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ABSTRACT 
 

As we noted that an isomorphism between two combinatorial classes is a closeness preserving bijection 
between those classes, that is, two objects in a class are closed if and only if their images by this bijection 
are also closed. Often, as in this paper, closeness is expressed in terms of Hamming distance. Isomorphism 
allows us to find out some properties of a combinatorial class X (or for the graph induced by the class X) if 
those properties are found in the pre image of the combinatorial class X; some mentioned properties are 
hamiltonian path, graph diameter, exhaustive and random generation, and ranking and unranking 
algorithms. Simion and Schmidt showed in 1985 that the cardinality of the set Sn(123,132) length n 
permutations avoiding the patterns 123 and 132, is 2n-1, but in the other side 2n-1 is the cardinality of the set 
Bn-1 = {0,1}n-1 of length (n-1) binary strings. Theoretically, it must exist a bijection between Sn(123,132) 
and Bn-1. In this paper we give a constructive bijection between Bn-1 and Sn(123,132); we show that it is 
actually an isomorphism and illustrate this by constructing a Gray code for Sn(123,132) from a known 
similar result for Bn-1.  

Keywords: Pattern-Avoiding Permutations; Binary Strings, Constructive Bijection; Hamming Distance; 
Combinatorial Isomorphism. 

 

1. INTRODUCTION   
 

In this paper an element denotes a member of a 
list or set, and a term denotes a term in a string or 
sequence. Let x = x1 x2 ... xn and y = y1 y2 ... yn be two 
strings of same length. We say x and y are piecewise 
comparison if xi ≤ xj whenever yi ≤ yj. Let [n] be the 
set of all non-negative integers less than or equal to 
n. We denote by Sn the set of all permutations of [n] 
and its cardinality is obviously n!. Let π ∈ Sn and τ 
∈ Sk be two permutations,  k ≤ n. We say π contains 
τ if there exists k integers 1 ≤ i1 < i2 ... ik ≤ n such 

that subsequence
kii ππ K

1
 is piecewise comparison 

to τ; in such context τ is usually called a pattern. We 
say that π avoids τ, or π is τ-avoiding, if such 
subsequence does not exist. The set of all τ-avoiding 
permutations in Sn is denoted by Sn(τ) and sn(τ) is its 
cardinality. For an arbitrary finite collection of 
patterns T, we say π avoids T if π avoids any τ ∈ Sk; 
the corresponding subset of Sn is denoted by Sn(T) 
while sn(T) is its cardinality. For examples, let T = 
{123,231,1324} is a set of patterns. Clearly 
permutation 1234567 ∉ S7(T) since it contains 123, 
permutation 652341 ∉  S6(T) since it contain 234 
which is piecewise comparison to 123 (and also 231 

and 341 which are piecewise comparison to 231), 
while permutation 4321 ∈ S4(T) since it not contain 
any subsequence which is piecewise comparison to 
any pattern of T. Also s3(123) = 5 because S3(123) = 
{132, 213, 231, 312, 321}. 

Fundamental questions about pattern-avoiding 
permutations problems are: 

1. to determine sn(T) viewed as a function of  n 
for given T,  

2. to find an explicit bijection (a one-to-one and 
onto correspondence) between Sn(T) and Sn(T’) 
if sn(T) = sn(T’),  and  

3. to find relations between Sn(T) and other 
combinatorial structures.  

  By determining sn(T) we mean finding explicit 
formula, or ordinary or exponential generating 
functions. From these researches, a number of 
enumerative results have been proved, new 
bijections found, and connections to other fields 
established. 

Problems of pattern avoiding permutations 
appeared for the first time when Knuth [5], in his 
text book, posed a sorting problem using single 
stack. This problem actually is the 312-patterns 
avoiding permutations. In the other section of his 
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book, he showed that the cardinality of all three-
length-patterns-avoiding permutations is the Catalan 
numbers. Investigations on problems of pattern 
avoiding permutations then become wider to some 
set of patterns of length three, four, five, and so on, 
some combinations of these patterns, generalized 
patterns, and permutations avoiding some patterns 
while in the same time containing exactly a numbers 
of other patterns. 

Pattern avoiding permutations have been proved 
as useful language in a variety of seemingly 
unrelated problems, from theory of Kazhdan-
Lusztig polynomials, to singularities of Schubert 
varieties, to Chebyshev polynomials, to rook 
polynomials for a rectangular board, to various 
sorting algorithms, sorting stacks and sortable 
permutations [4], statistic permutation [6], also in 
practical application such as on cryptanalysis (see 
[7] for example). 

The first systematic study of patterns avoiding 
permutations undertaken in 1985 when Simion and 
Schmidt [9] solved the problem with patterns come 
from every subset of  S3. The idea of this paper is 
the following propositions, 

Proposition 1 (see [9]) The number of (123,132)-
avoiding permutations in  Sn, n ≥ 1 is sn(123,132) = 
2n-1. 

Proof. Let π ∈ Sn(123,132). If πn = n then π = (n-
1)(n-2)...1n. If πk = n then π1 > π2 > ... > πk-1 in order 
to avoid 123; on the other hand, in order to avoid 
132, πi > (n-k) if  i < k. Hence, πi = n-i for 1 ≤ i ≤ k-
1, while πk+1πk+1...πn, must be a (123,132)-avoiding 
permutation in Sn-k. Thus, s1(123,132) = 1, and for n 

> 1, (123,132)1(123,132) 1
1= k

n
kn ss ∑+= − . The 

solution for this recurrence relation is: sn (123,132) 
= 2n-1. □ 

The cardinality of set Sn(123,132), as stated by 
Simion-Schmidt, is the number of elements of Bn-1, 
the set of all binary strings having length (n-1) 
without any restriction. This paper gives (in the next 
section) constructive bijection between Bn-1 and 
Sn(123,132). Then, in section 3 we show that this 
bijection is actually isomorphism. Remark that is 
not always the case: a bijection between 
combinatorial classes may magnify the distance 
between two consecutive objects. This result allows 
us to construct in section 4 a Gray code for 
Sn(123,132). In the final part some concluding 
remarks are given. 

 
 
 
 
 

2.  CONSTRUCTIVE BIJECTION BETWEEN 
Bn-1 AND   Sn(123,132) 

 
Simion and Schmidt proved that cardinality of 

set Sn(123,132) is 2n-1, but the 2n-1 is also cardinality 
of Bn-1, set of all binary strings of length n-1. 
Theoretically it must be exists a bijection between 
Sn(123,132) and Bn-1; here we construct such a 
bijection. 

The general pattern of π ∈ Sn(123,132), as is 
mentioned in Proposition 1, can be described as 
three parts as, 

{ 444 3444 21444 3444 21

LL

(3)

11
(2)(1)

121= nnkkk ππππππππ −+−            (1) 

where 

1. π1 = n, π2 = n-1, ..., πk-1 = πk-2 = 1, (eventually 
empty) 

2. πk = n, 

3. πk+1...πn ∈ Sn-k(123,132) (also, eventually empty)  

For example, Figure 1 is the matrix representation of 
permutation 6573421 ∈ S7(123,132). 

For example, Figure 1 is the matrix representation of 
permutation 6573421 ∈ S7(123,132). 

If we trace the terms of π in (1) from the left to 
the right, at first we will find π1 as the second largest 
term in π (after n). If we remove π1, then π2 again 
will be the second largest, and so untilπk-1. Next, πk 
= n is the largest term of π. This tracing and 
interpretation is similar for the third part of π until 
one place before the largest term. 

 

 

 

 

 

 

 

 

 

Figure 1.  π = 6573421 ∈ S7(123,132) consist of three part as is 
mentioned by (1). Notice that the third part is an element of 
S4(123,132), the first stage in the verification of π = 6573421 as 
element of S7(123,132) recursively using (1). 

Now, we associate π ∈ Sn(123,132) to s, a binary 
string of length (n-1), and assign the largest of π 
whenever we find 1 in s and assign the second 
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largest of π whenever we find 0 in s. It is easy to see 
that this construction is a bijection, so we get the 
following proposition: 

Proposition 2 For each n ≥ 1, there exists a 
constructive bijection between Bn-1 and Sn(123,132). 
Proof. Let s = s1s2... sn ∈ Bn-1. We construct its 
corresponding π ∈ Sn(123,132) by determining πi, 1 
≤ i < n, as follows: if Xi = {1, 2, ..., n} – { π1, π2, ..., 
πi-1} , then set: 





0=

1=
=

ii

ii
i sifXinelementlargestsecond

sifXinelementlargest
π (2) (2) 

and πn is the single element in Xn. For examples, 
0000 ∈ B4  produces 43215 ∈ S5(123,132), 10110 ∈ 
B5 will produce 645312 ∈ S6(123,132), and 010110 
∈ B6 will produce 6745312 ∈ S7(123,132). □ 

Table I shows the set B4 together with its image, the 
set S5(123,132). 

TABLE I.  THE LIST 4B  AND ITS IMAGE, S5(123,132), BY 

BIJECTION (2). 

rank B4 S5(123,132)  
1 0000 43215 
2 0001 43251 
3 0011 43521 
4 0010 43512 
5 0110 45312 
6 0111 45321 
7 0101 45231 
8 0100 45213 
9 1100 54213 
10 1101 54231 
11 1111 54321 
12 1110 54312 
13 1010 53412 
14 1011 53421 
15 1001 53241 
16 1000 53214 

  
 

3.  ISOMORPHISM BETWEEN 1−nB  AND 

(123,132)nS  
 

A graph associated with a combinatorial class is 
a graph where objects of the class act as vertices of 
the related graph. Two vertices of this graph are 
connected (or adjacent) if the associated two 
combinatorial objects are closed, that is fulfill a 
predetermined condition(s), usually in the term of 
Hamming distances. Two graphs G and H are said 
to be isomorphic if there is a bijection ϕ such that 
(u,v) is an edge in G if and only if  (ϕ(u), ϕ(v)) is an 
edge in H. 

Before exploring the graph associated with the 
combinatorial classes Bn-1 and Sn(123,132) and 
showing the isomorphism between the two graph, 
we define the closeness properties of two elements 
of Bn-1 and Sn(123,132) and then give a theorem 
concerning the isomorphism. 

 
 
Definition 1  

1. Two binary strings Bn-1 are closed if they differ 
in a single position.  

2. Two permutations in Sn(123,132) are closed if 
they differ by a transposition of two terms.  

 
Theorem 1 The bijection (2) is a combinatorial 
isomorphism, that is, two binary strings in Bn-1 are 
closed if and only if their images in Sn(123,132) 
under this bijection are closed. 
Proof.  Let x and x’ be two elements of Bn-1 which 
differ at position i, and also, without loss of 
generality, let xi = 1, and: 

x = x1...xi-110...01xj+1...xn-1 

x = x1...xi-100...01xj+1...xn-1 

With the contiguous sequence of 0s: xi+1 = xi+1 = ... 
= xj-1 = 0  eventually empty.   

• If xj until xn-1 is 0 then πn = (m-1)  for π and 
m for π’.  

• Let m be the largest element in Xi as is 
mentioned in (2). Let π, π’ ∈ Sn(123,132) 
the images of x and x’ by the bijection (2), 
clearly πi = m, πi+1 = (m-2), and so on, while 
π1’ = (m-1), π1+1’ = (m-2), and so on. Then 
the shapes of π and π are:  

π  = π1... πi-1 m (m-2) ... (m-j+i+1) (m-1) 
πj+1... πn-1 πn 

π’  = π1... πi-1 (m-1) (m-2) ... (m-j+i+1) m 
πj+1... πn-1 πn 

The case for xi = 0 is similar. □ 
 

Since (3) is cyclic, we can draw an (n-1)-cube 
graph of Bn-1 and also we can find at least a 
Hamiltonian cycle in the graph. And since (2) is an 
isomorphism, we also can draw a congruent graph 
of Sn(123,132) and also can find the Hamiltonian 
cycle. Figure 2 shows the two graphs for n = 4 
together with one of their Hamiltonian path. 

 
4. GRAY CODE FOR (123,132)nS  AND THE 

HAMMING   DISTANCES 
 

A binary string is a string over a binary alphabet, 
{0,1}. The set of binary strings of length p  codes 
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the set of non-negative integers over closed interval 
[0, 2p-1]. For example, set of all 3 length binary 
strings is {000, 001, 010, 011, 100, 101, 110, 111} 
and represents set of all non-negative integers less 
than or equal to 7, the all non-negative integers over 
the closed interval [0, 23-1]. 

 

 
 
 
 
 
 
 
 

Figure 2.  Isomorphism between graph 3B  and graph 

(123,132)4S . This figure also shows a Hamiltonian cycle in 

each graph, as is indicated by the arrows. Notice that the 
Hamiltonian path in (123,132)4S  is the isomorphic image of 

the path in 3B  

A Gray code for binary strings is a listing of all p 
length p binary strings so that successive strings 
(including the first and last) differ in exactly one bit 
position [8]. The simple and best-known example of 
Gray code for binary strings is binary reflected Gray 
code which can be described the following recursive 
definition: 





≥⋅⋅ −− 110

0=
=

11 pBB

p
B

pp
p

o

ε
                      (3) (3) 

where ε is empty string, B⋅α  is the list obtained by 

concatenation α to each string of B , o  is 
concatenation operator of two lists, and B  is the list 
obtained by reversing B. Fist(Bp) = 0p since it is 
constructed by recursively concatenation 0 to ε and 
so on in p times, while Last(Bp) = 10p-1 since it just 

concatenation 1 to First(Bp-1) and since Last( pB ) = 
First(Bp). For examples, B1 = {0, 1}, B2= {00, 01, 
11, 10}, and B3 = {000, 001, 011, 010, 110, 111, 
101, 100}. 

Since the first and last elements of Bp also differ 
in one bit position, the code is in fact a cycle. 
Generating of (3) can be implemented efficiently as 
a loop free algorithm [1]. Note that, since a binary 
Gray code is a cycle, it can be viewed as a Hamilton 
cycle in the n-cube. 

Existence of at least a Hamiltonian cycle in the 
graph of Sn(123,132), as is showed in the last part of 
the previous section, is an indication that there is at 
least a Gray code for Sn(123,132). Since there is a 
bijection between Bn-1 and Sn(123,132), here we 

construct a Gray code for Sn(123,132). By 
considering bijection (2), Gray code Bp (3) is 
transformed into following Gray code for 
Sn(123,132): 









≥⋅

⋅−

−

−

2(123,132)

(123,132)1)(

1={1}

(123,132)

1

*
1=

nSn

Sn

n

S

n

nn o   

                                                                             (4) 

where )132,123(*
1−nS  is Sn-1(123,132) after 

replacing (n-1) with n. This replacement is taken 
place since 0, which is the prefix to the first part of 
(3), is associated to (n-1), the second largest element 
as is mentioned in (2). Hence (n-1) must be prefix to 
the second part of (4). For examples, S2(123,132) = 
{12, 21}, S3(123,132) = 2⋅{13, 31} o 3⋅{12, 21} = 
{213, 231, 321, 312}. Table 1. shows the list of B4 
together with its image, the list of S5(123,132). 

The recursively properties of (4) imply 
First(Sn(123,132)) = (n-1)(n-2)...1n. In the other 

hand, since ))132,123(( 1−nSLast = First(Sn-

1(123,132)), so ))132,123(( nSLast must be n⋅(n-

1)⋅(n-3)...1(n-1). 

 
Proposition 3. The Hamming distance between two 
consecutive elements of Sn(123,132) is 2 and, 
except between the first and the last, the two 
different terms are adjacent. 
Proof.  For n = 2 the Hamming distance is between 
12 and 21 which is 2. For n > 2, Hamming distance 
between two consecutive elements of Sn(123,132), 
except between the first and last elements, is 
determined recursively by the distance in the 
smaller list, and so on, and finally by the distance in 
S2(123,132) which is 2. Concatenating (n-1) and n, 
respectively to the two parts of (4), of course will 
not change the Hamming distance values in each 

part. Also, replacing (n-1) with n in (123,132)*
1−nS  

will not change the Hamming distance between 
each its two consecutive elements. So we only must 
to check the Hamming distance between 

(123,132))1)(( *
1−⋅− nSnLast  and 

(123,132))( 1−⋅ nSnFirst , as follow: 

(123,132))1)(( *
1−⋅− nSnLast   

(123,132))(1)(= *
1−⋅− nSLastn  

(123,132))(1)(= 2−⋅⋅− nSLastnn  

 

(123,132))( 1−⋅ nSnFirst   
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(123,132))(= 1−⋅ nSFirstn  

(123,132))(1)(= 2−⋅−⋅ nSLastnn  

 
Clearly the Hamming distance between Last((n-1)⋅ 

(123,132))*
1−nS  and (123,132))( 1−⋅ nSnFirst  is 2 

and adjacent. □ 

The Hamming distance between the first and the 
last element of S2(123,132) is also 2, but the two 
terms are parted by (n-2) other terms since the first 
element is the image of  0n-1, namely (n-1)(n-2)...1n, 
while the last is the image of 10n-2, namely n(n-2)(n-
3)...1(n-3). 

 

5.  CONCLUDING REMARKS 
 
Isomorphism between graph of Bn-1 and graph of 

Sn(123,132) is more simple than isomorphism 
between graph of Fn-1 and graph of Sn(123,132,213), 
where Fn-1 is the set of binary strings of length (n-1) 
having no 2 consecutive 1s. The constructive 
bijection between Fn-1 and Sn(123,132,213) showed 
by Simion-Schmidt [9]. There is no Hamiltonian 
cycle in this case, while Hamming distance between 
two consecutive elements of Sn(123,132,213), a 
Gray code for  Sn(123,132,213), is also 2, as is 
showed by Juarna-Vajnovszki [3, 2]. 
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