
Journal of Theoretical and Applied Information Technology 
15th October 2011. Vol. 32 No.1 

 © 2005 - 2011 JATIT & LLS. All rights reserved.                                                                                                                                      

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
55 

 

A NOVEL EMBEDDING SCHEME BASED ON WALSH 
HADAMARD TRANSFORM 

  
 

1 HOUDA JOUHARI, 2 EL MAMOUN SOUIDI 
1 Deparetement of Computer Science, Faculty of Sciences, University of Mohamed v, Rabat-Morocco  
2 Deparetement of Computer Science, Faculty of Sciences, University of Mohamed v, Rabat-Morocco  

E-mail:  jouharihouda @yahoo.fr, souidi@fsr.ac.ma 

 
 

ABSTRACT 
 

The purpose of steganography is to send secret message by embedding data into some innocuous cover 
objects such as digital images. The data hiding method used until now is the syndrome coding method. 
In this paper, we present an  improved data hiding scheme defined by boolean functions. Using some 
properties of Boolean functions we construct a new steganographic scheme in which we can hide more 
information compared to the scheme based on syndrome coding. 
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1. INTRODUCTION  
 
 Nowadays the security of communication means 
not only secrecy but also concealment, so 
steganography is becoming more and more popular 
in the network communication. Steganography is 
about how to send secret message covertly by 
embedding it into some innocuous cover-objects 
such as digital images, audios or videos.  
 
 To reduce possibility of being detected by a third 
party, it is desirable to increase the embedding 
efficiency, which is the average number of message 
bits carried by one embedding change in the cover 
data. This may be accomplished by using an 
encoding technique proposed by Crandall [1] who 
called it matrix encoding. As a typical application 
of linear covering codes, matrix encoding was used 
in the well-known steganographic algorithm F5 [2]. 
The relationship between covering codes [3, 
Section 14.2] and steganography were studied in 
[4], and some covering codes used in 
steganography with good performance are reported 
in [5]. Matrix encoding was also used in large 
payload applications [6]. 
 
 In this paper, we show that the construction using 
non linear extracting functions is of great interest to 
us because it can give us a steganographic schemes 
with higher embedding efficiency than linear 

extracting functions currently used by 
steganographers.  
 This paper is organized as follows. In section 2 
the connection between coding theory and 
steganography is recalled. In Section 3, we present 
some properties of Boolean functions. Then, we 
introduce in Section 4 our new steganographic 
scheme based on Boolean functions. An example is 
presented in Section 5, when we propose to focus 
on a particular family of error correcting codes : the 
first-order binary Reed-Muller codes (  (1, m)) 
and Boolean functions.  
 
 Finally, in Section 6 we explicitly show how our 
proposed scheme can improve the embedding 
efficiency. 
 
2. STEGANOGRAPHY AND ERROR 

CORRECTING CODE 
 

    For concreteness, we assume that the cover 
object used for communication is a digital images 
whose pixels values are integers. Let us assume that 
the embedding proceeds by blocks. The cover 
image is divided into disjoint segments of N pixels. 

Let  denote the Galois field with two elements 0 

and 1, and  denote the set of all N-tuples of 
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elements in the field . Here we can view the bit-

string x = (x1,…, xN) as element of the field . 
  
    To construct a steganographic scheme that can 
embed r bits in a sequences of N bits using at most 
D embedding changes, we construct a suitable 
function Ext (Extracting function), which allows us 
to extract r bits of the secret message. This means 
that for given  (segment of cover image) 

and  (segment of secret message) we want 
to replace x by y such that :  
 

Ext(y) = M. 
 

    The number of coordinates where the entries of 
two strings x, y differ is a basic notion of coding 
theory. It is the Hamming distance d(x, y). 
 
    An example of a covering function constructed 
from a linear code, can be described in terms of 
parity check matrix H (Syndrome Coding): 
 

Ext(y) = yHT  
 

    The behavior of a steganographic algorithm can 
be sket-ched in the following way : a cover-data x 
is modified into y to embed a message M, y is 
sometimes called the stego-data. Here, we assume 
that the detectability of the embedding increases 
with the number of bits that must be changed to 
transform x to y.  
 
Syndrome coding deals with this number of 
changes. The key idea is to use some syndrome 
computation to embed the message into the cover-
data. In fact, this scheme uses a linear code C, more 
precisely its cosets, to hide M. A word y hides the 
message M if y lies in a particular coset of C, 
related to M. Since cosets are uniquely identified by 
the so called syndromes, embedding/hiding consists 
exactly in searching y with syndrome M, close 
enough to x. 
 
    We now describe properly the syndrome coding 
scheme, and its inherent problems. We are looking 
for two mappings [7], embedding Emb and 
extraction Ext, such that :       
 

 
 

Equation 1 means that we want to recover the 
message in all cases ; Equation 2 means that we 
authorize the modification of at most D coordinates 
in the vector x. 
 
    Let C be a linear binary code of length N, 
dimension k and parity check matrix H.  

That is,  is a vector 

subspace of   of dimension k. The syndrome of a 
vector y, with respect to the code C, is the row 
vector  y.Ht of length (N – k). 
    Let ρ be the covering radius of C. It is quite easy 
to show that the scheme enables to embed messages 
of length N-k in a cover-data of length N, while 
modifying at most D (≤ ρ) bits of the cover-data. 
 
    The scheme is defined after [11] by: 
 

Emb(x, M) = x + e = y                            (3) 
 

Ext(y) = y.Ht = M                                  (4) 
 

where e is the smallest element of weight less than 
or equal to ρ such that  e.Ht = M − x.Ht. Remark 
that effective computation of e is the complete 
syndrome decoding problem, which is a hard 
problem. 
 

    The parameter  represents the (worst) 
embedding efficiency, that is, the number of 
embedded symbols per embedding changes in the 
worst case. We use the concept of embedding 
efficiency to quantify how effectively a given 
algorithm embeds data. There is evidence that 
schemes with low embedding efficiency offer 
worse security than schemes with higher efficiency. 
 
3. BOOLEAN FUNCTIONS 
 
    We recall definition and some properties of 
Boolean functions in relationship with the 
definition of Reed Muller codes. We express 

elements of  as (it is 
conventional).  
 
 A Boolean function f in m variables is a mapping 

from   into . It can be uniquely represented 
by its truth table (TT). 

Definition 1: Let f :   → . We call a truth 
table of f, the set : 
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We mean by the support of a function f, the set :  
 

 
and the weight is the cardinal's support : 

 
    Analogously, the distance between two functions 
is computed by considering the distance between 
the corresponding TTs. Thereafter, we will denote 
the vector (f (0), f (1), …, f (2m - 1)) by  f. 
 
3.1 FOURIER TRANSFORM 

    The Fourier transform, applied to Boolean 
functions, is a very powerful way to explore 
different properties of these objects, for example : 
the existence of algorithms calculating the fast 
Fourier transform (FFT) is used to decode 
effectively Reed Muller codes [10]. 
 

  Definition 2: Let  f :   →  be a Boolean 

function. Its Fourier transform is  

defined by: 
 

 
 

where , is the scalar product. 
We can show by induction on m that  
 

 
 
where δ0 is the Dirac function defined by : 
 

 
 
3.2 WALSH-HADAMARD TRANSFORM     

    The Walsh-Hadamard transform (WHT) of a 
Boolean function  f  is a real-valued function 

defined for all v in   as the Fourier transform of 

its sign function    : 
 

 

-  represents the correlation of the sign 
function of  f with  sign function of  linear 
functions. 
-The Walsh-Hadamard spectrum 

is between -2m and 2m. 

3.3 WHT AND  (1, m) CODES 

   The Reed-Muller code  (1, m) of order 1 is a 
subspace of dimension  k = m + 1 which consists of 
affine functions. Its minimum distance is  d = 2m -1. 

So this code can correct t errors where  

t = = 2m-2 -1. Hereafter we describe the 
encoding and decoding of  (1, m) codes [9]. 
 
ENCODING: 
 
Let f be a codeword. We can write f  as f(x) = u0+ 
<u, x>, where  and  . 
 
    Consequently all Walsh-Hadamard coefficients 
are zero except the one of index u: 
 

 
 
DECODING: 
 

1. Having received a word , we compute de 
Walsh-Hadamard spectrum 

 
 

2. We locate the  such that   
is maximal. This gives the coefficients u1, 
u2, …, um of TT of the function f. 
 

3. If   > 0 then u0 = 0, else u0 = 1. 
 
4.  NEW STEGANOGRAPHIC SCHEME 

 
Our proposed steganographic scheme is based on 
the Walsh-Hadamard transform. Let  be 
aninteger given by   

where  such that  

is the binary 
representation of  . 
 
    We start with a binary vector  
 

f = (f(0), f(1), …, f(2m - 1)) 
 

of length 2m where f  is an affine Boolean function 
in m variables and M = (M0, …, M2

m
 - 1) a message of 

length n. Our goal is to find a sequence  
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which differs from f at most in D positions and the 

extraction of  gives M, that is Ext ( ) = M. 
 
    We will take here as an extracting function the 
absolute value of Walsh-Hadamard transform. 
 

 

where  means the absolute value of each 
component  

 
for all   

 

 
 

    Knowing that for any Boolean function, we have 

 then: 
 

 
 

where  is the Fourier 
transform of g in . 
 
Our steganographic scheme is then defined as : 
 

 
 

with where  is the 
Hamming weight. When D is equal to the covering 
radius of the linear error correcting code, such a 

sequence  always exists. 
 
4.1 FRAMEWORK OF OUR METHOD 

Flip pattern contains the location information where 
bits are flipped by data hiding. Assume that: 

 
Based on this location information, the relation 

between M and  can be expressed as follows: 
 

 

So 

. 

We know that  is divisible by 2, in fact: 

 
 

But for   be even, we must take 

in   whose binary representation has the 
form: 
 

 

where . 
 
4.2 NEW EMBEDDING SCHEME 

    Inputs   f = (f(0), f(1), …, f(2m - 1))  is a block of               
cover image of length 2m bits and a message  
 

 
 
of length (m-1)2m bits. 
 

    Outputs  ,stego-data 

such that  . 
 

1) Set M = (M0, …, M2
m

-1) where, for each  : 

 
then, we have: 
 

 
 

2) We compute  for all . 

3) Compute the differences, for all  

 
to construct e, we must take  such 
that : 

 

 
 

4) From the spectrum  we compute 
the inverse Fourier transform, which gives e, that is 
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5) Finally we set  (return ). 
 
 
EXTRACTION ALGORITHM 

 

For a received word , we compute for all : 
 

  
 
so    then the message hidden is: 
 

 
 
 
5.  EXAMPLE 
 
We consider the first-order Reed-Muller codes. 
These codes have parameters [N = 2m, k = m + 1] 

and covering radius , if m is even 
[13]. For m odd it is only known in general that: 
 

 
 

For m = 3, let  f = (00101011) be a sequence of 
length 8 (= 23) bits and a message to be hidden of 
length 16 (=(3-1)23) bits. 
 

 
 
5.1  EMBEDDING 

1) Set M = (2, 2, 2, 2, 6, 2, 2, 2), such as: 
 

 
 

2) We compute,  

for all  

 

 
 
We have  

 

then 
 

 
 

 
 

So 

 
 

3)  
then, set  

ê= (1, -1, 1, -1, -1, 1, -1, 1) 
 
so   e = (0, 0, 0, 0, 0, 1, 0, 0), such that: 

 
 
4) Finally we set = (0, 0, 1, 0, 1, 1, 1, 1) 
 
5.2 EXTRACTING 

For a received word  = (0, 0, 1, 0, 1, 1, 1, 1), we 

compute   with 
 

 
 

 
 
so 

 
and 

M = = (2, 2, 2, 2, 6, 2, 2, 2) 
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Then 

 
Finally we get, 
 

 
 

We can see that the proposed method enable us to 
hide a sequence of 16 bits in sequence of 8 bits, 
compared to the syndrome coding method that  
enable us to hide just 4 bits in a sequence of 8 bits. 
The efficiency is improved by employing this novel 
method. 
 
6. CONCLUSION 
 
Using the method of syndrome for Reed-Muller 
codes  (1, m) of length N = 2m, dimension k = 
m + 1 and of a covering radius ρ, we can hide N - k 
= (2m - m - 1) bits in a sequence of length 2m bits. 
By applying our method based on Boolean 
functions and non-linear extracting function we can 
hide (m - 1)2m bits in sequences of length 2m bits. 
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