
Journal of Theoretical and Applied Information Technology
31st October 2011. Vol. 32 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

128

HARDWARE BASED BINARY ARITHMETIC ENGINE

1N. SARANYA, 2 DHIRENDRA KUMAR TRIPATHI, 3DR. R. MUTHAIAH

1Assiciate System Engineer, IBM India Pvt., Ltd.,, Banglore, India-560066
2Asst. Prof., Department of Information and Technology, SASTRA University, Thanjavur, India-613401

3Assoc. Prof., Department of Information and Technology, SASTRA University, Thanjavur, India-613401
E-mail: saran11sastra@gmail.com , dkt@core.sastra.edu , sjamuthaiah@core.sastra.edu

ABSTRACT

Context Based Binary Arithmetic Coding (CBAC) is a part of JZ profile of Audio Video Coding Standard
(AVS).The goal of this paper is to present the efficient hardware based binary arithmetic coder which is the
main part of binarisation involved in CBAC of AVS. This paper explains about the efficient arithmetic
coding involved in the video transcoding. The major concerns of using JZ profile of AVS is movie
compression for high-density storage and relatively higher computational complexity can be tolerated at the
encoder side to provide higher video quality. This arithmetic coder avoids the slow multiplication, here the
traditional arithmetic calculation is transformed to software domain using log. The proposed arithmetic
engine will give high compression gain and an efficient coding design for handling the high resolution
video sequence. This is used for the effective pipelining process and increase the overall processing speed.
The implementation of arithmetic coder in CABAC (Context Adaptive Binary Arithmetic Coding)
architecture is satisfying the CBAC feature. The study of this paper is required to know about the process
of efficient AC(arithmetic coding) and the hardware based arithmetic engine in CBAC. The CBAC engine
is implemented on Xilinx Virtex-5 ML501 Board. The synthesis and simulation results are presented. The
proposed architecture can work with the 31.384MHz rate.

Keywords: AC,CBAC,CABAC,AVS,Videotranscoding,Binarisation,Qcoder

1. INTRODUCTION

The different types of techniques are used
for data compression applications and it has
different degrees of complexity. This type of
techniques uses some common process. This
follows the common processes of Numerical
Processing, Logical Processing, Source Modeling
and Entropy Coding[1]. At first the original data is
given as an input, then numerical processing takes
place which will have the processes like predictive
coding and linear transform for the images. Logical
Processing will change the data to a suitable form
for compression. The variation in the statistical
properties of data is given by source modeling. It is
responsible for the identified data contexts and the
statistics gathered. This makes the source model
accurate. The final process is entropy coding. This
is the process of representation of image in compact
form. In different entropy coding method,
arithmetic coding places the best vide in
effectiveness in compression and effectiveness.

 CBAC in AVS belongs to Q coder
family[2]. This belongs to the JZ profile of
AVS[3].It offers an average of 13% bit saving

compared with CABAC[4]. It adopts the simpler
binarisation method and the context selection
scheme. In addition to this, the traditional
multiplication is transformed to the logarithmic
domain. This produces the variation from CABAC.

2. CODING STAGES OF CABAC

Figure 1 shows the architecture for the
CABAC architecture.
1. Before the process of arithmetic coding, a non-
binary valued symbol is converted into binary
valued symbol.
2. The binary valued symbol is encoded by the
arithmetic coder before the transmission.
3. The probability model for the binary value of
symbol is given as a context model.
4. Depending on the recently coded symbol the
particular model is selected for coding process. It
finally stores the values as “1” or “0”.
5. Then the arithmetic coder will encode the binary
value of the selected model.
6. The selected context model is updated depending
on the actual coded value.

Journal of Theoretical and Applied Information Technology
31st October 2011. Vol. 32 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

129

Figure 1: CABAC Architecture

3. PURPOSE OF ARITHMETIC CODING

Arithmetic coding generates the non-block
codes when compared to the Variable Length
Coding. In this coding process the single arithmetic
code is assigned to the entire sequence of symbol.
Rounding errors are produced by Huffman coding,
hence it has the restriction in code length to
multiples of a bit. This deviation due to error is
much higher when compared to the inaccuracies of
arithmetic coding.

4. PRINCIPLE OF ARITHMETIC CODING

 The Principle of arithmetic coding
depends on the recursive subdivision of intervals.
Every binary symbol is assigned to the specific
context model, which is updated during the whole
coding process for the adaptive probability
estimation. First the interval is subdivided in to two
subintervals rLPS and rMPS. rLPS is the range
value belongs to LPS and rMPS is the range belong
to mps. PLPS is the probability estimation value of
LPS.
 By checking whether the given bin to be
encoded is MPS or LPS, the specific subinterval is
selected as the current new interval. This coding
process continuously updates two registers (i.e) R is
assign to the range of the interval and the code
Register C is assign to the lower value of interval.
 The arithmetic decoding process is the
reverse process of encoding first the context model
of bin value which is to be decoded is selected.
Then the bin value is decoded by the arithmetic
decoder engine. The context models are also
continuously updated during the whole decoding
process. This process is same as that of the
encoding engine. In this decoder arithmetic engine

the register range R which have the current interval
and the register offset which have the position of
input bit stream. If the binary value which is
decoded as MPS of LPS is decided by the position
of offset falls whether rLPS or rMPS range. These
2 registers are continuously updated.

5. PREVIOUS AC ENGINE

In CABAC[5], the arithmetic calculation
of rLPS and probability estimation updates are
estimated by using the look up table. This process
requires large memory and it has less coding
efficiency. The proposed method optimize the area
versus speed processing in following way. In oreder
to reduce the FPGA synthesized area at first a
limited number of probability estimation units are
implemented on hardware and they are repeatedly
used. This saves area as compared to full parallel
architecture for the probability estimation. The
second optimization is selected is implementation
of logarthimic engine using hardware multiplier.
This makes logarithmic calculation much faster
hence there will be overall increase in the speed
CABAC engine.

6. STEPS OF AC ENGINE

1. Values of rLPS and rMPS subintervals are
calculated.
2. Finite precision takes place during the whole
coding process using renormalization.
3. Probability estimation is updated adaptively.

 Step:1 rLPS and rMPS can be calculated
by
 rLPS =R * PLPS (1)
 rMPS =R – rLPS (2)
 or
 rMPS =R * PMPS (3)
 rLPS = R - rMPS (4)

Journal of Theoretical and Applied Information Technology
31st October 2011. Vol. 32 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

130

rLPS is assign to upper interval and rMPS is
assign to lower interval.

Step:2 At the time of encoding process, the register
R is left shifted to make the MSB of the new
interval R is always 1. At the time during decoding
process the range and offset values of registers are
left shifted to make the value always 1.
Renormalization process has the leading 1 detection
circuit and its responsible for the critical path delay.

Step:3 As the third step, the probability estimation
of binary source takes place. Here P is the
probability of symbol 1 and q is the probability of
symbol 0 and for the adjusting the adaptation speed
parameter N is used, then here pk & qk are the
probability estimation of 1 and 0 after the certain K
events, the probability estimation after K+1 event
is calculated b]
p

k+1=(N*pk) / N+1 (if 0 occurs) (5)

 qk+1=(N*qk) / N+1 (if 1 occurs) (6)
 If PLPS & PMPS are used for marking
probability of LPS and MPS, then can be written as

(if LPS occurs)
PMPS _ new = f *(PMPS_old) (7)

(if MPS occurs)
PLPS_new = f *(PLPS_old) (8)

7. HARDWARE BASED BINARY

ARITHMETIC ENGINE

 The Logarithm is used in CBAC of AVS
to transform the slow multiplication into addition
and subtraction. This hardware based Arithmetic
Engine is designed by using this steps.
The range value of logarithmic domain is needs to
be updated using the subtraction when most
probable symbol (MPS) occurs. The range of
subinterval is given as range and the offset position
is given as offset [6][7].

MPS
 Rang new = Range * pMPS (9)

 Offset new = Offset (10)
 By using log the above equation is transformed to

 Lg_Rangnew=Lg_Range –Lg_PMPS (11)
 Offsetnew = offset (12)

Here PMPS is the probability of MPS and Lg-x is
log value of x.

The value of logarithm domain is transformed to
the original domain when least probable symbol
occurs[1]

 LPS

Range new = Range - (PMPS * Range)
 = Range - rMPS (13)

Offset new = Offset + (Range*PMPS)
 = Offset + rMPS (14)
 rMPS gives the subinterval size associated to
MPS.
 u(0)
 rMPS
 PMPS

 rLPS Range

 rLPS

 l(0)
LPS

Figure 2: Range Interval

Then the Probability adaptive estimation process is
given by the equation[5]
 Initial Value: l(0)= 0 , u(0)= 1

l(0) is the initial value of LPS (ie) the least value of
lower interval and u(0) is the initial value of MPS
(ie) the greatest value of upper interval. This l(0)
and u(0) values are updated adaptively using the
formula given below
Interval Update:
 l(n)= l(n-1)+[u(n-1)-l(n-1)]Fx(x(n-1)) (15)

 u(n)= l(n-1)+[u(n-1)-l(n-1)]Fx(x(n)) (16)

During the process of renormalization, the
range value and offset value are left shifted to make
MSB to be 1. The difference in the number of bits
shifted between range and offset values are stored.
This is done for the consecutive decoding cycles.

8. IMPLEMENTATION AND RESULTS

This proposed Arithmetic Engine is
simulated and synthesized using XILINX 12.1 ISE
tool[8]. This is implemented using VHDL
language. For implementing Xilinx Virtex-5
ML501 Board is used[9].This arithmetic engine
operates at the frequency of 31.834MHz.The time
latency required by the output after the clock is
7.430ns.

Journal of Theoretical and Applied Information Technology
31st October 2011. Vol. 32 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

131

In order to synthesize the CABAC engine fixed
point binary number system is adopted. In this eight
bit binary system is used. In this case for example
.45 is converted into the .45X255≈116. The most
critical part of the CABAC engine is logarithmic
engine. In literature there are two popular way are
given to implement log engine in the hardware .
The first one is CORDIC based approach another is
the series approximation [10]. Though the CORDIC
based approach can be implemented with the less
FPGA resources however the major limitation is it
takes more time to calculate a Log value which will
be serious limitation in real time processing. The
second approach require more multipliers however
it is very fast as compared to CORDIC. Since
FPGA has many hardware multipliers available in
its fabric, hence second approach is chosen for
hardware implementation of logarithmic
engine.Using arithmetic engine the interval range
of upper limit and lower limit of input is retrieved
as an output .This interval updation takes place by
analyzing whether the input lies in LPS or MPS
range. The post layout simulation results are shown
in figure 3 to figure 9. Figure 3 shows the log Value
of the given 8 bit number. Figure 4 shows that
given input lies in the range of mps .Figure 5 and 6
shows further updation of the both lower and upper
interval of MPS. Figure 7 shows that given input
lies in the range of LPS. Figure 8and 9 shows
further updation of the both lower and upper
interval of LPS.
Table 1. DEVICE UTILISATION SUMMARY

LOGIC
UTILISATION

USED

AVAILABLE

%USED

Slice
Registers

212 13312 1%

4 I/P LUTs 373 26624 1%

FF pairs 140 26624 0%

Bonded IOBs 61 487 12%

 No. of

Multipliers

13 32 40%

Gclk 1 8 12%

9. CONCLUSION

 In this paper, we present the hardware
based Arithmetic Engine which combined both
original and logarithmic domain. This improves the
coding efficiency and increases the overall
processing speed. The device utilization
summary(table 1) gives the details about the

efficient use of the devices. From the whole block
of image, the sub block of image which is specified
can be efficiently found out by using the adaptive
updation in hardware based binary arithmetic
engine .This is useful to get the higher resolution
image.
In future this Arithmetic Engine can be designed
with the software and hardware co-design
approach. Further research about AC is currently
underway mainly targeting towards two directions.
1. To build more accurate statistical models for
source, which is important for coding gain. 2. To
explore cost-effective VLSI architectures of AC
codec. This arithmetic coding will be further
developed to overcome the challenge in process of
multi bin per cycle for the demand of encoding and
decoding of the high resolution picture. The use of
this hardware based binary arithmetic engine will
further increases the video quality with high
resolution.

REFERENCES

[1]. Amir Said, “Introduction to arithmetic Coding

and Practice,Imaging Systess” Laboratory HP
Laboratories Palo Alto,HPL-2004-76, April 21,
2004.

[2]. Study and comparison of H.264/MPEG4
part10 AVC main profile with AVS P2 Jizhun
profile p-p-t.

[3]. Arithmetic coding for data Compression Ian
H.Witten, Radford M.Neal and John G.Cleary
Junhao Zheng, WenGa DavidWu , DonXie
“An efficient VLSI architecture for CBAC of
AVS HDTV decoder”.

[4]. W.B.Pennebaker,J.L.Mitchell, “An overview of
the basic principles of the Q-Coder adaptive
binary arithmetic coder”, IBM Journal of
Research and Development 32(1988)717–726.

[5]. W.Yu,Y.He, Arithmetic Codec on Logarithm
Domain, Picture Coding Symposium,2006

[6]. .D.Marpe, H.Schwarz, T.Wiegand, “Context-
based adaptive binary arithmetic coding in the
H.264/AVC video compression standard”,
IEEE Transaction Circuits and Systems for
Video Technology 13 (2003) 620–636.

[7]. Xilinx:” Virtex-5 Family overview”
DS100(v5.0) February 6, 2009.

[8]. Xilinx:” ISIM User Guide” UG660(v11.3)
September 16, 2009.

[9]. Uwe Meyer- Baese , “Digital Signal
Processing with Field Programmable Gate
Arrays”,Springer,2007

[10].

Journal of Theoretical and Applied Information Technology
31st October 2011. Vol. 32 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

132

AUTHOR PROFILES:

N. SARANAYA received
the B.E. degree in electronics
& communication
engineering. She received her
M.Tech in VLSI Design form
SASTRA University,
Thanjavur, India. Currently
she is with the Tata
Consulatncy Services as

embedded system designer .Her interests include
VLSI based Arithmetic Coding, Image processing
and embedded system.

DHIRENDRA KUMAR
TRIPATHI received the B.E.
in electronics &
communication engineering
from UPTU, in 2005. He
completed his M.Tech. in
VLSI at NIT Trichy,INDIA.
Currently, he is an Assistant

Professor at SASTRA University,Thanjavur,India.
His interests are in MIMO, SDR and Coginitive
Radio.

Dr. R. MUTHAIAH received
the B.E. degree in electronics
& instrumentation
engineering from Annamalai
University, in 1989. He
received M.E Power
electronics & industrial
drives. He received the Ph.D.

degree in Image processing from SASTRA
University. Currently, he is a Associate professor at
School of computing in SASTRA University,
Thanjavur, India. His research interests include
VLSI based Image processing and Signal
processing.

Journal of Theoretical and Applied Information Technology
31st October 2011. Vol. 32 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

133

FIGURE 3 LOG VALUE OF THE INPUT

FIGURE 4 INPUT LIES IN RANGE OF MPS

FIGURE 5 UPDATION OF LOWER INTERVAL FOR MPS

FIGURE 6 UPDATION OF UPPER INTERVAL FOR LPS

Journal of Theoretical and Applied Information Technology
31st October 2011. Vol. 32 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

134

FIGURE 7 INPUT LIES IN RANGE OF LPS

FIGURE 8 UPDATION OF LOWER INTERVAL FOR MPS

FIGURE 9 UPDATION OF UPPER INTERVAL FOR MPS

