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ABSTRACT 
 

We present a practical algorithm for camera self-calibration dealing with varying parameters. 
Given a projective reconstruction, we retrieve the calibration matrices for each frame by 
minimizing a non-linear least square. We firstly start the minimization procedure by a stage of 
initialization to get a first estimation of the focal lengths, then, we start the estimation of the 
camera intrinsic parameters in a multistage algorithm, in each stage a parameter is estimated 
assuming some constraints on the other parameters. In the final stage a refinement of all 
parameters is done at once to allow them to vary freely. The robustness and accuracy of the 
algorithm are shown in the experiments on both synthetic and real data. 
Keywords: Camera Self-Calibration, Multistage Algorithm, Varying Intrinsic Parameters, Least Square 

Minimization 
 
1. INTRODUCTION: 

 
During last few years, digital cameras 

became omnipresent because of their low costs 
giving an easy access to video sequences to 
everybody. Nowadays, the areas of application of 
cameras are more and more large: Medical 
imaging, Virtual visiting, Cinema, Robotics, 
Artificial vision … for many applications based 
on a 3d reconstruction of the scene, as a matter 
of fact, camera self-calibration is an essential 
step for this kind of reconstructions. 

More generally, we can talk about the 
Structure-From-Motion (SFM) problem, which 
consists on computing a metric reconstruction of 
a camera from a projective one; it is a 
fundamental problem in computer vision. The 
numerous studies done in recent decades have 
led to a good established formulations and a lots 
of solution algorithms. A key finding is that a 
projective reconstruction can be calculated from 

two (or more)   uncalibrated images, provided 
that neither the camera nor the points lie on a 
critical surface. The desired metric 
reconstruction is obtained by applying a 
homography to rectify the projective 
reconstruction. Calculate the homography from 
constraints on the camera parameters is a self-
calibration problem and is equivalent to find the 
unknown intrinsic parameters of the camera. 

In the literature, three main approaches are 
distinguished : (i) those based on Kruppa's 
equations [13, 3], historically, this are considered 
as the first self-calibration method, they require 
the epipolar geometry of each pair of views and 
consist of two independent equations in the 
elements of the image of the absolute conic (ii) 
those using a stratified approach, based on the 
affine rectification of  a projective 
reconstruction, and finds linearly a  
transformation "affine-metric" , The first step for 
this kind of algorithms is solved using the 
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modulus constraint [7] or by an exhaustive 
search for the plane at infinity [9], the 
subsequent determination of the calibration 
matrix is then relatively simple because there 
exist a linear solution (iii) those making a direct 
calculation of the homography to rectify the 
reconstruction from "projective-to-metric" 
[2,10,11,15,27].Triggs [11] introduced  a 
practical algorithm using the absolute dual 
quadric where embedded the plane at infinity and 
the intrinsic parameters of the camera in a 
compact way. This model has been used in [10] 
to introduce non-linear and linear algorithms to 
deal with the case of varying intrinsic 
parameters. 

Concerning algorithms trying to resolve the 
problem of camera self-calibration with varying 
parameters, based on the absolute dual quadric 
[8, 27], most of them try to minimize a non- 
linear cost function at once using only one 
initialization stage. This is a real drawback 
because the minimization procedure critically 
depends on the quality of the initialization step, 
if isn’t considered to be optimal, the algorithm 
may converge to a local minimum. 

In this paper, we study the problem of self-
calibration for a camera with varying intrinsic 
parameters using the absolute dual quadric 
introduced in computer vision by Triggs [11]. 
Specifically, this work is an extension of the 
great work done by Pollefeys in [10].  

After the formulation of a cost function to be 
minimized. We start the minimization procedure 
by an initialization step; this is done by setting 
the camera projection matrix for the first frame 
to unit to get an initial solution. Once done, we 
propose our main contribution which consists on 
using the initial solution, computed in the 
initialization stage, in a multistage algorithm to 
retrieve the intrinsic parameters one by one and 
finally refine all of them at once. The refinement 
procedure continues till getting an optimal 
solution for the camera calibration matrix. 

This paper is organized as follows: section 2 
presents the background and definitions of the 
necessary parameters for camera self-calibration 
and how the projective reconstruction is 

obtained. Then, in section 3 we formulate the 
self-calibration equations to be minimized in 
section 4 where we present the multistage 
algorithm, a test of the proposed algorithm is 
shown in the experiments in section 5 and 
finally, conclusion is in section 6. 
 
2. BACKGROUND: 

 
2.1 Notations 
In this paper we will use the following 

notations: an entity L in the Euclidean frame will 
be note with a subscript E: L, a 3D world points 
X will be denoted by a homogeneous 4-vector 
ሺX, Y, Z, 1ሻ and a2D image points x by 
homogeneous 3-vector ሺx, y, 1ሻ. Suppose a 
camera observing a scene composed of 3Dpoints 
X୨, the perspective projection of the scene points 
into the image plane is given by (figure 1). 

Mathematically, we express this projection 
as follow: 

x୧୨  ؆  P୧X୨;  i ൌ  1, . . . , m, j ൌ  1, . . . , n,(1)  
 

 
 

Figure 1: the perspective projection of the 
scene into the image plane 

 
Where:P୧, i ൌ  1, . . . , m, are the Euclidean 

cameras parameterized as 3 ൈ  4 matrices: 
 
P୧  ൌ  K୧ሺR୧| t୧ሻ, where  

K୧  ൌ ൭
f୶ s u
0 f୷ v୭
0 0 1

൱is the camera 

calibration matrix with: f୶ and f୷ are the focal  
lengths, r ൌ ౮

౯
  is the aspect ratio, s is the image 
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skew and ሺu , v ሻ are the image coordinates of 
the principal point 

R୧is the 3 ൈ  3 rotation matrix and t୧ is 
the3 ൈ  1 translation matrix. The above equality 
(1) holds up to a scale factor. Then, a projective 
reconstruction can be computed as a set of 
cameras P୧, i ൌ  1, . . . , m and a set of points X୨ , 
j ൌ  1, . . . , n satisfying the following equalities: 

 
λ୧୨xij ൌ  P୧X୨;  i ൌ  1, . . . , m, j ൌ  1, . . . , n. (2)  
 

Where λ୧୨ is the projective depth, to be 
computed during the projective reconstruction 
step. 

From (1) and (2), one can see that the 
projective reconstruction is related to the 
Euclidean one by an arbitrary 4×4 homography: 

 
P୧  ൌ P୧Hିଵ , i ൌ  1, . . . , m, 

       X୨  ൌ  HX୨ , j ൌ  1, . . . , n. 
 
2.2 Projective reconstruction 
 
Step 1: Feature detection and matching: We 

used the following Harriscorners detector [17] to 
detect corners in each frame of the video 
sequence: 

ܩ ൌ ቌ
ቀడூ

డ௨
ቁ

ଶ
ቀడூ

డ௨
ቁ ቀడூ

డ௩
ቁ

ቀడூ
డ௨

ቁ ቀడூ
డ௩

ቁ ቀడூ
డ௩

ቁ
ଶ ቍ               

(4) 

Where ܫ is the pixel intensity, ቀడூ
డ௨

ቁ and 

ቀడூ
డ௩

ቁ are its respective derivative in the u and v 

directions 

To detect corners in a frame from the video 
sequence, Harris uses a variable r for which the 
value is superior to zero in the case of a corner; 
its value is given by: 

r ൌ  detሺGሻ െ γ ሺtraceሺGሻሻ(5) 
 
With γ = 0.04 (fixed by Harris based on the 
experiments) 

Step 2: Matching features: The above 
detected features (corners in this case) have been 
matched with the other features from the video 
sequence using the Zero mean Normalized Cross 
Correlation ZNCC [20][23]:  

ZNCC൫m୧, m୨൯ ൌ ∑ ୶୷

ට∑ ୶
మ ∑ ୷

మ


(6) 

Where m୧ and m୨ are two points detected by 
Harris Corner Detector in the previous step from 
two images i and j of the video sequence. 

x୬ ൌ Iሺmi  nሻ െ Iҧሺmiሻ 

y୬ ൌ I′ሺmj  nሻ െ Iҧ′ሺmjሻ 

IҧሺmiሻandIҧ′ሺmjሻ are means of pixel luminance on 
a 11×11 (experimentally, this choice gives the 
best results) window centered respectively in m୧ 
and m୨. 

Step 3: Fundamental matrix: The 
fundamental matrix has been used to reject the 
outliers features detected in the previous step; we 
used the 8-point algorithm [3] in a RANSAC 
framework. A good matching couple must 
satisfy: 

݉
் ൈ ܨ ൈ ݉ ൌ 0(8) 

Step 4: Iterative projective factorization: the 
selected matched features from the previous 
steps had been used as an input data for an 
iterative algorithm to get a projective 
reconstruction. We used the robust algorithm 
CIESTA [16] to retrieve the projective depths, 
the camera projection matricesP୧ and the 
projective structure X୨. 

3. CAMERA SELF-CALIBRATION 
EQUATIONS: 
 
3.1 problem formulation 
 
Giventhe projective reconstruction ሺP୧, X୨ሻ, 

computed in the previous section, the purpose of 
self-calibration is to estimate the best 
homographyH that upgrades the projective 
reconstruction to a metric one. This is done 
through the search of the camera intrinsic 
parameters, once they are retrieved, the 
homography H can be computed linearily. 

(3)

(7)
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The absolute conic: 

It’s well known in multiple view geometry 
that two entities stays invariant in Euclidean 
space when the camera undergoes a rigid 
transformation, the first one is the plane at 
infinity π∞ (used to compute the affine 
calibration when using a stratified self-
calibration algorithm [9]) and the second one is 
the absolute conicω which is embedded in π∞. 
Metric measurements are possible if both of 
those entities had been localized. 

If the camera undergoes a rigid 
transformation and looking at a static scene, only 
one conic will be enough for camera self-
calibration, because its relative position towards 
the cameras stays invariant [3] 

The Absolute Dual Quadric: 

The Absolute Dual Quadric Q* is a 
degenerate dual quadric represented 
mathematically by a 4 ൈ 4 rank 3 homogenous 
matrix, its importance for camera self-calibration 
comes from the fact that it encodes both the 
plane et infinityߨ∞ and the absolute conic߱: 

 
߱

כ ൌ ܭܭ
் ؆ ܲܳ∞כ ܲ

்(9) 
 
ܳ∞

כ is the Absolute Quadric and  ߱
 is the Dual כ

Image Absolute Conic (DIAC) 

It follows that ܳ∞
כ projects to the dual image 

absolute conic: 

߱
כ ൌ ܭܭ

்(10)Given (9), constraints on 
ω୧

כ ൌ K୧K୧
 can be translated into constraints on 

Q∞
כ  using the projection matrices computed 

previously, thus Q∞
כ  can be computed in the 

projective reconstruction using constraints 
onK୧.We recommend the reference [3] (section 
19.3 p-462) for a thorough treatment of this 
operation. 

If we have enough constraints, we need only 
one quadric to satisfy all of them: it’s the 
absolute quadric; in this case metric 
measurements are possible and ܳ∞

כ  will be 
brought to its canonical form: 

ܳா∞
כ ൌ ቀܫଷൈଷ 0

0 0ቁ(11) 

Equation (9) can be used to retrieve metric 
measurements from a given projective 
reconstruction, however Q∞

כ should be 
parameterized in a manner to enforce the 
constraints on K୧, an easy way to do this is by 
using a minimum parameterization of Q∞

כ , i.e. we 
put ሺQ∞

כ ሻଷଷ = 1 and compute ሺQ∞
כ ሻସସusing the 

rank 3 constraint.  

ܳ∞
כ ൌ ൬ ்ܭܭ െ்ܭܭ

െ்ܭܭ் ்ܭܭ்
൰(12) 

Where  defines the position of the plane at 
infinity ߨ∞  ൌ  ሺ1   ’ሻ’ 

Using the above formulation ofܳ∞
כ , camera 

intrinsic parameters can be extracted by 
minimizing the following criterion: 

min
∑ ฯ 



ฮ
ฮూ

െ ୕∞
כ 



ฮ୕∞
כ 

ฮూ
ฯ



ଶ
୬
୧ୀଵ (13) 

Both elements in (13) should be normalized to 
eliminate the scale factor in equation (9) 

Equation (13) is a nonlinear least square that 
requires an important stage of initialization, to do 
this, we will choose the first image center to be 
centered with the world coordinate frame, in this 
case we have: ଵܲ  ൌ  ሺ0| ܫሻ. Using this 
formulation the equation for the first view will be 
perfectly satisfied, unfortunately, the noise has to 
be spread over all frames of the sequence, for this 
reason we propose to use this parameterization as 
an initial guess for a multistage algorithm to 
estimate the intrinsic parameters one by one: 

4. THE MULTISTAGE ALGORITHM: 
 
Iteration one: Initial estimation of the focal 
length  

We will start our self-calibration algorithm by 
an initial estimation of the focal length, to do 
this, equation (13) will be minimized using the 
following approximations: assuming a camera 
with zero skew and the principal point in the 
image center: 

ݏ ൌ 0 and ሺݑ, ሻݒ  ൌ  ሺݑ,   .ሻݒ

We will also assume a unit aspect ratio, thus 
we still have only one unknown parameter, i.e. 
the focal length.  

Iteration 2: Estimation of the aspect ratio 

The solution obtained in the first iteration will 
be used as an initial input to calibrate the aspect 
ratio, Further on; we will assume a camera with 
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zero skew and a principal point at the image 
center. So we still have two unknown 
parameters, namely the two focal lengths. 
Equation (13) will be minimized using those 
constraints to calibrate the aspect ratio ݎ ൌ ೣ


. 

Iteration 3: Estimation of the principal point 

In this iteration we will estimate the coordinate 
of the principal point. Till now, the principal 
point corresponds to the image center, to refine 
it, we will use the output ܭଶ from the previous 
iteration as an initial guess to minimize (13) 
assuming only zero skew, consequently, three 
parameters are allowed to vary, i.e. the two focal 
lengths and the principal point.  

Iteration 4: Re-estimation of the focal lengths 

It’s well known in computer vision, mainly in 
camera self-calibration and 3D reconstruction, 
that the focal lengths had the major impact on the 

reconstruction procedure. We will use a similar 
procedure to iteration 1 for a new refinement of 
the focal lengths. The output Kଷ from the 
previous step will be used as an initial guess for 
the minimization of (13). 

Iteration 5: Refinement of all camera intrinsic 
parameters. 

In this final step, we will use the output from 
iteration 4 to refine all parameters at once 
assuming only zero skew (we can enforce the 
skew to be different from zero, but this has no 
impact on the calibration procedure because 
almost actual cameras had no skew and it has 
been shown in [3]that it doesn’t create serious 
error, beside this, it’s easy to minimize our cost 
function in a four dimensional space than in a 
five dimensional one). 

 

Iteration Intrinsic parameters 
to be estimated 

Assumptions Output Calibration Matrix 

1 The focal length  ݏ ൌ 0,  
ሺݑ, ሻݒ ൌ ሺݑ,  .ሻݒ

ݎ ൌ ௫݂

௬݂
ൌ 1 

ଵܭ ൌ ቌ
ሚ݂௫

ሺሻ 0 ݑ

0 ሚ݂௫
ሺሻ ݒ

0 0 1
ቍ 

2 The aspect ratio ݏ ൌ 0,  
ሺݑ, ሻݒ ൌ ሺݑ,  .ሻݒ
Use ܭଵ as initial guess 
 

ଶܭ ൌ ቌ
ሚ݂௫

ሺଵሻ 0 ݑ

0 ሚ݂௬
ሺଵሻ ݒ

0 0 1

ቍ 

3 The principal point ݏ ൌ 0 
Use ܭଶ as initial guess ܭଷ ൌ ቌ

ሚ݂௫
ሺଶሻ 0 ݑ

ሺሻ

0 ሚ݂௬
ሺଶሻ ݒ

ሺሻ

0 0 1

ቍ 

4 The focal lengths ௫݂ 
and ௬݂ 

ݏ ൌ 0 
Use ܭଷ as initial guess ܭସ ൌ ቌ

ሚ݂௫
ሺଷሻ 0 ݑ

ሺଵሻ

0 ሚ݂௬
ሺଷሻ ݒ

ሺଵሻ

0 0 1

ቍ 

5 Refinement of all 
parameters 

ݏ ൌ 0 
Use ܭସ as initial guess ܭହ ൌ ቌ

ሚ݂௫
ሺସሻ 0 ݑ

ሺଶሻ

0 ሚ݂௬
ሺସሻ ݒ

ሺଶሻ

0 0 1

ቍ 

Table 4.1 Algorithm outline 
 
 
5. EXPERIMENTATIONS 

 
The proposed method was tested on a 

number of synthetic and real scenes and has 
given similar results; we will present here the 
results obtained from 2 images sequences. First 
we used a set of images of a checkerboard 
pattern [25] which we considered as a synthetic 

data for the test of the algorithm. Seconde we 
used a set of images of a real fixed scene [24] to 
confirm the good results obtained using the 
checkerboard pattern and to demonstrate the 
performances of the proposed algorithm. 

5.1 Synthetic Data 
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We used a set of images of a checkerboard 
pattern [25] to test the algorithm. 4 images of the 
sequence are represented here (figure 5.1) with 
the corresponding calibration matrices in each 
iteration of the algorithm (Table 5.1). 
 

 
          Image 1                           Image 2 
 

 
          Image 3                         Image 4 

 
Figure 5.1: the 1st four checkerboard pattern 

images used for the test of the algorithm 
 
5.2 Real Data: 

 
The algorithm was tested on many real images. 
We will report the results obtained from a set of 
images of a fixed rigid scene, 4 of them are 
represented in fugure 5.2 and the resulting 
calibration matrix in each iteration of the 
algorithm in Table 5.2. 
 

Firstly, a projective reconstruction has been 
performed using the image correspondences 
obtained from the detected corners. As 
mentioned before (section 2.2) we used the 
robust algorithm CIESTA to retrieve the 
projective structure (Camera matrices and 3D 
scene points in the projective space). 

Then, we used our algorithm to retrieve the 
Calibration matrices for each camera. We will 
present here (table 5.2) the result obtained in 
each iteration of the algorithm for the 1st 4 
images. 

 
 

 

 
            Image 1                                Image 2 
 

 
             Image 3                               Image 4 
 
Figure 5.2: the 1st four real  images used for the 

test of the algorithm 
 
The final  obtained value of the focal 

lengths and the principal point coordinates using 
the real sequence are represented in table 5.3 

 
 ௫݂ ௬݂ ݑ ݒ 
Frame 1 862 683 33.42 87.30 
Frame 2 817 691 82.46 64.52 
Frame 3 796 599 61.33 9.5 
Frame 4 787 644 4.83 -5.9 
Frame 5 825 732 25.4 5.2 
Frame 6 780 650 5.6 -12.5 
Frame 7 805 690 32.6 25.0 
Frame 8 886 750 42.8 20.6 
 

Table 5.3: the recovered focal lengths and 
principal point coordinates for 8 images from the 

sequence 
 
Focal length relative error: 
 
We used the following equation to compute the 
focal length relative error: 
 

௫݂  ൌ ሺ ௫݂ െ ௫݂௧ሻ/ ௫݂௧ 
 
Where ௫݂ is the computed focal length value and 

௫݂௧ is the ground truth focal length value. Figure 
5.3 shows the obtained results for a set of 8 
images.  
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Figure 5.3: Focal length ௫݂ relative error for 8 
images from the sequence 

 
As shown on figure 5.3, the relative error is very 
small and approximately the same for both 
synthetic and real data, thing that demonstrate 
the accuracy and robustness of the proposed 
method compared to other standard algorithms. 
 
6. CONCLUSION AND PERSPECTIVES 

 
In this paper we presented a new algorithm for 
camera self-calibration dealing with the case of 
varying parameters. Our algorithm allow each 
parameter to vary freely, it consist on minimizing 
a nonlinear least square defined by the projection 
of the absolute quadric. The obtained projcetion 
is the Dual Image of the Absolute Conic DIAC 
which is directly related to the camera intrinsique 
parameters. The proposed algorithm starts with a 
initialization stage to get a first estimate of the 
focal length. Then, all the other intrinsic 
parameters are estimated and refined in a 
multistage iterative scheme. The experiments on 
both synthetic and real scenes show the 
robustness and accuracy of the proposed method.  
New ways have to be explored to improve the 
quality of our algorithm. First, in the projective 
reconstruction step, we used the first two frames 
to initialize the projective structure in the 
CIESTA algorithm; this maybe inaccurate for 
some special motions(small inter-view motion 
for example). To get more reliable results we 
need to choose two images with large motion 
(translation and rotation) between them, to do 
this, a criterion to choose the images has to be 
adopted. Second, it’s also very important in near 
future to add different noise to image point to 
test the robustness and accuracy of the algorithm 
in different imaging conditions. Such test will 

allow us to test the effect of noise on each 
intrinsic parameter and try to use more optimal 
procedure to best estimate it. 
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  Iteration 1  Iteration 2 Iteration 3 Iteration 4  Iteration 5
 
Image 1 
 
 

K1_1 = 
666.42            0          
0 
         0         666.42     
0 
         0              0          
1.00 

K1_2 = 
836.5472        0             
0 
         0          722.17        
0 
         0              0             
1.00 

K1_3 =
884.17          0            
5.23 
         0       741.03     
‐4.15 
         0            0            
1.00 

K1_4=
1100.9        0           
15.3 
         0     736.9      ‐
20.3 
         0         0            
1.0 

K1_5 = 
1211.7       0          
37.3 
         0    728.9     ‐
10.1 
         0         0           
1.0 

Image 2 
 

 K2_1  =  
 763.65            0           
0 
         0          763.65     
0 
         0              0           
1.00 

K2_2  = 
838.77            0            
0 
         0         903.21        
0 
         0              0            
1.00 

K2_3  =   
 923.5         0         
4.30 
         0      960.8      
2.0 
         0           0         
1.00 

K2_4  =
962.40        0           ‐
8.46 
         0     845.81    ‐
32.54 
         0          0             
1.00 

K2_5 =   
   1067.2    0     ‐
19.5 
         0    882.3  ‐
57.0 
         0         0        
1.0 

Image 3 
 

K3_1  = 
660.34              0           
0 
         0           660.34     
0 
         0               0           
1.00 

K3_ 2= 
710.34              0            
0 
         0          667.35       
0 
         0               0            
1.00 

K3_ 3 =
760.34         0           ‐
0.00 
         0    661.35         
0.00 
         0           0            
1.00 

K3_4  =
859.82          0           
‐0.38 
         0      651.46      
‐0.18 
         0            0            
1.00 

K3_5  = 
967.16         0     ‐
0.46 
         0  658.28   ‐
0.46 
         0         0        
1.00 

Image 4 
 

K4_ 1 = 
666.40              0           
0 
         0          666.40      
0 
         0              0            
1.00 

K4_ 2 = 
686.39              0           
0 
         0          666.38       
0 
         0               0           
1.00 

K4_3  =
716.38         0             
0.08 
         0      666.36       
0.02 
         0           0            
1.00 

K4_ 4=
844.96           0           
0.63 
         0        665.28     
0.80 
         0            0            
1.00 

K4_5 = 
864.62         0      
0.92 
         0  665.01    
1.07 
         0         0        
1.00 

 
 
 

  Iteration 1  Iteration 2 Iteration 3 Iteration 4  Iteration 5
Image 1 
 

 
 

K1_1 =  
666.42          0               
0 
         0       666.42         
0 

K1_2 =  
672.63          0               
0 
         0       661.15         
0 

K1_3 =
716.8            0        
2.2 
         0       665.3     
1.1

K1_4 =
776.17          0        
27.44 
         0      627.71    
81.10

K1_5 = 
862.17         0      
33.42 
         0     683.71  
87.30 

Image 2 
 

K2_1 = 
665.16         0             
0 
         0    665.16         
0 
         0          0             
1.00 

  K2_2 =
684.94            0             
0 
         0         609.70       
0 
         0             0             
1.00 

K2_3 =
626.11         0          
13.18 
         0      510.65      
5.72 
         0           0           
1.00 

K2_4 =
709.71          0         
85.91 
         0     540.12     
71.50 
         0          0             
1.00 

K2_5 = 
817.93         0       
82.46 
         0    691.23   
64.52 
         0           0        
1.00 

Image 3 
 

K3_1 = 
 660.75           0            
0 
         0       660.75       
0 
         0            0            
1.00 

K3_2 =  
680.3834       0            
0 
         0        539.12    0 
         0           0             
1.00 

K3_3  =
647.8789     0         
12.11 
         0      500.37   
18.84 
         0           0          
1.00 

K3_4  =
696.40         0          
54.82 
         0     518.40     
73.40 
         0         0             
1.00 

K3_5 = 
796.51       0         
61.33 
         0     599.77    
9.50 
         0        0           
1.00 

Image 4 
 

K4_1  = 
666.70           0            
0 
         0        666.70      
0 
         0            0            
1.00 

K4_2   =
683.12           0          0 
         0       665.97      0 
         0            0           
1.00 

K4_3   =
700.8586    0       
21.02 
         0    608.08    
25.22 
         0          0       
1.00 

K4_4   =
748.15          0       
67.53 
         0     677.02   
89.60 
         0          0           
1.00 

K4_5 = 
787.33         0         
4.83 
         0     644.82   ‐
3.59 
         0          0          
1.00 

 

Table 5.1: Output Calibration matrices, in each iteration of the algorithm, for the first images of the 
checkerboard pattern

Table 5.2: Output Calibration matrices, in each iteration of the algorithm, for the first 4 real images


