59]. This cho
things that

mentation, suc
sed to parse
thm, and so on

her problem w
ory required fo
sources in the
l in terms of a
ng large amo
ory space, w
rmance of the s

are further pro
systems face

emantic interop
on solving th

ntic interoperab
ntic data), and
perability [46]

DATA SERVIC

ce-Oriented Ar
prise mainly f
ms. Behind m
ogeneous dat
nging data st

buted manner
anies. DSA e
e data stored in
s the heterogen
ources and ma
oviding a Dat
is responsible
ured and un-
ing them as
entational stat
es. The main
t reduces the c
ations that int

es [5] [63][64].

is much more
des the missin

and SOA. Fu
s point to all e
ogeneous data
ervices are loo
efine virtual a
es [5] [63][64].
st the following

ournal of Th

 ©

n of the mode
oice is critical

must be co
h as the type o

RDF syntax
n.

with RDF is
or representing
e RDF model

graph that can
ounts of data
which direct
system.

oblems regardi
two main prob

perability. Som
he scalability
bility (exchang
d others focus
.

CE APPROAC

rchitecture (SO
focus on integ

most of these
ta sources.
tored in thes
is beneficial f
embodies SO
n heterogeneou
neity between d
akes them ava
ta Service La
for accessing

-structured da
Web services
te transfer (R
advantage of

complexity of
tegrate data fr
.

than just a da
ng layer betwe
urthermore, D
enterprise data
sources as dat
sely-coupled, r

access points t
. A DSL shoul
g services:

heoretical and
15th Novem

© 2005 - 2011 JAT

 ww

el relatively to
because there

onsidered dur
of parser that w
x, the match

the amount
g metadata fr
and parsing

n be queried [5
a requires m
tly affects

ing RDF system
blems, scalabil

me of the syste
problem but

ging and query
s instead on

CH

OA) efforts of a
grating dispar
system silos

Sharing a
se sources in
for all users a

OA principles
us data sources
different kinds
ilable as servi

ayer (DSL). T
structured, sem

ata sources, a
 or as a set

REST) style W
this approach

f developing n
from several d

ata access tool
een the persist
DSL as a sin
a sources expo
ta services. Th
reusable, scala
to enterprise d
d usually prov

d Applied In
mber 2011. Vol. 33
TIT & LLS. All rig

ww.jatit.org

51

o a
are

ring
will
hing

of
rom
the

59].
more

the

ms.
lity

ems
not

ying
the

any
rate
are
and
n a
and

to
s. It
s of
ces

This
mi-
and

of
Web
h is
new
data

l. It
tent
ngle
oses
hese
able
data
vide

• Ac
sou

• Exp
acc
gen
dat
ma
Up
ope

• Dat
bac

Howeve
well, w
• Dat

Pro
acc
sou
bec

• Dat
It
com
a
abs
(for
sof

Finally,
stored in
integrat

5.1 Ar

The ge
abstract
heterog
services
invocati
of DSA

5.2 Im

In our o
the imp

formation T
3 No.1
ghts reserved.

cess to data s
urces.
posure of data
cessing data.
nerated for pr
ta. Furthermore
anipulate data
pdate and Dele
erations.
ta services wil
ck-end data sou

er, to underst
e describe them
ta through serv

oviding data th
cess of data s
urces, and sup
comes very eas
ta as a service:
facilitates the

mposing data th
data integra

straction. Also
r example, CR

ftware developm

, DSA helps an
n data reposito
ting them in a d

chitecture of D

eneral archite
t interface call
eneous data s
s. These servi
ion. A general

A is shown in F

Figure 5: A

mplementation

opinion, insuff
plementation o

echnology

 E

stored in hete

a sources as d
Read opera

oviding the ab
e, it may provi

by providing
ete (CRUD) a

ll map data sou
urce.

and the descr
m as follows [6
vices:
hrough service
stored in hete
pports data int
sy.
:
e process of
hrough service
ation layer
o, it provides
RUD operation
ment.

nd users benefi
ories by sharing
distributed man

Data Service A

cture of DSA
led DSL that a
sources and ex
ices are availa
l overview of
igure 5 [5].

Architecture of D

of DSA

ficient effort ha
of DSA and

E-ISSN: 1817-319

erogeneous da

data services fo
ations will b
bility to acce
ide the ability t
g Create, Rea
and customize

urce calls to on

ribed guideline
65]:

es leads to eas
erogeneous da
tegration, whic

collecting an
e composition o
above servic
data operation

ns) that facilita

it from data
g and
nner.

Approach

A provides a
allows access t
xposes them a
able for remo
the architectur

DSA

as been put int
have produce

95

ata

for
be
ss
to
d,
ed

ne

es

sy
ata
ch

nd
or
ce
ns

ate

an
to
as
te
re

to
ed

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

52

only a limited number of applications. In this paper,
we classify these applications in proprietary and
open-source applications.

5.2.1 Proprietary DSA applications
In this sub‐section, we summarizes the commercial
applications that implement data service
approach.

Frameworks/Systems

ADO.NET Data Services Framework: the main
motivation of this framework is to demand
separation between the presentation layer and the
data layer to build more interactive and responsive
Web applications, and for building RESTiful
systems [66][67].

BEA AquaLogic Data Services Platform (ALDSP):
A platform allows developers to design, develop,
deploy and maintain DSL in a SOA world. It
models the collection of data sources as a set of
data services. These services are available to any
consumer that needs them [68]

Projects/Middleware’s

OracleAS and DB: this project is intended for the
users of the Oracle application server [69]. It may
not be fully projected in a P2P environment, but it
allows Oracle users to expose databases as Web
services and allows them to consume those
services.

5.2.2 Open-source DSA applications

This sub-section present the open-source
applications that implement data service approach

Frameworks/Systems

WSO2: itis open-source software builton top of
WSO2 Carbon, a lightweight high-performance
platform for creating data services, and uses Axis2
as the underlying SOAP processing engine [70].

Projects/Middleware’s

Axis2 POJO: it is based on creating POJO classes
to expose databases as Web services [71]. The
process of creating and exposing databases as
services is written manually by developers.

5.3 Limitations and problems of DSA

In DSA, data sources are exposed as data services
and become available for remote invocation. This
service is decoupled from the data source but
exposes the functionality of the data source.
Therefore, if the underlying structure of the
exposed data source changes or the data source is
deleted, DSA should provide a mechanism that
reacts to this modification and takes appropriate
action. Accordingly, DSA should support
automation change discovery for any change
happening in data sources [5].

Another problem with DSA is supporting a public
or private UDDI registry. A public registry requires
security mechanisms such as access control,
encryption messages, policies, and so on, while
with a private registry scalability is the main
problem. In addition, a UDDI registry must be
available all the time and must maintain a good
security level.

A further problem in DSA is the performance issue
for both the data access layer and remote
invocation. In DSA, the data access layer provides
access to and manipulation of data stored in
heterogeneous data sources. Therefore, accessing
data stored in various data sources should be
efficient and flexible because this is the core reason
for building data services. As for the issue of
remote invocation performance, communication
between parties are using SOAP messages and
therefore many service invocations means many
messages exchanged, so implementing a parallel
mechanism has a greater impact on performance.
Additionally, the remote invocations may not all be
successfully completed because of problems that
may occur during execution. Therefore,
implementing exception-handling mechanisms is
important for catching errors and performing
appropriate actions [5][70] [72].

6. DISCUSSION

Based on our review of data sharing approaches, we
conclude that TPM and Tuplespace focus on
sharing and integrating data stored in specific type
of data source, namely databases, while RDF and
DSA focus on sharing and integrating data stored in
heterogeneous data sources. In addition, RDF and
DSA require describing a whole data source as a
service or resource, while in TPM there is no need
for this as the TPM interface deals with it directly,

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

53

and in Tuplespace the data provider posts the data
as tuples in shared Tuplespace.

Moreover, from our review of applications
developed based on these approaches, we conclude
that some approaches had received more effort than
others. In addition, most of the developed
applications that implement concepts found in these
approaches are based on P2P architecture and not
client server architecture, because P2P architecture
provides more advantages over centralized
architecture, avoiding both computational
performance and information update bottlenecks,
and providing robustness, reliability, fault-tolerance
and scalability. By focusing on types of data
sources, sharing structure data source such as
database is acquired most attention than semi-
structured and unstructured data sources. This has
become clear through two reasons, the first reason
is the most of users and companies around the
world usually store their data in databases rather
than other type of data sources. The second reason
is most of applications that have been developed
support sharing databases firstly and may support
sharing other types of data sources secondly. The
main problem facing data sharing applications in
these approaches are scalability, interoperability
and performance, but the problems are not limited
to these.

Finally, TPM as a data sharing approach is not as
popular as the other approaches. As for DSA, more
research and development efforts are needed during
the next decade to develop more applications that
implement the concepts found in DSA. Developing
a new solution that supports sharing distributed data
sources, requires a further study of these
approaches carefully and examine their limitations
and problems. This depth analysis will help us to
decide which approach is suitable for a certain
situation to develop an appropriate solution. The
selected approach should be capable of integrating
data to retrieve data from multiple data sources in a
simple way.

7. OPEN RESEARCH ISSUES IN

DATASHARING SYSTEMS
Datasharing systems are capable of sharing huge
amounts of data among an increasing number of
unreliable peers. A survey of these systems shows
that the research community is currently
investigating several open problems including
security issues, search mechanismsexpressiveness,
efficiency and robustness.These open problems are
common to all datasharing approaches. We provide

a brief summary of these important and open
research issues. More details are provided in[73].

 Research efforts related to search issues aims at
increasing the responsiveness of data sharing
distributed or P2P systems by exploring new
mechanisms allowing users to look up for desired
data in an efficient way. The topology of the
network adopted by the distributed or P2P system,
the strategy of placing data on the peers and the
message routing protocol are key factors for the
success of the search mechanism. New topologies
such Gaussian andEisenstein-Jacobi[74] networks,
thathave emerged in the last few years,provide
tremendous opportunities for the development of
novel and innovative new data placement strategies
as well asefficient routing protocols.

Ongoing research is exploring how to make search
mechanisms more efficient and robust. Further
research is needed to extend search techniques such
as key lookup, keyword, ranked keyword,
aggregates and SQL to support much larger systems
and to incorporate new features with reasonable
performance.

The requirements of data sharing systemsin terms
of security are organized intothe following areas:
availability, authenticity, anonymity, and access
control[73].Developing techniques that prevent,
detect, manage, and are able to recover from attacks
for each of these areas is expected to be a research
challenge for some time.

8. CONCLUSION

 In this paper, we overview the most known data
sharing approaches in detail and review the
developed applications that implement these
approaches. These applications fail in some aspects
and are successful in others. Further research is
needed to provide a comprehensive solution for
sharing data sources that masks the heterogeneity
between user platforms and between data
sources.Developing such solutionrequires to extend
the comparative study that we present in this paper
to define a set of comparison criteria. Such criteria
will allow to select the appropriate approach that
should be adopted for a target solution. Besides, the
expected solution should consider the open research
issues highlighted in this paper in order to satisfy
the security and search requirements of datasharing
systems.

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

54

ACKNOWLEDGMENT

This work was supported by the Research Center,
King Saud University, Riyadh, Saudi Arabia.

REFRENCES:

[1] V.V. Eynden, L. Corti, M. Woollard, L. Bishop
and L. Horton, “MANAGING AND
SHARING DATA”, UK Data Archive,
University of Essex, UK, May 2011.

[2] G. Alonso, “Transaction Processing Monitors
(TP-monitors)”, Computer Science
Department, Swiss Federal Institute of
Technology (ETHZ), last visited, May 2011,
cited
athttp://masteritgov.dia.uniroma3.it/didattica/M
W/Middleware-04-TP-Monitors.ppt.

[3] I.K. Herrmann, “Asynchronous Middleware
Tuple Spaces”, 2011.

[4] M.H. Needleman, “RDF: The Resource
Description Framework”, Vol. 27, 2001, pp.
58-61.

[5] J. Bloomberg and J. Goodson. “Best Practices
for SOA: Building a Data Services Layer”,
SOA World Magazine, Vol. 8, issue 5, June
2008.

[6] A. Silberschatz , H. F. Korth and S. Sudarshan,
"Database System Concepts", sixth edition,
McGraw Hill, 2010.

[7] D. Sadoski, D., “Transaction Processing
Monitor Technology”, last visited, July 2011,
cited at:
http://www.oernii.sk/sxool/ing_semester1/_kub
iki/DP/Podklady/Architektura/Transaction%20
Processing%20Monitor%20Technology_files/t
pmt_body.htm

[8] J. Gebhardt, “Integration of Heterogeneous
Data Sources with Limited Capabilities in the
Object-Oriented Mediator Engine AMOSII”,
Laboratory for Engineering Databases,
Link¨oping University, Sweden, 1999.

[9] M. Rodr´ıguez-Martinez and N. Roussopoulos,
“MOCHA: A Self-Extensible Database
Middleware System for Distributed Data
Sources”, Proceedings of the 2000 ACM
SIGMOD International Conference on
Management of Data, Dallas, TX, May 2000.

[10] A. Tomasic, L. Raschid and P. Valduriez,
“Scaling Heterogeneous Databases and the
Design of Disco”, Institut National De
Recherche En Informatique Et En
Automatique, INRIA, 1995.

[11] M.J. Carey, L.M. Haas, P.M. Schwarz, M.
Arya, W.E. Cody, R. Fagin, M. Flickner, A.W.
Luniewski, W. Niblack, D. Petkovic, J.
Thomas, J.H. Williams and E.L. Wimmers,
“Towards Heterogeneous Multimedia
Information Systems: The Garlic Approach”,
IBM Almaden Research Center, San Jose,
1995.

[12] L. Penserini, M. Panti and L. Spalazzi, “Agent-
Based Transactions into Decentralised P2P”,
Preliminary Report, Computer Science
Institute, University of Ancona, Italy, ACM
Publisher, 2002.

[13] M. Masud and I. Kiringa, “Transaction
processing in a peer to peer database network”,
Data & Knowledge Engineering, Vol. 70,
2010, pp. 307-334.

[14] S. Chawathe, H. Garcia-Molina, J. Hammer, K.
Ireland, Y. Papakonstantinou, J. Ullman and J.
Widom, “The TSIMMIS Project: Integration of
Heterogeneous Information Sources”,
Proceedings of IPSJ Conference, Tokyo, Japan,
October 1994.

[15] G.V. Gkoutos, E.C.J. Green, S. Greenaway, A.
Blake, A. Mallon and J.M. Hancock,
“CRAVE: a database, middleware and
visualization system for phenotype ontologies”.
BIOINFORMATICS, Oxford journals, Vol.
21, 2005, pp. 1257–1262.

[16] subbu.org, “Nuts and Bolts of Transaction
Processing”, last visited, July 2011, cited at:
http://www.subbu.org/articles/nuts-and-bolts-
of-transaction-processing

[17] S. Capizzi, “A Tuple Space Implementation for
Large-Scale Infrastructures”, PhD thesis,
Department of Computer Science, University
of Bologna, Italy, 2008.

[18] F. Fummi, G. PErbellini, R. Pietrangeli and D.
Quaglia, “A Middleware-centric Design Flow
for Networked Embedded Systems”, In Design,
Automation & Test in Europe Conference &
Exhibition, 2007.

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

55

[19] K.A. Hawick, H.A. James, and L.H. Pritchard,
“Tuple-space based middleware for distributed
computing”, Technical Report DHPC-128,
2002.

[20] T.J. Lehman, S.W. McLaughry, and P. Wycko,
"TSpaces: The Next Wave", Proceedings of
Hawaii International Conference on System
Sciences, 1999.

[21] TibcoActiveSpaces, “TIBCO ActiveSpaces
Enterprise Edition”, last visited, July 2011,
cited at: http://www.tibco.com/products/soa/in-
memory-computing/activespaces-enterprise-
edition/default.jsp.

[22] GigaSpaces, “XAP Elastic Application
Platform", last visited, July 2011, cited at:
http://www.gigaspaces.com/xap/overview

[23] N. Busi, C. Manfredini, A. Montresor and G.
Zavattaro, “PeerSpaces: Data-driven
Coordination in Peer-to-Peer Networks”, 2003.

[24] R. Goot, “High Performance Linda using a
Class Library”, PhD thesis, Erasmus
University Rotterdam, 2001.

[25] A.K. Atkinson, “Tupleware: A Distributed
Tuple Space for the Development and
Execution of Array-based Applications in a
Cluster Computing Environment”, PhD. thesis,
University of Tasmania, 2009.

[26] B. Nielsen and T. Słrensen, “Distributed
Programming with Multiple Tuple Space
Linda”, Master Thesis, Aalborg University,
1994.

[27] A. Rowstron, “WCL: A Coordination
Language to Geographically Distributed
Agents”, World Wide Web Journal, Vol. 1,
Issue 3, 1998, pp. 167-179.

[28] Z. Li and M. Parashar. “Comet: A scalable
coordination space for decentralized distributed
environments”, Proceedings of the 2nd
International Workshop on Hot Topics in Peer-
to-Peer Systems, 2005, pp. 104 – 112.

[29] M. Mamei, F. Zambonelli and L. Leonardi,
“Tuples On The Air: A Middleware for
Context-Aware Computing in Dynamic
Networks”, 2nd International Workshop on
Mobile Computing Middleware at the 23rd
International Conference on Distributed
Computing Systems (ICDCS), Los Alamitos,

CA, USA, IEEE Computer Society, 2003, pp:
342-347.

[30] Q.H. Mamoud, “Getting Started With
JavaSpaces Technology: Beyond Conventional
Distributed Programming Paradigms”, Oracle
technical article, 2005.

[31] G. P. Picco, D. Balzarotti, and P. Costa,
"LIGHTS: A lightweight, customizable tuple
space supporting contextaware applications",
Proceedings of the 20th ACM Symposium on
Applied Computing (SAC), Santa Fe, New
Mexico, USA, March 2005.

[32] Blitz, “Blitz project”, last visited, July 2011,
cited at: http://www.dancres.org/blitz/.

[33] Rinda, “Rinda (Ruby programming language)”,
last visited, July 2011, cited at:
http://en.wikipedia.org/wiki/Rinda_(Ruby_pro
gramming_language).

[34] LinuxTuples, “LinuxTuples”, last visited, July
2011, cited at:
http://linuxtuples.sourceforge.net/.

[35] pylinda, “Python”, last visited, July 2011, cited
at: http://code.google.com/p/pylinda/

[36] SemiSpace, “SemiSpace”, last visited, July
2011, cited at:
http://www.semispace.org/semispace/.

[37] G.P. Picco, A.L. Murphy, and G.-C. Roman,
"LIME: Linda meets mobility", Proceedings of
the 21st International Conference on Software
Engineering (ICSE), May1999. pp. 368–377.

[38] SQLSpaces, “Welcome to SQLSpaces”, last
visited, July 2011, last updated, May 2011,
cited at: http://sqlspaces.collide.info/.

[39] G. Cugola and G.P. Picco, “PeerWare: Core
Middleware Support for Peer-to-Peer and
Mobile Systems”, Technical report,
Dipartimento di Electronica e Informazione,
Politecnico di Milano, 2001.

[40] FlyObjectSpace, “Cloud and Cluster Scaling
Software”, last visited, July 2011, cited at:
http://www.flyobjectspace.com/

[41] A. Omicini and E. Denti, “From tuple spaces to
tuple centres”, Science of Computer
Programming, Vol. 41, 2001, pp. 277-294.

[42] N. Alexander and S. Ravada, “RDF Object
Type and Reification in the Database”,
Proceedings of the 22nd International

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

56

Conference on Data Engineering (ICDE’06),
IEEE Computer Society, 2006.

[43] S. Zhou, “Exposing Relational Database as
RDF”, 2nd International Conference on
Industrial and Information Systems, 2010, pp.
1-4.

[44] K. Candan, H. Liu and R. Suvarna, “Resource
Description Framework: Metadata and Its
Applications,” ACM SIGKDD Explorations,
Vol. 3, 2001, pp. 6-19.

[45] U. Bojārs and J.G. Breslin, “From Online
Community Data to RDF”, 2009.

[46] V.S. Agneeswaran, “A Survey of Semantic
Based Peer-to-Peer Systems”, Technical report,
LSIR, communicated to International Journal
of Computer Science and Software Technolog,
2007.

[47] I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy,
D. Suciu, N. Dalvi, X. Dong, Y. Kadiyska, G.
Miklau, and P. Mork. “The Piazza Peer Data
Management Project", ACM SIGMOD Record,
Vol. 32, 2003, pp. 47-52.

[48] A. Roshelova, “A Peer-to-Peer Database
Management System”, PhD. thesis proposal,
University of Trento, 2004.

[49] W. S. Ng, B. C. Ooi, K.-L. Tan and A. Zhou,
"Peerdb: A p2p-based system for distributed
data sharing", In ICDE, Bangalore, India,
2003, pp. 633–644.

[50] K. Aberer, P. Cudr´e-Mauroux, M. Hauswirth
and T.V. Pelt, “GridVine: Building Internet-
Scale Semantic Overlay Networks”, In Sheila
A. McIlraith, D. Plexousakis, and F. van
Harmelen, editors, 3th International Semantic
Web Conference, Vol. 3298 of Lecture Notes
in Computer Science, Springer, Verlag, 2004,
pp. 107–121.

[51] V. Kantere, D. Tsoumakos, T. Sellis and N.
Roussopoulos, “GrouPeer: dynamic clustering
of P2P databases”, Technical Report TR-2006-
4, National Technical University of Athens,
Inf. Syst. J., 2006.

[52] V. Kantere, D. Tsoumakos, T. Sellis and N.
Roussopoulos, “GrouPeer: dynamic clustering
of P2P databases”, Information System, Vol.
34, Issue 1, 2009, pp. 62–86.

[53] C. Tang, Z. Xu and S. Dwarkadas, “Peer-to-
Peer Information Retrieval Using Self-

Organizing Semantic Overlay Networks”,
SIGCOMM’03, Karlsruhe, Germany, 2003.

[54] V. Kantere, D. Tsoumakos and T. Sellis, “A
framework for semantic grouping in P2P
databases”, Information Systems, Vol. 33,
2008, pp. 611-636.

[55] R. Huebsch, J.M. Hellerstein, N. Lanham, B.T.
Loo, S. Shenker and I. Stoica, “Querying the
Internet with PIER”, Proceedings of 29th
International Conference on Very Large Data
Bases, Berlin, Germany, VLDB, September
2003, pp: 321–332.

[56] P. Rodríguez-Gianolli, M. Garzetti, L. Jiang,
A. Kementsietsidis, I. Kiringa, M. Masud, R.J.
Miller and J. Mylopoulos, “Data Sharing in the
Hyperion Peer Database System”, Proceedings
of the 31st VLDB Conference, Trondheim,
Norway, VLDB, 2005, pp. 1291-1294.

[57] W3CSemanticWeb, “SemanticWebTools”, last
visited, July 2011, cited at:
http://www.w3.org/wiki/SemanticWebTools

[58] P. Haase, B. Schnizler, J. Broekstra, M. Ehrig,
F.V. Harmelen, M. Menken, P. Mika, M.
Plechawski, P. Pyszlak, R. Siebes, S. Staab,
and C. Tempich, “Bibster - a semantics-based
bibliographic peer-to-peer system”,
Proceedings of 3rd International Semantic Web
Conference (ISWC), Springer, 2004, pp. 122-
136.

[59] D. Beckett, “The design and implementation of
the Redland RDF application framework”,
Computer Networks, Vol. 39, 2002, pp. 577-
588.

[60] C. Bizer, “The D2RQ Plattform - Treating
Non-RDF Databases as Virtual RDF Graphs”,
last visited, July 2011, last update: November
2010, cited at: http://www4.wiwiss.fu-
berlin.de/bizer/d2rq/

[61] Sesame, “home of Sesame”, last visited, July
2011, cited at:
http://www.openrdf.org/about.jsp

[62] R. Hayek, G. Raschia, P. Valduriez and N.
Mouaddib, "Data Sharing in P2P Systems",
Handbook of Peer-to-Peer Networking,
Springer, 2010, pp. 531-569.

[63] K. Goundar, S. Singh and X.F. Ye, “An
Investigation into Concurrency Control
Mechanisms in Data Service Layers”, 14th

Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

57

Asia-Pacific Software Engineering Conference,
IEEE Computer Society, 2007.

[64] M. Nikoo and Dunstan Thomas Consulting,
“The Data Layer – Build or Buy?”, 2003.

[65] J. Bloomberg and R. Schmelzer, “The Data
Services Layer: Building a Solid Foundation
for SOA”, 2009.

[66] G. Fink, “ADO.NET Data Services
Introduction”, last visited, December 2010,
cited at:
http://blogs.microsoft.co.il/blogs/gilf/archive/2
008/08/10/ado-net-data-services-
introduction.aspx#comments.

[67] MicrosoftADO.NET, “ADO.NET Data
Services Overview”, last visited, December,
2010, cited at: http://msdn.microsoft.com/en-
us/library/cc668794(v=VS.90).aspx

[68] BEA Systems, “BEA Aqualogic Data Services
PlatformTM”, Technical Whitepaper, 2006.

[69] OracleDB, “Developing Database Web
Services”, last visited, December, 2010, cited
at:
http://otndnld.oracle.co.jp/document/products/a
s10g/101300/B25221_03/web.1013/b14434/de
vdbase.htm.

[70] S. Rubasinghe and A. Anandagoda, “WSO2
Data Services”, 2008.

[71] D. Jayasinghe, “Exposing a Database as a Web
Service”, last modified, December, 2009, cited
at:
http://www.developer.com/db/article.php/3735
771/Exposing-a-Database-as-a-Web-
Service.htm

[72] OracleODISuite, “Enterprise Data Services in
SOA using ODI Suite”, Oracle white paper,
2009, pp. 1-38.

[73] N. Daswani, H.Garcia-Molina and B. Yang,
“Open Problems in DataSharing Peer-to-Peer
Systems”, Proceedings of the 9th International
Conference on Database Theory. Siena, Italy,
2003.

[74] M. Flahive and B. Bose., “The Topology of
Gaussian and Eisenstein-Jacobi
Interconnection Networks”, IEEE Transactions
on Parallel and Distributed Systems, Vol. 21,
Issue 8, pp. 1132-1142, August 2010.

