Jour nal of Theoretical and Applied Information Technology
15" October 2011. Vol. 32 No.1 3

© 2005 - 2011 JATIT & LLS. All rights reserved

SATIT

ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

OBJECT-ORIENTED PROGRAMMING SEMANTICS
REPRESENTATION UTILIZING AGENTS

TEH NORANISMOHD ARIS
Senior Lecturer, Department of Computer Scienceuléaof Computer Science and Information

Technology, 43400 UPM Serdang, Selangor, Malaysia

E-mail: nuranis@fsktm.upm.edu.my

ABSTRACT

Comprehending Object-Oriented Programming (OOR)oisan easy task especially by novice students.
The problem occurs during the transition from l@agnfundamental programming language concept to
OOP concept. It is very important to handle thisbpem from the beginning before novices learn more
advanced OOP concepts like encapsulation, inhegtaand polymorphism. Learning programming from
source code examples is a common behavior amongesvNovices tend to refer to source codes
examples and adapt the source codes to the prgiem in their assignments. To cater the probleaed

by these novices, a novel agent-based model hame tesigned to assist them in comprehending OOP
concepts through source codes examples. The itstneeds to provide two related source codesatteat
similar but in different domain. Generally, thesaiice codes go through the preprocessing, compariso
extraction, generate program semantics and cleasdhn processes. A formal algorithm that can h@ieg

to any two related Java-based source codes examsplegented to generate the semantics of thesesou
codes. The algorithm requires source codes congpahiased on keyword similarity to extract the words
that exist in the two related source codes. Thgants namely SemanticAgentGUI, semanticAgent and
noviceAgent are designed in the proposed model.ritheing system shows an OOP semantic knowledge
representation by intelligent agents.

Keywords: OOP Semantics, Source Codes Comparison, Keywoiith8iyn Extraction, Classification

1. INTRODUCTION In our university, students are taught the concepts
of OOP in the first Computer Programming course
OOP is taught as the first programming course ithat use the popular language, Java. We teach the
most universities in Malaysia. Usually, student§undamentals of Java consisting of data types,
who enrol this subject are in the novice categorgontrol statements, methods, arrays and basics of
and it is a difficult subject for them to compretlen Object-Oriented (OO). Based on teaching
The main issue is the difficulty for them toexperience, these students encounter problems
understand OOP concepts and apply it to a specifithen shifting from arrays to the basics of OO. This
problem. Many researches have focused on tHigansition involves totally a different thinkingofm
teaching methods to enhance the comprehensionfgfidamental programming concept to OOP. These
novices in OOP using eight-queen puzzle [1]students are unable to relate the real world object
Abstract Data Type (ADT) set [2], pedagogicakoncepts to the actual problem given to them. It
features (metaphor, learning module, structureould be very useful if a source code example of an
editor, friendly compiler, program animation andobject can be compared with a source code example
visualization, open environment, problem solvingf an operation and then mapped to the semantics or
techniques and tutorial) [3], integration of severameaning of the source codes. The mapping process
languages (HyperText Markup Language (HTML)that provides the semantics of the source codes
JavaScript, and Java) [4], game projects [5], mistacontribute a clear comprehension through
graphical feedback [6] and design languagexplanation of the relation between the two source
principles (no conceptual redundancy, -cleagodes thatare compared.
concepts, readability, software engineering support

[7].

88

Jour nal of Theoretical and Applied Information Technology
15" October 2011. Vol. 32 No.1 3

© 2005 - 2011 JATIT & LLS. All rights reserved

SATIT

ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

Intelligent agents has been applied in various An easy way to help these novices is to provide
fields such as interactive tutoring [8] medicalan OO source code that is easy to comprehend for
diagnosis system [9], image analysis [10], roboticexample an object is something that we can see, a
[11], refinery controller [12], and simulation [13] car with attributes engine, wheel and steering with
Intelligent agents are reactive system that reabehaviors reverse, forward and stop; or perhaps, a
autonomously and determines how to achieve arcle with attribute radius with behavior find the
particular task. They are located in somarea of the circle. Other objects that can be ased
environment and are able to sense theBimple examples are table, chair, rectangle,
environment through sensors, and have a selectioamputer, whiteboard, etc. and from these objécts i
of possible actions to perform through effectors as easy to identify the attribute(s) and the
actuators so that they can modify their environmenbehavior(s) of them.

For example, the sensors in a tutoring systemeis th

input from the keyboard and the actuators is th Lab assignments are given to students fo test

. . . : Eeir ability to apply OO concepts that has been
display - exercises, - suggestions and corrchorﬁ ught in the lectures. Questions are based on

actions by the agents. Agents features fouo erations that we perform everyday, for example
properties namely autonomy, pro-activenessp P . eryaay, P
- . . dccounts transaction, flight information, course
reactivity and social ability [14]. :))
registration, bill payment, etc. In Java, these
Author proposes a new model based obpperations are also objects but students findrid ha
intelligent agents to represent the OOP semantio relate them with simple objects mentioned
knowledge. The agent model is based on the Beliefarlier.
Desire and Intention (BDI) architecture to perform :
a comparison between two related OO Java sourc?gosfr?]t”e;rthésuf r?nble;n'(;\i’}'f%gri Sog:geei?isgs ;?gt
codes and produce a mapping explaning th rovided. The difference is ong sgurce code
semantic of these source codes. The Jasbh .

AgentSpeak interpreter which adopts the BD[?S{ES%ES zfn d S&Efvio?é?mgr? d \g/ggth:rs sc())l\JArlge
architecture will be used to construct the agentg1 '

Therefore, a model of agents featuring fouF;Od.e represents an operation with its own
. . ; ttribute(s) and behavior(s). These two sourcexode
properties mentioned (autonomy, pro-actlvenesgl

reactivity and social ability) perform the task ofW'” be compared based on keyword similarity and

: : the semantics of these source codes will be
teaching novices to understand the OO concepts. .
generated by extracting the words from the source

The paper is organized as follows: Section 2odes. The detailed process will be explained én th
highlights the proposed method to teach OO and timext section.
proposed agent formalization is given in Section 3.
Section 4 explains works that are related to o
research. Section 5 shows the experimental resutts
of running sample programs using the proposed -
system. Section 6 gives a brief discussion on the Currently, no other research has utilized the
proposed system. Finally, in Section 7 autho'rnte”'gent agent technique to understand the OOP

concludes the paper and suggests future works. semantics.

THE AGENT FORMALIZATION

Author’s research focuses on modeling agents for
comprehending OOP semantics using the Jason
AgentSpeak interpreter. Jason is an interpreter for
an extended version of AgentSpeak based on the

DI architecture. Jasois developed by Jomi F.

Ubner and Rafael H. Bordini and implements the
operational semantics of AgentSpeak, provides a

2. PROPOSED TECHNIQUE TO
UNDERSTAND OO CONCEPTS

As mentioned in Section 1, novice students fa
difficulties during the transition from array to OO

fundamentals. They find it difficult to relate tO molatform for the development of mult-agent

concepts with the actual problem given to the I-@/stems, with many user-customizable features

When given an OO lab assignment, students wi 5]. Besides its user-customizable features, Jason

often refer to an example given in the lectures a e
. LT IS chosen because it is an open source software and
modify the example to suit it with the problem. A
easy to access.

detailed scenario is given as follows.

89

Jour nal of Theoretical and Applied Information Technology
15" October 2011. Vol. 32 No.1 3

© 2005 - 2011 JATIT & LLS. All rights reserved

SATIT

ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

The BDI software model is a software modef L. initialize initial beliefsB < By

developed for programming mtglhgent agents [16]- 5 initialize initial intentions| < o
Agents have the beliefs, desires, intentions amds. while true do
events features, and use these concepts to solve a3.1 get next perceptthru sensors
particular problem in agent programming. Beliefs 3.2 update belieB < brf(b, p) ,

. " 3.3 agent determine desires or optidh%-
represent the informational state of the agent, a doptions(B)
can also include inference rules that allow forwar 3.4 agent choose options, selecting somedorbe
chaining to lead to new beliefs. Desires represent intentions), < filter(8,D,1) _
the motivational state of the agent, objectives, 3 Zﬁ{?ﬁ;ate 2 PI'ZE (Ela:c;"eve intentions baseskt of
situations or goal that the agent would like t 3.6 while :ét(p’l)an is er’npt?mpw» do
accomplish. Intentions represent the deliberatie 3.6.1 process first plan elemen&
state of the agent or desires, the agent chosen 3.6.2 execute plan elementecutén) _
action, which means the agent has begun executing 3:6-3 pause to preserve environmes, tail of z

. 3.6.4 observe environment to get next eree

a plan. Plans are sequences of actions that ant agen 5¢'c update belid, < bri(b,p)
can do to achieve one or more of its intentions. 3.6.6 ifeconsidefl,B) then

Events are triggers for reactive activity by th 3.6.6.D < options(B,1)

agent, and may update beliefs, trigger plans or 3672h%‘5iféﬁ'ter(3’D")
modify goals. 3.6.8 if nosoundx,1,B) then

In our research, author proposed a model for 3692;]%%&6"'6‘”(3"&)

OOP semantics using the reasoning cycle concepts 37 end-while
of the Jason agents. The Jason reasoning cygle. end-while
algorithm is represented in Figure 1. The variables
B, D andl is the agent's current belief, desire and
intentions. In the outer Ic_>op on lines (3) — (det 31 THE AGENT MODEL
agent observes its environment to get the next
percept. On lines (3.1) — (3.5), the variabsD

Figure 1. Jason Reasoning Cycle Algorithm

and | is orocessed and plam is generated to Three agents are designed in author’'s proposed
P plam, 9 system. They are SemanticAgentGUI,

achieve intentions based on a set of actidpsThe semanticAgent and noviceAgent
inner loop on lines (3.6) — (3.7), captures thé '
execution of a plan to achieve the agent's The proposed agent model is shown in Figure 2.
intentions. If no problem exists, the agents ex@cuffhe model is designed using Prometheus notation
its action from its plan until all the plan has bee[17]. The model applies the Jason reasoning cycle
executed represented in lines (3.6.1) — (3.6.23lgorithm explained in the previous section. The
However, after executing an action from the plarggents are labeled and shown as ‘stickman’ in a
on lines (3.6.3) — (3.6.5), the agent pauses tectangle as shown in Figure 2. The program starts
observe its environment, and update its beliefragaiwith a desire/goal that is initialized in the
Lines (3.6.6) — (3.6.7) are executed if the agerSemanticAgentGUI program. The user controls the
needs to reconsider its intentions that lead to %emanticAgentGUlI to comprehend the source
change of intentions. Finally, if the plan is nocodes. This is represented as user control in Eigur
longer a sound one, the agent replans — lines3)3.62 and is a type of incident in Prometheus notation.
—(3.6.9). The SemanticAgentGUI retrieves two related
source codes from two separate databases. One
database stores the simple example source code,
another database stores the operation example
source code, mentioned in Section 2. The
createLiteral method from the Jason ASSyntax
library is assigned to the goal that passes three
parameters, namely gui_semantic, and the two
source codes. The SemanticAgentGUI submit the
three parameters to the semanticAgent. The type of
triggering event of the goal is achievement-goal an
is represented as follows:

+lgui_semantic(codel, code?)

90

Jour nal of Theoretical and Applied Information Technology

15" October 2011. Vol. 32 No.1 N
© 2005 - 2011 JATIT & LLS. All rights reserved T —
EF7 Y]
ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

where codel represents simple example source

la

codes and code2 represents operation exam
source codes.

The semanticAgent receives the programs with
desire/goal 'semantic_novice(codel, code?) and {
intention/plan is represented as:

+lsemantic_novice(codel, code?)

gui_semantic and semantic_novice are two typ
of actions exhibit by the proposed agents as
Figure 2.

Next, the source codes are sent to
noviceAgent using the following message:

th

.send(noviceAgent,tell,give_programs(codel,
code?))

The noviceAgent receives the programs, prin
them and sends a message to inform t
semanticAgent as follows:

.send(S,tell,message(M))

where S represents the semanticAgent and
represents the message.

The semanticAgent receives the message 4
prints it. The control is then passed to th
SemanticAgentGUI to process the source codes g
generate the semantics of them. Th
SemanticAgentGUI interacts with the|
semanticAgent to give the semantic or meaning
the two compared source codes. This is represen
as the ‘program semantic explanation an
classification’ agent action in Figure 2. Thg
‘envelope’ notation shown in Figure 2 represen
the message that is sent from one agent to anot
agent. The SemanticAgentGUI keep on running K
retrieving source codes in the databases and
loop continues until the user stops/kill the rumnin
agent and lastly, the process ends.

source code 1 source code 2

% SemanticAgentGUI

gui_semantic >

(codel, code2)

/

program
semantic
explanation
and
classificatio

semanticAgent

A \mmprihension)

P tell : received
(start comprehension
and end

tell : message

(source codes received)

tell : send_programs
(source codes)

semantic_novice
(codel, code2)

% noviceAgent

91

Figure 2. Proposed Agent Model

Journal of Theoretical and Applied I nformation Technology
15" October 2011. Vol. 32 No.1 N

© 2005 - 2011 JATIT & LLS. All rights reserved

SATIT

ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

Table 1 shows the constructor/method, belief,
desire and intention of the SemanticAgentGU
semanticAgent and noviceAgent.

AgArch
TABLE 1. Agent Properties
Statements Semantic- semantic- novice-
AgentGUI Agent Agent SemanticAgentGUI
+ SemanticAgentGUI()
Congructor/ | Semantic N N + act(Actic_)nEgec_gction, List<ActionExec> feedback)id
Method AgentGUI(), : gtrgcisilhgvajm
act(), PAGY) -
stopAg(), 4
processing()
Belief/ - message(M) give_
Rule programs \ 4
(codel, . P o B
code) semanticAgent |« P noviceAgent
Desire/ createlLiteral()
Goal in Semantic
AgentGUI
constructor
Intention/ _ qui_ _ FIGURE 3. Proposed agent class diagram
Plan semantic
(codel,
code2), 3.2 AGENT PROCESSAND ALGORITHM
semantic_
novice In author's work, semantic knowledge is
(codel,

code?) represented by the agent model. The agent process
is shown in Figure 4. codel represents the simple
example source code and code2 represents the

Figure 3 shows the class diagram for the agen@¥eration example source code. codel and code2
that have been modeled. The SemanticAgentG@f€ the input that undergo preprocessing where they
extends the AgArch class which is in thewill be partitioned into smaller units or granutgri
jason.architecture package. The SemanticAgentGUYping the tokenization technique. In preprocessing,
communicates with the semanticAgent in a pithe spaces in the source Cod_e will be omitted. The
direction way, and also the same for semanticAgeRHtPUt of the preprocessing will be the preproagsse
and noviceAgent. The SemanticAgentGuicodel and code2 that will be stored in an array lis
constructor displays the interface containing &ata structure. Next, is the comparison process
button that is controlled by the user. The act meth Where keywords based on the Java programming
executes an action and, when finished, adds it batdiguage concepts will be compared with the source
in the feedback actions. The stopAg method is @des to find the similarities between it. The etitp
call-back method called by the infrastructure tiePf the comparison process is the keyword similarity

when the agent is about to be killed. The processithat exists in the source codes. Then, the follgwin
method will be explained in the next section. word in the source codes which is different will be

extracted from the source codes. The word will be
used as an input to generate the meaning or
semantics of both source codes. The meaning of the
source code will be given based on the extracted
word. Lastly, the classification process will ci@gs
and count the number of java files, classes, ohject
constructors, etc. and produce the result.

92

Jour nal of Theoretical and Applied Information Technology

15" October 2011. Vol. 32 No.1 N
© 2005 - 2011 JATIT & LLS. All rights reserved T —
EF7 Y]
ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

source ode : source ode &

A 4 A 4

preprocessing
partition source codes to smallg

units based on tokens fof

=

comparison
A 4 A 4
preprocessed preprocessed
source code 1 source code 2
A 4 A 4
comparison

comparing keywords with
preprocessed source code |l
and source code 2

keyword
similarity in
source code

keyword
similarity in
source code

A 4 A 4

extraction
extract word from source code 1 and
source code 2

extracted word
in source code 2

extracted word
in source code 1

A 4 A 4

generate source code explanation
produce the meaning of the two relatq
source codes based on the extracted word

(o}

[

A 4

semantic:of source code

A 4

classification
count number of Java files, classes
objects, constructors, etc. classificatign
based on the semantics of source codgs

number of source code classification
based on Java language structure

FIGURE 4. Proposed agent process

Besides the model, the contribution of this
research work is the algorithm that is integrated i
the SemanticAgentGUIl.java program. Figure 5
shows the algorithm to process the source codes.

algorithm processing()

retrieve codel from database

retrieve code2 from database

read codel token by token and store in an dstax

. read code?2 token by token and store in an distay.

. initialize O to variables a, b, c, d, e, f, gcdculate the
classifications of java file, classes, objectitouts,
default constructors, other constructors and retirn
values from a method.

.initialize 0 to i

. loop (i < length of array list x && y)

7.1 if (x[i] = =yli])
7.1.1 if (x[i] && y[i] = = “keyword1”)
7.1.1.1 extract wérmaim x[i] and y[i]
and print out the program semanti
71.12a++
7.1.2 if (X[i] && y[i] = = “kegword2”)
7.1.2.1 extract wéram x[i] and y[i]
and print out the program semanti
7.1.2.2b++
7.1.3 if (X[i] && y[i] = = “kgword3")
7.1.3.1 extract wérmaim x[i] and y[i]
and print out the program semantic
7.13.2c++
7.1.4 if (X[i] && y[i] = = “kegword4”)
7.1.3.1 extract wérmaim x[i] and y[i]
and print out the program semanti
7.1.3.2d++
7.1.4 if (X[i] && y[i] = = “kegword5")
7.1.4.1 extract word from x[i] and y[i]
and print out the program semanti
7.1.42e++
7.1.5 if (X[i] && y[i] = = “kgword6”)
7.1.3.1 extract word from x[i] and y[i]
and print out the program semanti
7.1.32f++
7.1.6 if (X[i] && y[i] = = “kegword7")
7.1.6.1 extract word from x[i] and y[i]
and print out the program semanti
71629+ +

~No S AN

(2]

(2]

(2] (2] (2]

(2]

7.2 end-if
730+ +
8. end-loop
9. print out the variables a, b, c, d, e, f, gdiassification

FIGURE 5. Proposed semantic algorithm

93

Jour nal of Theoretical and Applied Information Technology
15" October 2011. Vol. 32 No.1 3

© 2005 - 2011 JATIT & LLS. All rights reserved

SATIT

ISSN: 1992-8645 www.jatit.org E-1SS¥17-3195
4. RELATED RESEARCH understand the OOP semantics. To extract words

author use the tokenization approach. The
The reasons of source code comparison reseaitfkenization approach has been used in CCFinder
implementations are to detect the differences if24] and Dup [25] clone detection tools. However,
Source Code Management (SCM), to detedhese tools do not generate the semantics of
plagiarism in students’ assignments and to deteptogram statements.

clone in software development. An approach to teaching algorithms called

SCM, a tool in software development project$Structured Hypermedia Algorithm Explanation
provides the ability to store and retrieve pasfSHALEX) system have been developed [26].
versions of source files. Comparison tools hel®HALEX uses hypermedia and represents
SCM in highlighting the differences. A metaphoralgorithms as an abstract tree structure. An
for comparison based on a single-pane interfadetelligent agent is integrated in SHALEX to
where common text is displayed only once withmonitor student progress, to provide the students
differences combined into a single text to improvavith hints where necessary and to record the esult
readability and usability in terms of differenceof student interaction that shows the level of
classification (additions, deletion, andcomprehension the students has achieved. In
modifications) was invented [18]. Otherauthor’s system, the intelligent agents repredamt t
comparison tools are built around a two-pansemantics of the OOP knowledge.
interface, with files displayed side by side. These
types of interfaces are inefficient in the use OLS
screen space and ineffective because duplicati

A conceptual framework [27] has been proposed
ing a knowledge representation language named
g e Yel0s [28], developed at the University of Toronto.

makes text more difficult to read, result difficak The architecture consists of three layers: agent

to trlle userin pgrlforr]r:mg c%mparlspn tasl_<s. T?ﬁ?ﬁyer, server layer and repository layer. The agent
WOrks are - mainly locused on ,|mprovmg eIayer contains all the application agents. All
interface and classification. Author’s research kvor ommunication among application agents s

does_ not foc_us on improving the mterfac_e b rough the knowledge server. The repository stores
classification is used to classify the words in th%" the common knowledge and information to run

source codes into java classes, objects, constﬂ,lctqhe system [29]. Knowledge representation in

etc. authors’ work is represented by an algorithm that i

Detecting plagiarism manually is very timeintegrated in the Jason AgentSpeak language which
consuming. A plagiarism detection systentepresents the semantics of OOP. In the author’s
integrated with Online Course Management Systeproposed architecture, the user interact with the
(OCMS) was designed [19] to overcome thisigents through a Graphical User Interface (GUI)
problem. An agent serves as a daemon to analyaad the agent present source codes samples and
the program codes in terms of textual analysis f@enerate the semantics of the source codes that
strings, structural analysis for method collectiongxplains the relation and meaning of the source
and variable analysis for code line collectionsisTh codes.

work is éjn;ferent Ifromtauthors work where a%ents A unified formalism has been proposed based on
are used to analyze two program SOUrce codes By, - pp| architecture to model computational

comparing them fo find the keyword Slmllarlty’rational agents to understand Natural Language

extract Wor_ds from the source codes and generat%]_ Agents parse sentences and uses the proposed

the semantics of the codes. formalism to represent them. Then, the agents
Code clones are software systems that contaprerform actions based on the problem domain using

sections of code that are similar. Cloning may bthe information provided in the sentences. Besides

useful in many ways [20], [21] but can also bghat, the agent is also able to carry on other

harmful in software maintenance and evolutiofiequests. Although author model the agents using

[22]. Authors provide a qualitative comparison andhe BDI architecture, author's research work is

evaluation in clone detection techniques and tooldjfferent, where the agents are programmed to

and organize the information into a conceptuainderstand program source code by giving the

framework [23]. In their work, they identified four semantics of the codes.

different types of clones that are similar. In this

paper, author compare source codes, get the

keyword similarity that exist in the source codes

and extract words that can help novice to

s
94

Jour nal of Theoretical and Applied Information Technology
15" October 2011. Vol. 32 No.1 3

© 2005 - 2011 JATIT & LLS. All rights reserved o ———

-:l'\lll

ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

In author’s approach source code comparison a

o FIGURE 6. CircleObject source code

used to comprehend OO concepts by providing t
semantics of two OO source codes, which
different from other authors approach mentione
To date, no other research works have utilizg
intelligent agents explaining the semantics ¢
source codes as a knowledge representati
perspective. Therefore, the design of th
architecture is very much different from othe
existing research.

5. EXPERIMENTAL RESULTS

Figure 6 and Figure 7 show the source codsg
which are the input to the preprocessing proces
Basically, the codes are similar but they are i
different domains. In the CircleObject source cod
the object circle is easy to view because simply
circle has the attribute radius and we can find i
radius and calculate its area. In the AccountObje
source code, balance is the attribute and we oan f

the withdrawal value and calculate the balanc

public class AccountObject {

public static void main(String[] args) {

Account transc = new Account (200.00);

double WithdrawalValue = transc . getWithdrawal() ;
double BalanceValue = transc . getBalance() ;
System.out.println (" WithdrawalAmount =" +
WithdrawalValue);

System.out.println (" BalanceAmount =" + BalakWalue
)i

}

class Account {
double balance ;
Account () {
balance = 1000.00 ;

Account (double newBalance) {
balance = newBalance;

}
double getWithdrawal() {
return balance ;

double getBalance() {
return 1000.00 - balance;
}

}

However, it is not an easy task for the novice to
write the AccountObject source code. Therefore, by
providing the CircleObject source code, comparing
it with the AccountObject source code and extract

FIGURE 7. AccountObject source code

the different words that exist in the source cod
based on similar keyword, will present a clea

e Figure 8 shows the output of the system. An
example of words that are extracted from the source

comprehension by giving the meaning or semantig@des are CircleObject and AccountObject. The

of them.

public class CircleObject {

public static void main(String[] args) {

Circle circle = new Circle (2.5);

double RadiusValue = circle . getRadius() ;

double AreaValue = circle . getArea() ;
System.out.println (" CircleRadius ="+ RasMalue);
System.out.println (" CircleArea ="+ AreaMe);

}

class Circle {
double radius ;
Circle () {
radius=1;

Circle (double newRadius) {
radius = newRadius;

}
double getRadius() {
return radius ;

}

double getArea() {

return radius * radius * Math.PI;
}

}

95

keyword similarity compared is the word ‘class’.

Comparing the two source codes provide the
difference between them in terms of Java
constructs, namely file names, classes, object name
print out, constructors and methods. The
classification result show the number of java
constructs that exist in one source code.

The wuser ‘clicks’ the button ‘Click to
Comprehend Program Semantic’ to start
comprehending the source codes as shown in
Figure 9. The figure shows the GUI that is
controlled by the user continuously until the agent
is terminated/killed and the process ends.

Journal of Theoretical and Applied I nformation Technology

15" October 2011. Vol. 32 No.1 B\Y 2
© 2005 - 2011 JATIT & LLS. All rights reserved o
S/Mnnn
ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

L - Jol]

I
} =

(noiceAgent] Program received, hark you
(semanichgen] Program semarfic eqlanation

T flenames vih ava edensicns are CirleObjctand AccauntOnjeet
T lasses names are Cie and Avcountwit values 2 ani 200.00,
i jactrame is eicle and ransc an il mioke the getRadius()ard getAchsal) methads and print he esus
i objactrame is el and ranst and il mioke the getévea() and getBalance() mehods and prirtthe resuts
T Radius e and Wihdravwal¥alue wil be printed
T Areaahie i Balancealue wil be ke
e default:onstrucors are Cic e and Accountwith radis="1 andbalenee=1000.00
Ottier constuctcrs are Cielz anc Accoun: with paameters newRadius anc newBalance and properies adius and halance
T resuts il b returredt Form getRadius) and gethdraal]) methods
T restits il b returect Form getheal) and getBalnce() rethods

(Classifiation Summaryfar One File

Murbe: o fle namewith Java edencions =1

Mg of ass(es,= 1

b of thjests) imncation =2

Mmbe ofprintoul(s)=2
i
f
i

e of default canstucte()= 1
Murbe: ofoher construtaris) =1
I ofvalue(s) etumed from a methad =2

<

‘ 11 Clean !Stup H [l Pause H 3§Dehuu = Surces H ,@Mewauem H ¥ Killagent ‘

FIGURE 8. Program output

£ Semantic Agent

'Start Comprehension
End Comprehension

FIGURE 9. GUI controlled by the user

6. DISCUSSION

The proposed OOP semantic system illustrates
the four agent features: autonomy, pro-activeness,
reactivity and social ability. The agent is able to
operate independently, to achieve the goals to
submit programs that we delegate to it and make
independent decision to generate the OO semantics
and classify programs under its own control. The
agent also exhibit pro-activeness feature in the
sense of its goal-directed behavior and its sudoess
achieve the goals. In addition, the agent poses
reactive characteristic equivalent to the changes i
the user's action that control the GUI system.
Lastly, the agent social ability attribute show the
communication between agents in sending source
codes and generating the OOP semantics.
Combining all the agent features, students
comprehend the OOP semantics based on the role
of the agents. Therefore, knowledge representation
is portrayed by the agents.

For the time being, the proposed system works
well to generate the semantics of source codes
statements based on certain Java keywords for
example, class, new, double and return, etc. Author
plan to extend and improve the algorithm to cater
more semantics of source code statements based on
a wide range of Java keywords. In addition, various
way of writing program source codes to produce the
semantics of them will also be considered.

The classification summary can also be
improved by giving the relation meanings of words
that appear more than once for example in Figure 6,
words like Circle, circle, RadiusValue, AreaValue,
getRadius, getArea, etc. In Figure 6, the use of ne
keyword to create the circle object reference
variable is related to circle.getRadius() and
circle.getArea() but the meanings of the three
statements are different and can be classified as
create object and accessing the class methods.

The constraint of the research work is that it
needs a pair of source codes associated with each
other to execute using the proposed system.
Therefore, the instructors need to think and previd
examples of these source codes to be stored in the
database before the system can produce the results.
It may take some time to provide source codes
examples.

Jour nal of Theoretical and Applied Information Technology
15" October 2011. Vol. 32 No.1 3

© 2005 - 2011 JATIT & LLS. All rights reserved

SATIT

ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

Program source codes can be represented REFERENCES:
various ways for instance, through software
interface visualizations and abstract tree strectur[1] L. Longshu, and X. Yi, “The Teaching Research
Although current state-of-the-art used agents t0 on a Case of Object-Oriented Programming”,
detect source codes similarities but they do not The 5th International Conference on Computer

provide the semantics of the source codes. The Science & EducationHefei, China, August 24-
significance of the proposed model is that it 27, 2010, pp. 619-621.

explains the semantics of two related source COdPa R. Noa, “A Pedagogical Approach to Discussing
that can aid novices to comprehend in depth the” £ qamental Object-Oriented Programming
concepts of OOP. Here, program source codes are Principles”, ACM Inroads Vol. 1, No. 2, 2010
represented by the role of intelligent agents that op. 4350 ' ’ ’

hold the semantic knowledge of the program sourﬁgl

codes. X. Stelios, “An Interactive Learning

Environment for Teaching the Imperative and
Object-Oriented Programming Techniques in
Various Learning ContextCommunications in
Computer and Information Sciencéll CCIS

An agent-based model featuring three intelligent (PART 1), 2010, pp. 512-520. L i
agents namely, SemanticAgentGUI, semanticAgent] H-M. Qusay, D. Wiodek, and S. David, "Making
and noviceAgent have been designed to assist COMPuter Programming Fun and Accessible”,
novice students to comprehend the OOP concepts. COmputer Vol. 37, No. 2, 2004, pp. 108+106-
The whole process involves preprocessing,
comparison, extraction, generate semantics a8l L. Chuck, and R. John, “Learning O-O Concepts
classification techniques. In this paper, semantic N CS1 Using Game ProjectslTiCSE '04:
knowledge is represented by intelligent agentssThi ~ Proceedings of the 9th Annual SIGCSE
system is programming language dependent which Conference on Innovation and technology in
is based on Java programming source codes. Computer Science EducatiorLeeds, United

Kingdom, June 28-30, 2004, pp. 237.

Author plan to extend and improve the proposefb] K. Michael, “GreenFoot — A Highly Graphical
algorithm to cover a large number of keyword IDE for Learning of Object-Oriented
similarity exist in Java constructs. The database Programming”,ITICSE '08 Proceedings of the
will also be added to include more source codes 13th annual conference on Innovation and
examples to be compared. In addition, the technology in computer science education
algorithm should also adapt with source codes Madrid, Spain, June 30-July 2, 2008, pp. 327.
statements in different writing ways but samg7] K. Machael, and R. John, “Blue — A Language
meaning. For example, an object and method can for Teaching Object-Oriented Programming”,
be accessed by assigning them to a variable and S|GCSE '96Proceedings of the Twenty-seventh
then print the result. Therefore, this involves two SIGCSE Technical Symposium on Computer

statements as in our example in Figure 6 and 7. Science EducatignPhiladelphia, USA, 1996,
The two statements are also equivalent to one pp.190-194.

statement where the object and method can Egl S. Yaskawa, and A. Sakata, “The Application of

yvritten iq one print statement. Future work z_;tls Intelligent Agent Technology to Simulation”,
includes integrating the proposed agent model in an \1athematical and Computer Modelling 37

Integrated Development Environment (IDE). Mathematical and Computer Modellingy/ol.
37, No. 9-10, 2003 pp. 1083-1092.

[9] B.L. lantovics, “Agent-based Medical Diagnosis
Systems” Computing and Informati¢d/ol. 27,
No.2, 2008, pp. 593-625.

[10] D.A. Bell, A. Beck, P. Miller, Q.X Wu, and A.
Herrera, “Video Mining —Learning Patterns of
Behaviour via an Intelligent Image Analysis
System”, Proceedings of the "7 International
Conference on Intelligent Systems Design and
Applications ISDA 2007, art. no. 4389651,
2007, pp. 460-464.

s
97

7. CONCLUSION AND FUTURE WORKS

Jour nal of Theoretical and Applied Information Technology
15" October 2011. Vol. 32 No.1 3

© 2005 - 2011 JATIT & LLS. All rights reserved

SATIT

ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195

[11] H. Li, F. Karray, and O. Basir, “A Frameworl{25] B. Baker, “A Program for Identifying
for Coordinated Control of Multi-agent Duplicated Code”, in Proceedings of
Systems”, Studies in Computational Computing Science and Statistics: 24th
Intelligence Vol. 310, 2010, pp. 43-67. Symposium on the Interfaceol. 24, 1992, pp.

[12] J. Aguilar, and W. Zayas, “A Multiagents 49-57.

System to Create Control AgentsApplied [26] M. S., Elhadi, and H., Richard, “An Agent for
Artificial Intelligence Vol. 24, No. 8, 2010, pp. Web-based Structured Hypermedia Algorithm
785-806. Explanation System”,Journal of Universal

[13] J. Tvarozek, J., and M. Bielikdy“Feasibility Computer Scien¢evol. 15, No. 10, 2009, pp.
of a Socially Intelligent Tutor’Lecture Notes 2078-2108.
in Computer Scien¢010. pp. 423-425. [27] W., HuaiQing, “LearnOOP: An Active Agent-

[14]M. Wooldridge, and M.R. Jennings, Based Educational SystemExpert Systems
“Intelligents: Theory and Practice”, The with Applications Vol. 12, No. 2, 1997, pp.

Knowledge Engineering Revigwol. 10, No. 2, 153-162.

1995, pp. 115-152. [28] M. John, B. Alex, J. Matthias, and K. Manolis,
[15] http://jason.sourceforge.net/Jason/Jason.html ~ “Telos: A Language for Representing
[16]http://en.wikipedia.org/wiki/Belief-Desire- Knowledge About Information System&tCM

Intention software model Transactions on Information System#ol. 8,

[17] L., Padgham, and M., Winikoff, 2004. _NO-4 1990, pp.325-362. .
“Developing Intelligent Agent Systems: Al29] H., Wang, “Repositories for Co-operative

Practical Guide”, Wiley, Chichester, 2004. ISnf(f)trmatio_T_l hSylstems”I, ?!gfo’{lmag;[ioilg%and
[18] M. Lanna, and D. Amyot, “Spotting the oftware Technology/ol. 38, No.5, » PP

\ . 4 333-341.
difference, Software Practice and Experience
Vol. 41, No. 6, 2010, pp. 607-626. [30] K., Deepak, H., Susan, and S.A., Syed,

. B “Towards a Unified Al Formalism”,
[19]‘]'K.' Yih, and F.H. Chu, *Code Analyzer for an Proceedings of the Twenty-Seventh Annual
Online Course Management SystemThe

Journal of Systems and Softwakél. 83, No. ggve\/ﬁ::leslctoelrnsatf;: Jl Con;gtigie on System
12, 2010, pp. 2478-2486. -9 1995 PP :

[20] L. Aversano, L. Cerulo, and M.P. Di, “How
Clones are Maintained: An Empirical Studiri,
Proceedings of the 11th European Conference
on Software maintenance and Reengineering,
CSMR 200yart. no. 4145027, 2007, pp. 81-90.

[21] K. Cory, and W.G. Michael, “Cloning
Considered Harmful: Patterns of Cloning in
Software”, Empirical Software Engineering
Vol. 13, No. 6, 2008, pp. 645-692.

[22] E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner, “Do code clones matter
Proceedings of the 31st International
Conference on Software Engineering, ICSE’09
Vancouver, Canada, May 16-24, 2009, pp. 485-
495.

[23] K. R., Chanchal, R. C., James, and K. Rainer,
“Comparison and Evaluation of Code Clone
Detection Techniques and Tools: A Qualitative
Approach”,Science of Computer Programmijng
Vol. 74, 2009, pp. 470-495.

[24] T. Kamiya, S. Kusumoto, and K. Inoue,
“CCFinder: A Multilinguistic Token-Based
Code Clone Detection System for Large Scale
Source Code”]EEE Transactions on Software
EngineeringVol. 28, No. 7, 2002, pp. 654-670.

s
98

