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ABSTRACT

It is known that Kirchhoff Matrix Theorem computéise number of spanning trees in any graph G byntpl
determinant; so far, many works derived a recurfivetion to calculate the complexity of certainmiies of maps
specially Grid map. In this paper we give the maguursive formula that counts the number of spamiriees in the
general case of grid graph, then we propose soarangpy trees recursions for families of planar bepalled crosses
maps such as the cross grid and the cross ocotog@amby using the spanning tree theorem and we ginew
algorithm to count the complexity of some particutsaps such as the kite map.

Keywords: Planar graph, map, complexity, spanning tree, grid graph.

1. INTRODUCTION A map M is a graph r embedded into surface X
. . _ _ (that is, considered as a subget] X . A planar
Enumeration of trees is an important field ofjrawing of a map is a rendition of the map on a
research in graph theory; many works studied thgane with vertices at distinct locations and ngeed
spanning trees of graphs to solve several problefersections. Euler's gave formula that relates th
in computer science area. Our research is to findgymber of vertices, edges and faces of a planar
new method to enumerate spanning trees in an .
) h: +F,[—|E,[=2. Th lexit
graph (networkds . The first method was proposedg)(ap IV'V'| _ | 'V'| | 'V'| e- compiextty _
by Kirchhoff who defines the complexity of a graphof @ map M is the number of spanning trees of this

G by the determinant of its laplacian matrix whicH"@P which are composed from all vertices and

is easy to compute but it cannot produce tha°Mme (or perhaps all) of the edge of M and it is

recursion that counts the number of spanning tregi€noted by (M) . Note that we mainly deal with a
later, many works derive recursive formulas teonnected planar map [6].

calculate the complexity of some particular graphs.

The purpose of this paper is to give the majoexamples:

recursive formula that counts the number of

spanning trees in the map which is formed byet F_be the Fan map with m+2 vertices, the
M cycles called the general case of grid map then ] o

explicit recurrences are found for many cases GPMplexity of Fais given by:

crosses maps. As a bulk result, we also give an

algorithm to count the number of spanning trees in 1 3_,_\/5 3_\/3
)™= (
2

kite map. r(F,) = 3 (( T)mJ'l), m=>1
A graph G is an ordered pairs of disjoint sets (V,[3] [5] >

E) such that E is the subset of the 8f of : .
unordered pairs of V with V is the set of verticesLet W1 be the Wheel map with m+1 vertices, the

and E is the set of edges. We consider only finitcomplexity of W_ ., is given by:
graphs. By definition a simple graph does not

contain a loop or multiple edges. It is calledr(\N )= (3+\/§)m+1 + (3_\/§)m+1
connected if for every pair of its vertices theseai m+l 2 2

path joining them; otherwise the graph is[5], 8.

disconnected [1].

-2m=3




15" October 2011. Vol. 32 No.1
© 2005 - 2011 JATIT & LLS. All rights reserved

Jour nal of Theoretical and Applied Information Technology <

-ll:\ll

ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

Let G_be the m-Grid chain map with 2m+2 lengths are equal, we denote h the length of each
) " _ o cycle. The i-th and the (i+1)-th cycles have a
vertices, the complexity o6, is given by: common path of length kj =12,.....m—-1as

1 ((2+ \/§)m+l - (2_\/§)m+1) m>1 lllustrated in Figure 2.
3

23
2], 8], [7). - B S (R ama

2. MAINRESULTS

7(G,) =

—e-
—e - -0—4
i

1

—

—e

1

1

—e--

Let C be a map of typdC = C, +C,where t is a Figure2: Map S
simple pathp = V,,V,,...,V,,, that contains
Kk +1 vertices such asleg{/,) = 2 for

i =23,...,k andk edges (See Figurel).

Vi r(S,) =

Theorem 2: The number of spanning trees in the
map S,, is given by the following recursion:

1 ((h+\/h2—4k2)m+l

Jh? —ak? 2
h-vh?—4k? .,

—(f) )

With7(S;) =1, S;is an open cycle.

,m=>1h=2k+1

Proof: Let S, be the map illustrated in Figure 2,

we cut along the last cycle and we apply the
Theorem 1 then:

r(S,) =hr(S,,)-1(S,,)k*, hence we
obtain the following system:
7(Sn) = h7(S,4) —K*7(S,-2)

G i G
L r(S) =h, m=>=3
7(S,) =h? —k?
The characteristic equation is
r’—hr+k”=0,A=h*-4k?*, however
Figurel: MapC, C and C, h> 2k = A >0, therefore, the solutions of this
_ ) h—-+h? - 4k?

Theorem 1: (Spanning Trees Theorem) the equation arer; = f and

complexity of the map C such thef and Vv,

two vertices of C connected by a simple [ = h++h? - 4k? hence

p =V,V,,....V,, that contains k edges (see ? 2

Figure 1) is given by: h- /hz — 4k? N h— /hz — 4k?2 .
(Sy) = a(f) +ﬂ(f) :
r(C) =1(C)) x1(C,) -k’1(C, - p)1(C, - p) o, f00,mz1

such thatC, — p andC, — p are the maps Using the initial conditions

obtained by deleting the pattp [6]. 7(S) =h,7(S;) =h* —k*, we obtain:

Let S, be a map formed by m cycles whose

s
2
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—h? + hvh? - 4k? + 2k? Let H , be the m-octogonal chain map, it is a
a= /hz — 4K? (h- /hz —4k2) ' particular case ome where h=8 and k=1
Theorem 2). The ma contains 6m+2
h? + h/h? — 4K - 2k? (Theorem 2) iy .
= . vertices, 7m+1 edges and m+1 faces as illustrated
Jh? - 4k? (h++/h? - 4k?) in Figure 4.
3. APPLICATIONS
31 CycleCase r I
3.1.1CrossGrid Map Bt
m ‘; !
The cross grid map is a planar drawing of graph in H,

which vertices are located at grid points of an

integer grid and it forms a cross. The cross grid

map C,, is formed by connecting 4 m-Grid chains | m '| m
maps and it contains 8m+4 vertices, 12m+4 edges o o
and 4m+2 faces as illustrated in Figure 3. ., _

G m (1 m

antyn u Y S

Figure4: Map N,

Corollary 1: The number of spanning trees in the

m map H . is given by the following recursion:

hy, =7(H,,) zlelTs((‘”Jﬁ)”‘” - (4-+15)™),

Figure3: Map C,, m>1

Theorem 3: The number of spanning trees in the

Theorem 4: The complexity of the maiN , is
map C,, is given by the following recurrence:

given by

7(Cp) = 92(Fom = 2010 — 920):M=1 (N, ) =h2(h,,, -2h_,h +h?.)m=1

with 7(N,) =7(H,) =8.
Such thatr (C,) = 7(G,) = 4and (No) =7(H,)

1 Proof: (Theorem 3and 4) let 7(C,,) and
On =7(G,) = 203 (@++3)™ - (2-+3)™) 7(G,,) be the complexities of the cross grid
m=1. mapC,, and the m-grid chain mags,,

respectively, we deno®,, = 7(G,,) , from the
3.1.2 Cross Octogonal M ap
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Theorem 1, we decompose the m@p, into two Table 1. Some values of the complexities
planar maps then we get the following result: T(Cm) and T(Nm)

8l

jRENE!

r(C,)=r( O], x <O - « mzzzcjj % o A1)

JREWN

T

T I_I a1

—{T{EI:ID]XT{ ]—T{DDZ]}{T{ o=« O1)
]
— CI:I:I::I] x o JL 1)
Hence
7(C.)=02%0ym — 0,y X095 — 02 xg,. 3.1.3 General Case
_ gz % 92 Let R,, be the map that generalizes the two
m m-1*

previous maps, it is formed by 4 m-cycles whose
Let T(N,)be the complexity of the map |engths are equals as illustrated in Figure 5.

N ,andr(H.,) = h,, the proof of the Theorem 4

is similar to the previous one. I_. ._;
1.3
Numerical result I pom
The following table gives some values for the S r._l
complexity of the map&,, and N by using the A }4._I
formula given in Theorem 3 and 4. 4 m N\ | m
T BT B e row R LA A e e e
L ._14 Sl .__..._{_.-..I_.-J---l_._._l
1 30784 784 h ‘
2 | 11828<10* 152100 }“”}
3 [ 45422¢10" | 29507x10° el
4 | 17459x10" | 57241x10° m I* !
5 | 67076x10"* | 1110510 ._I
6 | 25771x10"® | 21542x10"° L' .

Figure5: Map R

4
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Theorem 5: The recursive function that calculates 45 -21
. . _ Pe | _ Py _
the number of spanning trees in the nfdpis =M WhereM =

qk qk—1 1 - 9

given by
1(R,) = T%(S)(T(Somer) = 2K°1(S,,)7(S,) ( pkj v ( pj _ ( le
+k‘1%(S,,)),m=1. Ok Ok o

We use the square-and-multiply method to

computeM k_l, the following table gives some
values of 7(R,) and 7(Q, ) .

Proof: Let be 7(R,,) the complexity of the map

R,and 7(S,,) the complexity of the map,,, the
proof of this Theorem is similar to the previous

one. -
7(R) 7(Qy)
Some values of (R,) was given in Table 1 such 1 25 51
that 7 =71(C.) ifh=4 and k=1 and
(Rn) (_m) 2 1584 756

7(R,) =7(C,,) if h=8 and k=1. 3 55404 26460

_ 4 1937520 925344

3.2Kite Case 5 67756176 32359824
Let's B, be the k-Kite chains map, if its last edge 6 2369471616 1131641280
moves away we obtain the m&p, as illustrated in Table 2: Some values of the complexities
Figure 6. r(R)and 7(Q,)
-- Proposition 1: For a given initials conditions on k

By Qr X blocs, the number of spanning treesHp and

Figure 6: Maps P, and Qk Q, can also be found by using the following

system:
Theorem 6: The complexity of the mapk) and ) ,
Q, such thatp, =7(P,)andq, =7(Q,) are {DZK = PG With
given by the following system: Q2 = Proa Pie ™ Gicsa Y
=45p, . -21q, p,=45q, =21
{pk_zj-pkl glqleith 1 1
h Pis ™ S Let Z, and T, be the maps as illustrated in Figure

p, =450, =21 7.

Proof: Let denotep, =7(P,)andq, =7(Q,),
the initials conditions ar, = 45, = 21, in the

sequence of the mdf) , we cut the last kite, and

we use Theorem 1 (the same goes for the sequenc == --
of the mafQ), ). Tx

Numerical Result Figure7: Maps Z, and T,
The spanning trees sequencelgf can be found  Lemma 1: The complexity of the mapZ, and T,

by using the Theorem 6. Therefore we have the g given byz, =3p, - @, and
following equation k k k
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t, =21p7 -16p,q, +39. with
z, =1(Z,)andt, =7(T,).

Proof: Let Z, and T, be the maps illustrated in
Figure 7, from Theorem.1.:

7(z,) =t X> ) = XK ) x

T(E) = (P Pass — Pitid) P = (Pity = 0 Z2) 0,
2

= pf Pacsa — 2P ity + 0 Zlf'

Numerical result

The following table gives the sequence of
complexities7(E, ) by using the formula given in
Theorem 7.

(P> - T{&IZZ] ® ()

k 7(E)

This proof is similar for the complexity df .

1| 63628416

Let E, be the cross kite map, it is formed 4

94718949564672

141640142015878594560

connecting 4 k-Kite chains map and it contai
12k+9 vertices, 24k+8 edges and 12k+1 faces

211833694568250504033140736

illustrated in Figure 8.

316814807766899320237496406638592

(20 {621 E=N) [O0] [\V)

47382279996106378847960373245006315%$20
0

Figure8: Map E,

Theorem 7: The complexity of the mafc, is
given by the following recurrence:

r(E,) = 45p, -84plq, +50pZq;

3 4
—12p,q; *

k>1.

Proof: Let 7(E, ) be the complexity of the

Table 3: Some values of the complexity 7(E,)

4. CONCLUSION

The Kirchhoff Theorem give the number of
spanning trees in any graph G by calculating the
determinant of its Laplacian Matrix. For some
planar graphs this can be improved by deriving
recursive formula giving this count. In this paper
we give a recursive function for counting the
number of spanning tree in some crosses maps. We
derive such formulas for cross grid and cross
octagonal map, and then we give a method for the
general case. Since the recursive function is &asy
find but for some families of graph this recursien
huge and not easy to be used. Therefore, we
propose an algorithm counting the complexity of
cross kite map which can be applied to all the
planar graphs that satisfy the conditions of spamni
trees theorem. Our research perspectives take two
directions; the generalization of the spanning tree
theorem which is the derivation of a recursive
function to count the number of spanning trees in
any planar graph, therefore, the decomposition of a
map will be not through a simple path but even
through a tree or another map. The second direction
is to find a general algorithm with logarithmic

mapE, , we apply the Theorem land the Lemma 1complexity that counts the number of panning trees

then

in different topologies of network.
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