
 Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

A TASKS ALLOCATION ALGORITHM FOR DISTRIBUTED
SYSTEMS

1MOSTAPH ZBAKH, 2MOHAMED DAFIR EL KETTANI

Information Security Research Team Laboratory

Université Mohamed V - Souissi

Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes-ENSIAS,

Avenue Mohammed Ben Abdallah Regragui, Madinat Al Irfane, BP 713, Agdal

Rabat, Marroco

E-mail : 1zbakh@ensias.ma, 2dafir@ensias.ma

ABSTRACT

In this paper, we complete and implement the general problem of tasks allocation. The theoretical part of
this work is developed in our previous work [14] and here we focus our research on the practical aspect.
The problem is modelled as a non-cooperative game between several players. For this game, we adopt the
Nash equilibrium structure and on the basis of this structure, we draw a distributed tasks allocation
algorithm that can find this equilibrium. We implement this algorithm by using the MPI environment and a
system of 10 computer sources that generate the tasks and 10 processing computers. The theoretical and
numerical results show that the tasks allocation strategy obtained leads to a good load balancing of
computers.

Keywords: Tasks Allocation, Game Theory, Non-Cooperative Game, Nash Equilibrium, Distributed

Algorithm, MPI Environment.

1. INTRODUCTION AND RELATED

WORKS

 In recent years, heterogeneous systems have
become a key platform for the execution of
heterogeneous applications. The major problem
encountered when programming such a system is
the problem of tasks allocation. A good
allocation of tasks leads to a good load balancing
of the system. Several articles deal with the
problem of load balancing and routing taking
into account the characteristics of
communication links between machines. For
example, in [3], the authors address the problem
of load balancing on linear platforms and in [4,
7, 8] the authors address the problem of routing
in a network of several parallel links with an
origin and a destination machine. In [5, 12], the
authors seek a routing strategy that allows the
balancing of a heterogeneous system.

 The general formulation of such a problem is
as follows. We assume that we have a set of any
m machines and n tasks (selfish) of sizes T1, T2...

Tn. We suppose that the jobs are divisible and
each one can be processed by all the machines
Mi (i = 1... m). The load Li of a machine i is
defined as the sum of execution times of tasks
which it treats and the cost of a task as the sum
of loads of the machines that treats it. The
general problem of tasks allocation is to find an
allocation that minimizes the costs of tasks

 To clarify the idea of allocation of tasks on
homogeneous machines, consider the following
simple example where the jobs are not divisible
and each one is processed only by one machine.
We consider two identical machines (M1 and M2)
and five tasks with execution times 1U, 2U, 3U,
4U, and 1U (U = unit of time).

 We consider the allocation shown in Figure 1
and in Table 1 we present the cost of each task
obtained by

 Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

this assignment. It is clear that a task can
improve its cost by choosing the following
assignment:

 Several studies in the literature show the
existence of such allocations on homogeneous
machines (identical) without specifying the
nature of this balance [4, 13]. Our goal here is to
generalize this problem to any machines
(homogeneous and heterogeneous) on the one
hand, and find a structure of such an assignment
on the other hand. To do this, we formalize this
problem as a non-cooperative tasks allocation
game.

 This article is structured as follows. In section
2, we formalize this problem as a non-
cooperative game and we derive a distributed
algorithm for our tasks allocation in section 3. In
section 4, we give an implementation for this
algorithm by using MPI environment and in
section 5 we draw a conclusion and perspectives
for this work.

2. PROBLEM OF TASKS ALLOCATION

AS A NON–COOPERATIVE GAME

 Given n tasks of sizes T1, T2... Tn and m
machines of speed V1, V2... Vm; each task should
be handled by at least one of m machines. The

load of a machine is defined as the sum of the
execution times of these tasks and the cost of a
task as the sum of the loads of the machines that
handle it. Our goal is to find an allocation of
these tasks that minimizes the cost of all tasks.

 Let Sji be a real between 0 and 1 which
represents the portion of the job j processed by
machine i. We call the vector sj = (sj1, Sj2…Sjm)
the allocation strategy of the task j (j = 1... n) and
the vector s=(s1, s2... sn) the strategy profile for
this tasks allocation game.

 In order to modelize the response time of each
machine, we assume that a scheduling exists and
modelize each machine as a M/M/1 queuing
system.

We also assume that tasks are distributed with a
rate µ.

The response time of machine i is given as

ti(s)=
µ∑

=
−

n

j
jjii Tsv

1

1 . The cost of a job j is

therefore given as : cj(s)=

∑
∑

∑
=

=

= −
=

m

i
n

j
jjii

jim

i
iji

Tsv

ssts
1

1

1
)(

µ
.

 Our goal is to find a feasible tasks allocation
strategy (s1, s2… sj ... sn) which minimizes all
cj(s). The decision of each job j depends on the
decisions of other tasks since cj is a function of s.
Therefore, this strategy will lead to a good load
balancing of machines.

Definition 1: A feasible strategy profile of
tasks allocation is a strategy profile that verifies
the following conditions:

1) Positivity: sji ≥ 0, i =1,…,m; j
=1,…,n

2) Conservation: njs
m

i
ji ...1,1

1
==∑

=

3) Stability : ∑
=

n

j
ijji vTs

1
pµ , i = 1…m

Definition 2: The non-cooperative game of
tasks allocation is a set of players, a set of
strategies and preferences between the profiles of
strategies. The players are the n tasks. Each task
Tj has its set of feasible strategies for the
allocation of tasks sj, and the task j prefers the

Task Task1 Task2 Task3 Task4 Task5
Cost 4 7 4 7 7

Task Task1 Task2 Task3 Task4 Task5
Cost 5 6 5 6 5

Figure1: First allocation

M1

M2

 M2

M1

 Figure2: Second allocation

 Table2: Cost of tasks achieved by the 2nd assignment

time

time

Table 1: Cost of tasks achieved by the first allocation

 Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

17

profile of strategies s than the profile s' if and
only if cj(s) <cj(s').

 The solution to this problem is to find the Nash
equilibrium [1, 2] for this allocation game.

Definition 3: The Nash equilibrium for this
tasks allocation game [1,2,5] is a profile of
strategies s such that for each task j (j=1 ... n):

Sj is such that

() ()njjnjj sssscssssc ,...,...,min,...,,...,, ^
2,1s21

j
^=

.
 In other words, the Nash equilibrium is a
profile of strategies such that no player can
improve its cost by choosing another allocation
strategy.

 For this game of tasks allocation there is a
unique Nash equilibrium because the response
time functions of the machines are continuous,
convex and increasing [6].

 To determine a solution to our game of tasks
allocation, we consider an alternative definition
of the Nash equilibrium: "Nash equilibrium can
be defined as the profile of strategies for which
the allocation strategy of each task is a best
response to strategies of other tasks [5]". The
best response of a task provides a minimum
response time, assuming that the strategies of the
other tasks are kept fixed. This definition gives
us a method for determining the structure of the
Nash equilibrium.

 First, we determine the strategies of the best
responses sj for each task j, and then we find a
profile of strategies s=(s1,s2...sn) where sj is the
best response of the task j, for j = 1, 2...n.
We begin by determining the best response of the
task j, for j = 1, 2 ... n, assuming that the
strategies of other users are always kept fixed.

 Let ∑
≠=

−=
m

jkk
kkii

j
i Tsvv

,1
µ be the available

processing rate of the processor i as seen by the
task j. The problem of calculating the best
response strategy of the task j (j = 1 ...n) is
reduced to the problem of allocating a single job
on m machines having j

iv as processing rates,
that is to say, calculating the optimal allocation
strategy for this task. This can be translated into
the following optimization problem
(Best_Responsej):

)(min sc jjs

 under constraints:
sji ∈ [0, 1], i = 1, . . . , m,

 ∑
=

=
m

i
jis

1
1

 mivTs
n

k

j
ikki ,...,1,

1
=∑

=
pµ

 There are several algorithms for solving similar
optimization problems as in our case which are
based on Lagrange parameters. In [5.11], the
authors have addressed the problem of
optimization with the same objective function
but with different constraints. We draw on this
work to solve our optimization problem.

Theorem [14]: Assuming that the machines
are ranked in decreasing order of their available
processing rates ()j

n
jj vvv ≥≥≥ ...21 , the solution

sj of the optimization problem , Best Response, is
given by:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

∑

∑

=

=

jc

i

j
i

jc
i j

j
ij

i
j

i
j

v

Tv
vv

T

1

11 µ
 if

1≤i< cj
 0 if cj ≤ i ≤ m

where cj is the minimum index that verifies the

inequality:

∑

∑

=

=
−

≤
jc

k

j
k

jc

k
j

j
k

j
jc

v

Tv
v

1

1
µ

.

Example:

The following table shows the values of S1i
(i=1…4) if we apply this algorithm to allocate
one task of size 4U on four computers in the
following two cases:

1
1v 1

2v
1
3v 1

4v 11s 12s 13s 14s
10.0 8.0 6.0 4.0 0.627 0. 324 0.049 0
10.0 12.0 6.0 2.0 0.352 0.648 0 0

Table 3: The values of S1i (i=1…4) to allocate
one task of size 4U on 4 computers.

sji =

 Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

18

3. A DISTRIBUTED ALGORITHM FOR
TASKS ALLOCATION

 Based on the work presented in articles [5,11],
we describe a distributed algorithm to compute
the Nash equilibrium. For this and to characterize
this equilibrium, we proceed with a
generalization of this problem in the following
way. Instead of considering a task j, there will be
a generation source of tasks j. The source j will
produce the same tasks with the same size Tj.

 The idea of the algorithm is as follows. The
sources generate tasks in parallel for several
iterations. In each iteration, we measure the

standard L1 norm as∑
=

− −
m

j

l
j

l
j cc

1

)1(, which is the

sum of differences between the costs of source j
in iteration l and iteration l-1. We stop when we
obtain a difference less than a predefined error
threshold.

 The computation of the Nash equilibrium may
require some coordination between sources
(sources must coordinate among themselves to
obtain information on the load of each machine).
We use the following notations in addition to
those of the previous section:

←j the number of the source j;
←l the iteration number;

←)(l
js the strategy of the source j computed in

iteration l;
←)(l

jc execution time of the source j at iteration
l;
←ε the threshold error;

←norm the norm L1 at iteration l defined

as∑
=

− −
n

j

l
j

l
j cc

1

)1(;

()←msgjsend , sends the message msg to
source j;

()←msgjreceive , receives the message msg
from the source j;

 Each source j executes the following algorithm:

1- Initialisation :

;1
;0

;0

;0
)0(

)0(

←
←

←

←

norm
l

c

s

j

j

[]
[] ;1mod

;1mod)2(
;

;0

+=
+−←

←
←

njright
njleft

CONTINUEstate
sum

2- While (1) do

if (j=1) {source 1}
 if (0≠l)
 receive(left,(norm,l,state)) ;
 if (εpnorm)
 send(right,(norm,l,STOP)) ;
 exit;

;1
;0

+←
←
ll

sum

 else {others sources}
 receive(left,(sum,l,state)) ;
 if (state=STOP)

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−← ∑

≠=
µ

m

jkk
kkii

j
i Tsvv

,1

 if ()nj ≠ receive(right,(sum,l,STOP)) ;
 exit ;

 For mi ,...,1:= do

 Obtain j
iv by examining the queue

 of each machine
 ()j

j
m

j
j

l
j Tvvs ,,...,1

)(nseBest_Respo← ;

 Compute of)(l
jc ;

)()1(l
j

l
j ccsumsum −+← − ;

 send(right,(sum,l,CONTINUE)) ;
 endwhile

 Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

19

4. EXPERIMENTS RESULTS

a- Simulation Environment

The simulations are done using the programming
environment with message passing MPI
(Message Passing Interface) [15]. This
environment has a set of communications
functions that connect different nodes in the
system.
The simulation model consists of a collection of
computers interconnected through a
communications network and the tasks are
distributed according to the load balancing
scheme established.

The system is simulated as follows:
• 10 computers that are the sources generating

tasks so that the source j (computer j)
generates tasks Tj with the same size.

• 10 processing computers for receiving the
portion of the tasks according to the
allocation scheme.

b- Simulation Results

The algorithm runs several steps before
convergence to the desired allocation strategy as
follows.
In each iteration, the source computers
simultaneously send tasks to the processing
computers and calculate their cost times cj (s) (j
= 1 ... m) and the difference

l
j

l
j cc −−)1(, knowing that)(l

jc is the cost time

of source j in the Step l.

So that we can compute the norm ∑
=

− −
n

j

l
j

l
j cc

1

)1(

a standard coordination between different
sources is required as follows: each source j>1
sends the difference to its source at right.

The latter adds the value received from its source
at left with its own value and sends the sum to its
source at right. Source 1 is designated to
calculate the final sum. If this sum exceeds the
error threshold, we move to the next iteration.

With a threshold of 5% error, the algorithm
converges in step 16 with the following strategy
of allocation.

Source j

Sj0 Sj1 Sj2 Sj3 Sj4 Sj5 Sj6 Sj7 Sj8 Sj9 Somme

Source 0

0,7 0,3 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 1,08

Source 1

0,45 0,3 0,17 0,1 0,01 0,01 0,01 0,01 0,01 0,01 1,08

Source 2

0,33 0,26 0,2 0,13 0,07 0,05 0,01 0,01 0,01 0,01 1,08

Source 3

0,26 0,22 0,18 0,14 0,1 0,07 0,03 0,03 0,01 0,01 1,05

Source 4

0,22 0,19 0,16 0,14 0,11 0,09 0,06 0,04 0,02 0,01 1,04

Source 5

0,19 0,17 0,15 0,13 0,11 0,1 0,08 0,06 0,04 0,01 1,04

Source 6

0,17 0,15 0,14 0,12 0,11 0,1 0,08 0,07 0,05 0,01 1

Source 7

0,16 0,15 0,13 0,12 0,11 0,1 0,09 0,08 0,06 0,01 1,01

Source 8

0,15 0,14 0,13 0,12 0,11 0,1 0,09 0,08 0,07 0,01 1

Source 9

0,15 0,14 0,13 0,12 0,11 0,1 0,1 0,09 0,08 0,01 1,03

Table4 : The allocation strategy found Sji
(j=0…9 ; i=0…9) with 10 generating source
computers (Source) and 10 processing
computers.

The element of index ji (j = 1 ... m, i = 1 ... n) in
the table represents the portion of the task Tj sent
to the computer i. So each task is divided into n
portions and each portion is processed by a
computer. The last column of the table represents
the sum of portions for each task that is
approximately equal to 1.

 Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

20

In the following graph, we show the behavior of

the norm∑
=

− −
n

j

l
j

l
j cc

1

)1(according to the

iterations of the algorithm.

Graph1 : Representation of Norms according to
Iterations

The Norm converges in a decreasing way to the
error threshold (5%) according to iterations and
the convergence is clearly seen from iteration 8.

The Cost Times are represented in the following
table and their histogram representation is drawn
in the following graphic.

SJ S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
CJ 0,24 0,24 0,26 0,26 0,29 0,29 0,31 0,31 0,34 0,34

Table 5 : Cost tasks in seconds for each source
Sj (j=1…9)

We note that this allocation strategy leads to a
good load balancing of processing computers.

Cost Tasks (sec)

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

Sou
rce

 0

Sou
rce

 1

Sou
rce

 2

Sou
rce

 3

Sou
rce

 4

Sou
rce

 5

Sou
rce

 6

Sou
rce

 7

Sou
rce

 8

Sou
rce

 9

Graph 2: Costs tasks in seconds

5. CONCLUSION AND PERSPICTIVES

In this paper, we have completed and
implemented the general problem of allocating
tasks. The theoretical part of this work is
developed in [14] and here we focus our research
on practical aspects.
We have modelized this problem as non-
cooperative game between several players and
we find that the Nash equilibrium for this game
provides a good allocation of tasks for our
system.
We have proposed the structure of the Nash
equilibrium and on the basis of this structure, we
have described a distributed algorithm to
discover it.
We have implemented this algorithm by using
the MPI environment and a system of 10
computer sources that generate the tasks and 10
processing computers. The numerical results
show that the tasks allocation obtained leads to a
good load balancing of processing computers.
Several adjustments and extensions are possible
for this work on the Internet, parallel and
distributed systems also in computing grids.
Communication between tasks is overlooked in
this work; our next step will take into account
this constraint.

REFERENCES

[1] M. Osborne, “An Introduction to Game

Theory”, Oxford University Press, New
York, 2004

[2] J. Nash, “Non-cooperative games”, Ann.
Math. 54 (2) 286-295, 1951

[3] A. Czumaj, B.Vöcking, ”Tight Bounds for
Worst-Case Equilibrium”, ACM
Transactions on Algorithms, Vol. 3, N. 1,
Article 4, 2007

[4] A. Legrand, H. Renard, Y. Robert et F.
Vivien "Mapping and load-balancing
iterative computations on heterogenous
clusters with shared links", IEEE Trans.
Parallel and Distributed Systems, Vol. 15, N
6, 546-558, 2004

[5] D. Grosu, A.T. Chronopoulos,
“Noncooperative load balancing in
distributed systems”, J. of Parallel Distrib.
Comput. 65, 1022-1034, 2005

[6] A. Orda, R. Rom, N. Shimkin, "Competitive
routing in multiuser communication
networks", IEEE/ACM Trans. Networking 1
(5), 510-521, 1993

Norm (sec) / Iteration

 Journal of Theoretical and Applied Information Technology
15th November 2011. Vol. 33 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

21

[7] E. Altman, T. Bassar, T. Jimenez, N
Shimkin, "Routing in two parallel links:
game-theoric distributed algorithms", J.
Parallel Distributed Comput. 61 (9), 1367-
1381,

[8] T. Boulonge, E. Altman, O. Pourtallier, "On
the convergence to Nash equilibrium in
problems of distributed computing", Ann.
Oper. Res. 109 (1), 279-291, 2002

[9] D. G. Luenberger, "Linear and Nonlinear
Programming, Addison-Wesly", Reading,
MA, 1984

[10] T. Basar, G.L. Olsder, "Dynamic
noncooperative game Theory", SIAM,
Philadelphia, PA, 1998

[11] X. Tang, S. T. Shanson, "Optimizing Static
job scheduling in a network of
heterogeneous computers", in Proceeding of
the International Conference on Parallel
Processing, 373-382, 2000

[12] M. Zbakh, "Equilibrage de Nash dans le
problème d’allocation des tâches", in
Proceeding of RenPar’2009, Toulouse,
France, 2009

[13] O. Beaumont, H. Casanova, A. Legrand, Y.
Robert, Y. Yang, “Scheduling divisible
loads on star and tree networks :results and
open problems“, in IEEE Trans. Parallel and
Distributed System, 16(3): 207-218, 2005

[14] M. Zbakh, S. El Hajji, “Tasks Allocation
Problem as a non – cooperative game”, in
Journal of Theoretical and Applied
Information Technology, Vol. 16, N°.2, June
2010, pp 110-115

[15] W. Gropp, E. Lusk, D. Ashton, D. Buntinas,
R. Butler, A. Chan, R. Ross, R. Thakur, B.
Toonen, “MPICH2 User’s Guide, V1.0.3”,
November 2005

