
Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

88

OBJECT-ORIENTED PROGRAMMING SEMANTICS
REPRESENTATION UTILIZING AGENTS

TEH NORANIS MOHD ARIS
Senior Lecturer, Department of Computer Science, Faculty of Computer Science and Information

Technology, 43400 UPM Serdang, Selangor, Malaysia

E-mail: nuranis@fsktm.upm.edu.my

ABSTRACT

Comprehending Object-Oriented Programming (OOP) is not an easy task especially by novice students.
The problem occurs during the transition from learning fundamental programming language concept to
OOP concept. It is very important to handle this problem from the beginning before novices learn more
advanced OOP concepts like encapsulation, inheritance, and polymorphism. Learning programming from
source code examples is a common behavior among novices. Novices tend to refer to source codes
examples and adapt the source codes to the problem given in their assignments. To cater the problems faced
by these novices, a novel agent-based model have been designed to assist them in comprehending OOP
concepts through source codes examples. The instructor needs to provide two related source codes that are
similar but in different domain. Generally, these source codes go through the preprocessing, comparison,
extraction, generate program semantics and classification processes. A formal algorithm that can be applied
to any two related Java-based source codes examples is invented to generate the semantics of these source
codes. The algorithm requires source codes comparison based on keyword similarity to extract the words
that exist in the two related source codes. Three agents namely SemanticAgentGUI, semanticAgent and
noviceAgent are designed in the proposed model. The running system shows an OOP semantic knowledge
representation by intelligent agents.

Keywords: OOP Semantics, Source Codes Comparison, Keyword Similarity, Extraction, Classification

1. INTRODUCTION

OOP is taught as the first programming course in
most universities in Malaysia. Usually, students
who enrol this subject are in the novice category
and it is a difficult subject for them to comprehend.
The main issue is the difficulty for them to
understand OOP concepts and apply it to a specific
problem. Many researches have focused on the
teaching methods to enhance the comprehension of
novices in OOP using eight-queen puzzle [1],
Abstract Data Type (ADT) set [2], pedagogical
features (metaphor, learning module, structure
editor, friendly compiler, program animation and
visualization, open environment, problem solving
techniques and tutorial) [3], integration of several
languages (HyperText Markup Language (HTML),
JavaScript, and Java) [4], game projects [5], instant
graphical feedback [6] and design language
principles (no conceptual redundancy, clean
concepts, readability, software engineering support)
[7].

In our university, students are taught the concepts
of OOP in the first Computer Programming course
that use the popular language, Java. We teach the
fundamentals of Java consisting of data types,
control statements, methods, arrays and basics of
Object-Oriented (OO). Based on teaching
experience, these students encounter problems
when shifting from arrays to the basics of OO. This
transition involves totally a different thinking from
fundamental programming concept to OOP. These
students are unable to relate the real world objects
concepts to the actual problem given to them. It
would be very useful if a source code example of an
object can be compared with a source code example
of an operation and then mapped to the semantics or
meaning of the source codes. The mapping process
that provides the semantics of the source codes
contribute a clear comprehension through
explanation of the relation between the two source
codes that are compared.

Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

89

Intelligent agents has been applied in various
fields such as interactive tutoring [8] medical
diagnosis system [9], image analysis [10], robotics
[11], refinery controller [12], and simulation [13].
Intelligent agents are reactive system that react
autonomously and determines how to achieve a
particular task. They are located in some
environment and are able to sense their
environment through sensors, and have a selection
of possible actions to perform through effectors or
actuators so that they can modify their environment.
For example, the sensors in a tutoring system is the
input from the keyboard and the actuators is the
display exercises, suggestions and corrections
actions by the agents. Agents features four
properties namely autonomy, pro-activeness,
reactivity and social ability [14].

Author proposes a new model based on
intelligent agents to represent the OOP semantic
knowledge. The agent model is based on the Belief,
Desire and Intention (BDI) architecture to perform
a comparison between two related OO Java source
codes and produce a mapping explaining the
semantic of these source codes. The Jason
AgentSpeak interpreter which adopts the BDI
architecture will be used to construct the agents.
Therefore, a model of agents featuring four
properties mentioned (autonomy, pro-activeness,
reactivity and social ability) perform the task of
teaching novices to understand the OO concepts.

The paper is organized as follows: Section 2
highlights the proposed method to teach OO and the
proposed agent formalization is given in Section 3.
Section 4 explains works that are related to our
research. Section 5 shows the experimental results
of running sample programs using the proposed
system. Section 6 gives a brief discussion on the
proposed system. Finally, in Section 7 author
concludes the paper and suggests future works.

2. PROPOSED TECHNIQUE TO

UNDERSTAND OO CONCEPTS

As mentioned in Section 1, novice students face
difficulties during the transition from array to OO
fundamentals. They find it difficult to relate the OO
concepts with the actual problem given to them.
When given an OO lab assignment, students will
often refer to an example given in the lectures and
modify the example to suit it with the problem. A
detailed scenario is given as follows.

An easy way to help these novices is to provide
an OO source code that is easy to comprehend for
example an object is something that we can see, a
car with attributes engine, wheel and steering with
behaviors reverse, forward and stop; or perhaps, a
circle with attribute radius with behavior find the
area of the circle. Other objects that can be used as
simple examples are table, chair, rectangle,
computer, whiteboard, etc. and from these objects it
is easy to identify the attribute(s) and the
behavior(s) of them.

 Lab assignments are given to students to test
their ability to apply OO concepts that has been
taught in the lectures. Questions are based on
operations that we perform everyday, for example
accounts transaction, flight information, course
registration, bill payment, etc. In Java, these
operations are also objects but students find it hard
to relate them with simple objects mentioned
earlier.

To cater this problem, two OO source codes that
are similar but in, a different perspective are
provided. The difference is one source code
represents a simple example with its own
attribute(s) and behavior(s); and another source
code represents an operation with its own
attribute(s) and behavior(s). These two source codes
will be compared based on keyword similarity and
the semantics of these source codes will be
generated by extracting the words from the source
codes. The detailed process will be explained in the
next section.

3. THE AGENT FORMALIZATION

Currently, no other research has utilized the
intelligent agent technique to understand the OOP
semantics.

Author’s research focuses on modeling agents for
comprehending OOP semantics using the Jason
AgentSpeak interpreter. Jason is an interpreter for
an extended version of AgentSpeak based on the
BDI architecture. Jason is developed by Jomi F.
Hübner and Rafael H. Bordini and implements the
operational semantics of AgentSpeak, provides a
platform for the development of multi-agent
systems, with many user-customizable features
[15]. Besides its user-customizable features, Jason
is chosen because it is an open source software and
easy to access.

Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

90

The BDI software model is a software model
developed for programming intelligent agents [16].
Agents have the beliefs, desires, intentions and
events features, and use these concepts to solve a
particular problem in agent programming. Beliefs
represent the informational state of the agent, and
can also include inference rules that allow forward
chaining to lead to new beliefs. Desires represent
the motivational state of the agent, objectives,
situations or goal that the agent would like to
accomplish. Intentions represent the deliberative
state of the agent or desires, the agent chosen
action, which means the agent has begun executing
a plan. Plans are sequences of actions that an agent
can do to achieve one or more of its intentions.
Events are triggers for reactive activity by the
agent, and may update beliefs, trigger plans or
modify goals.

In our research, author proposed a model for
OOP semantics using the reasoning cycle concepts
of the Jason agents. The Jason reasoning cycle
algorithm is represented in Figure 1. The variables
B, D and I is the agent’s current belief, desire and
intentions. In the outer loop on lines (3) – (4), the
agent observes its environment to get the next
percept. On lines (3.1) – (3.5), the variables B, D
and I is processed and plan, π is generated to
achieve intentions based on a set of actions, Ac. The
inner loop on lines (3.6) – (3.7), captures the
execution of a plan to achieve the agent’s
intentions. If no problem exists, the agents execute
its action from its plan until all the plan has been
executed represented in lines (3.6.1) – (3.6.2).
However, after executing an action from the plan,
on lines (3.6.3) – (3.6.5), the agent pauses to
observe its environment, and update its belief again.
Lines (3.6.6) – (3.6.7) are executed if the agent
needs to reconsider its intentions that lead to a
change of intentions. Finally, if the plan is no
longer a sound one, the agent replans – lines (3.6.8)
– (3.6.9).

Figure 1. Jason Reasoning Cycle Algorithm

3.1 THE AGENT MODEL

Three agents are designed in author’s proposed
system. They are SemanticAgentGUI,
semanticAgent and noviceAgent.

The proposed agent model is shown in Figure 2.
The model is designed using Prometheus notation
[17]. The model applies the Jason reasoning cycle
algorithm explained in the previous section. The
agents are labeled and shown as ‘stickman’ in a
rectangle as shown in Figure 2. The program starts
with a desire/goal that is initialized in the
SemanticAgentGUI program. The user controls the
SemanticAgentGUI to comprehend the source
codes. This is represented as user control in Figure
2 and is a type of incident in Prometheus notation.
The SemanticAgentGUI retrieves two related
source codes from two separate databases. One
database stores the simple example source code,
another database stores the operation example
source code, mentioned in Section 2. The
createLiteral method from the Jason ASSyntax
library is assigned to the goal that passes three
parameters, namely gui_semantic, and the two
source codes. The SemanticAgentGUI submit the
three parameters to the semanticAgent. The type of
triggering event of the goal is achievement-goal and
is represented as follows:

+!gui_semantic(code1, code2)

1. initialize initial beliefs, B � B0

2. initialize initial intentions, I � I0

3. while true do
 3.1 get next percept, ρ thru sensors
 3.2 update belief, B � brf(b, ρ)
 3.3 agent determine desires or options, D �
options(B,I)
 3.4 agent choose options, selecting some to become
 intentions, I � filter(B,D,I)
 3.5 generate a plan to achieve intentions based on set of
 actions, π � plan(B,I,Ac)
 3.6 while not (plan is empty, empty(π)) do
 3.6.1 process first plan element, α � π
 3.6.2 execute plan element, execute(α)
 3.6.3 pause to preserve environment, π � tail of π
 3.6.4 observe environment to get next percept, ρ
 3.6.5 update belief, B � brf(b,ρ)
 3.6.6 if reconsider(I,B) then
 3.6.6.1 D � options(B,I)
 3.6.6.2 I � filter(B,D,I)
 3.6.7 end-if
 3.6.8 if not sound(π,I,B) then
 3.6.8.1 π � plan(B,I,Ac)
 3.6.9 end-if
 3.7 end-while
4. end-while

Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

91

where code1 represents simple example source
codes and code2 represents operation example
source codes.

 The semanticAgent receives the programs with a
desire/goal !semantic_novice(code1, code2) and the
intention/plan is represented as:

 +!semantic_novice(code1, code2)

gui_semantic and semantic_novice are two types
of actions exhibit by the proposed agents as in
Figure 2.

Next, the source codes are sent to the
noviceAgent using the following message:

.send(noviceAgent,tell,give_programs(code1,
code2))

The noviceAgent receives the programs, prints
them and sends a message to inform the
semanticAgent as follows:

.send(S,tell,message(M))

where S represents the semanticAgent and M
represents the message.

The semanticAgent receives the message and
prints it. The control is then passed to the
SemanticAgentGUI to process the source codes and
generate the semantics of them. The
SemanticAgentGUI interacts with the
semanticAgent to give the semantic or meaning of
the two compared source codes. This is represented
as the ‘program semantic explanation and
classification’ agent action in Figure 2. The
‘envelope’ notation shown in Figure 2 represents
the message that is sent from one agent to another
agent. The SemanticAgentGUI keep on running by
retrieving source codes in the databases and the
loop continues until the user stops/kill the running
agent and lastly, the process ends.

Figure 2. Proposed Agent Model

gui_semantic
(code1, code2)

semantic_novice
(code1, code2)

source code 1 source code 2

user
control

 SemanticAgentGUI

program
semantic
explanation
and
classification

tell : received
(start comprehension
and end
comprehension)

 semanticAgent

tell : message
(source codes received)

tell : send_programs
(source codes)

 noviceAgent

Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

92

Table 1 shows the constructor/method, belief,
desire and intention of the SemanticAgentGUI,
semanticAgent and noviceAgent.

TABLE 1. Agent Properties

Statements Semantic-
AgentGUI

semantic-
Agent

novice-
Agent

Constructor/
Method

Semantic
AgentGUI(),
act(),
stopAg(),
processing()

- -

Belief/
Rule

- message(M) give_
programs
(code1,
code2)

Desire/
Goal

createLiteral()
in Semantic
AgentGUI
constructor

- -

Intention/
Plan

- gui_
semantic
(code1,
code2),
semantic_
novice
(code1,
code2)

-

 Figure 3 shows the class diagram for the agents
that have been modeled. The SemanticAgentGUI
extends the AgArch class which is in the
jason.architecture package. The SemanticAgentGUI
communicates with the semanticAgent in a bi-
direction way, and also the same for semanticAgent
and noviceAgent. The SemanticAgentGUI
constructor displays the interface containing a
button that is controlled by the user. The act method
executes an action and, when finished, adds it back
in the feedback actions. The stopAg method is a
call-back method called by the infrastructure tier
when the agent is about to be killed. The processing
method will be explained in the next section.

FIGURE 3. Proposed agent class diagram

3.2 AGENT PROCESS AND ALGORITHM

In author’s work, semantic knowledge is
represented by the agent model. The agent process
is shown in Figure 4. code1 represents the simple
example source code and code2 represents the
operation example source code. code1 and code2
are the input that undergo preprocessing where they
will be partitioned into smaller units or granularity
using the tokenization technique. In preprocessing,
the spaces in the source code will be omitted. The
output of the preprocessing will be the preprocessed
code1 and code2 that will be stored in an array list
data structure. Next, is the comparison process
where keywords based on the Java programming
language concepts will be compared with the source
codes to find the similarities between it. The output
of the comparison process is the keyword similarity
that exists in the source codes. Then, the following
word in the source codes which is different will be
extracted from the source codes. The word will be
used as an input to generate the meaning or
semantics of both source codes. The meaning of the
source code will be given based on the extracted
word. Lastly, the classification process will classify
and count the number of java files, classes, objects,
constructors, etc. and produce the result.

SemanticAgentGUI
+ SemanticAgentGUI()
+ act(ActionExec action, List<ActionExec> feedback): void
+ processing : void
+ stopAg() : void

AgArch

semanticAgent noviceAgent

Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

93

FIGURE 4. Proposed agent process

Besides the model, the contribution of this
research work is the algorithm that is integrated in
the SemanticAgentGUI.java program. Figure 5
shows the algorithm to process the source codes.

FIGURE 5. Proposed semantic algorithm

algorithm processing()
1. retrieve code1 from database
2. retrieve code2 from database
3. read code1 token by token and store in an array list, x
4. read code2 token by token and store in an array list, y.
5. initialize 0 to variables a, b, c, d, e, f, g to calculate the

classifications of java file, classes, objects, printouts,
default constructors, other constructors and returned
values from a method.

6. initialize 0 to i
7. loop (i < length of array list x && y)
 7.1 if (x[i] = = y[i])
 7.1.1 if (x[i] && y[i] = = “keyword1”)
 7.1.1.1 extract word from x[i] and y[i]

and print out the program semantic
 7.1.1.2 a+ +
 7.1.2 if (x[i] && y[i] = = “keyword2”)
 7.1.2.1 extract word from x[i] and y[i]

and print out the program semantic
 7.1.2.2 b+ +
 7.1.3 if (x[i] && y[i] = = “keyword3”)
 7.1.3.1 extract word from x[i] and y[i]

and print out the program semantic
 7.1.3.2 c+ +
 7.1.4 if (x[i] && y[i] = = “keyword4”)
 7.1.3.1 extract word from x[i] and y[i]

and print out the program semantic
 7.1.3.2 d+ +
 7.1.4 if (x[i] && y[i] = = “keyword5”)
 7.1.4.1 extract word from x[i] and y[i]

and print out the program semantic
 7.1.4.2 e+ +
 7.1.5 if (x[i] && y[i] = = “keyword6”)
 7.1.3.1 extract word from x[i] and y[i]

and print out the program semantic
 7.1.3.2 f+ +
 7.1.6 if (x[i] && y[i] = = “keyword7”)
 7.1.6.1 extract word from x[i] and y[i]

and print out the program semantic
 7.1.6.2 g+ +
 7.2 end-if
 7.3 i+ +
8. end-loop
9. print out the variables a, b, c, d, e, f, g for classification

source code 1 source code 2

preprocessing
partition source codes to smaller
units based on tokens for
comparison

preprocessed
source code 1

preprocessed
source code 2

comparison
comparing keywords with
preprocessed source code 1
and source code 2

keyword
similarity in

source code 1

 keyword
similarity in

source code 2

extraction
extract word from source code 1 and
source code 2

extracted word
in source code 1

extracted word
in source code 2

generate source code explanation
produce the meaning of the two related
source codes based on the extracted words

classification
count number of Java files, classes,
objects, constructors, etc. classification
based on the semantics of source codes

semantics of source codes

number of source code classification
based on Java language structure

Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

94

4. RELATED RESEARCH

The reasons of source code comparison research
implementations are to detect the differences in
Source Code Management (SCM), to detect
plagiarism in students’ assignments and to detect
clone in software development.

SCM, a tool in software development projects
provides the ability to store and retrieve past
versions of source files. Comparison tools help
SCM in highlighting the differences. A metaphor
for comparison based on a single-pane interface
where common text is displayed only once with
differences combined into a single text to improve
readability and usability in terms of difference
classification (additions, deletion, and
modifications) was invented [18]. Other
comparison tools are built around a two-pane
interface, with files displayed side by side. These
types of interfaces are inefficient in the use of
screen space and ineffective because duplication
makes text more difficult to read, result difficulties
to the user in performing comparison tasks. These
works are mainly focused on improving the
interface and classification. Author’s research work
does not focus on improving the interface but
classification is used to classify the words in the
source codes into java classes, objects, constructors,
etc.

Detecting plagiarism manually is very time
consuming. A plagiarism detection system
integrated with Online Course Management System
(OCMS) was designed [19] to overcome this
problem. An agent serves as a daemon to analyze
the program codes in terms of textual analysis for
strings, structural analysis for method collections
and variable analysis for code line collections. This
work is different from author’s work where agents
are used to analyze two program source codes by
comparing them to find the keyword similarity,
extract words from the source codes and generate
the semantics of the codes.

Code clones are software systems that contain
sections of code that are similar. Cloning may be
useful in many ways [20], [21] but can also be
harmful in software maintenance and evolution
[22]. Authors provide a qualitative comparison and
evaluation in clone detection techniques and tools,
and organize the information into a conceptual
framework [23]. In their work, they identified four
different types of clones that are similar. In this
paper, author compare source codes, get the
keyword similarity that exist in the source codes
and extract words that can help novice to

understand the OOP semantics. To extract words
author use the tokenization approach. The
tokenization approach has been used in CCFinder
[24] and Dup [25] clone detection tools. However,
these tools do not generate the semantics of
program statements.

An approach to teaching algorithms called
Structured Hypermedia Algorithm Explanation
(SHALEX) system have been developed [26].
SHALEX uses hypermedia and represents
algorithms as an abstract tree structure. An
intelligent agent is integrated in SHALEX to
monitor student progress, to provide the students
with hints where necessary and to record the results
of student interaction that shows the level of
comprehension the students has achieved. In
author’s system, the intelligent agents represent the
semantics of the OOP knowledge.

A conceptual framework [27] has been proposed
using a knowledge representation language named
Telos [28], developed at the University of Toronto.
The architecture consists of three layers: agent
layer, server layer and repository layer. The agent
layer contains all the application agents. All
communication among application agents is
through the knowledge server. The repository stores
all the common knowledge and information to run
the system [29]. Knowledge representation in
authors’ work is represented by an algorithm that is
integrated in the Jason AgentSpeak language which
represents the semantics of OOP. In the author’s
proposed architecture, the user interact with the
agents through a Graphical User Interface (GUI)
and the agent present source codes samples and
generate the semantics of the source codes that
explains the relation and meaning of the source
codes.

A unified formalism has been proposed based on
the BDI architecture to model computational
rational agents to understand Natural Language
[30]. Agents parse sentences and uses the proposed
formalism to represent them. Then, the agents
perform actions based on the problem domain using
the information provided in the sentences. Besides
that, the agent is also able to carry on other
requests. Although author model the agents using
the BDI architecture, author’s research work is
different, where the agents are programmed to
understand program source code by giving the
semantics of the codes.

Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

95

In author’s approach source code comparison are
used to comprehend OO concepts by providing the
semantics of two OO source codes, which is
different from other authors approach mentioned.
To date, no other research works have utilized
intelligent agents explaining the semantics of
source codes as a knowledge representation
perspective. Therefore, the design of the
architecture is very much different from other
existing research.

5. EXPERIMENTAL RESULTS

Figure 6 and Figure 7 show the source codes,
which are the input to the preprocessing process.
Basically, the codes are similar but they are in
different domains. In the CircleObject source code,
the object circle is easy to view because simply a
circle has the attribute radius and we can find its
radius and calculate its area. In the AccountObject
source code, balance is the attribute and we can find
the withdrawal value and calculate the balance.
However, it is not an easy task for the novice to
write the AccountObject source code. Therefore, by
providing the CircleObject source code, comparing
it with the AccountObject source code and extract
the different words that exist in the source code
based on similar keyword, will present a clear
comprehension by giving the meaning or semantics
of them.

FIGURE 6. CircleObject source code

FIGURE 7. AccountObject source code

Figure 8 shows the output of the system. An

example of words that are extracted from the source
codes are CircleObject and AccountObject. The
keyword similarity compared is the word ‘class’.
Comparing the two source codes provide the
difference between them in terms of Java
constructs, namely file names, classes, object name,
print out, constructors and methods. The
classification result show the number of java
constructs that exist in one source code.

The user ‘clicks’ the button ‘Click to
Comprehend Program Semantic’ to start
comprehending the source codes as shown in
Figure 9. The figure shows the GUI that is
controlled by the user continuously until the agent
is terminated/killed and the process ends.

public class CircleObject {
public static void main(String[] args) {
Circle circle = new Circle (2.5);
double RadiusValue = circle . getRadius() ;
double AreaValue = circle . getArea() ;
System.out.println (" CircleRadius = " + RadiusValue);
System.out.println (" CircleArea = " + AreaValue);
}
}
class Circle {
double radius ;
 Circle () {
 radius = 1 ;
 }
 Circle (double newRadius) {
 radius = newRadius;
}
double getRadius() {
 return radius ;
}
double getArea() {
 return radius * radius * Math.PI;
}
}

public class AccountObject {
public static void main(String[] args) {
Account transc = new Account (200.00);
double WithdrawalValue = transc . getWithdrawal() ;
double BalanceValue = transc . getBalance() ;
System.out.println (" WithdrawalAmount = " +
WithdrawalValue);
System.out.println (" BalanceAmount = " + BalanceValue
);
}
}
class Account {
double balance ;
 Account () {
 balance = 1000.00 ;
 }
 Account (double newBalance) {
 balance = newBalance;
}
double getWithdrawal() {
 return balance ;
}
double getBalance() {
 return 1000.00 - balance;
}
}

Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

96

FIGURE 8. Program output

FIGURE 9. GUI controlled by the user

6. DISCUSSION

The proposed OOP semantic system illustrates
the four agent features: autonomy, pro-activeness,
reactivity and social ability. The agent is able to
operate independently, to achieve the goals to
submit programs that we delegate to it and make
independent decision to generate the OO semantics
and classify programs under its own control. The
agent also exhibit pro-activeness feature in the
sense of its goal-directed behavior and its success to
achieve the goals. In addition, the agent poses
reactive characteristic equivalent to the changes in
the user’s action that control the GUI system.
Lastly, the agent social ability attribute show the
communication between agents in sending source
codes and generating the OOP semantics.
Combining all the agent features, students
comprehend the OOP semantics based on the role
of the agents. Therefore, knowledge representation
is portrayed by the agents.

For the time being, the proposed system works
well to generate the semantics of source codes
statements based on certain Java keywords for
example, class, new, double and return, etc. Author
plan to extend and improve the algorithm to cater
more semantics of source code statements based on
a wide range of Java keywords. In addition, various
way of writing program source codes to produce the
semantics of them will also be considered.

 The classification summary can also be
improved by giving the relation meanings of words
that appear more than once for example in Figure 6,
words like Circle, circle, RadiusValue, AreaValue,
getRadius, getArea, etc. In Figure 6, the use of new
keyword to create the circle object reference
variable is related to circle.getRadius() and
circle.getArea() but the meanings of the three
statements are different and can be classified as
create object and accessing the class methods.

The constraint of the research work is that it
needs a pair of source codes associated with each
other to execute using the proposed system.
Therefore, the instructors need to think and provide
examples of these source codes to be stored in the
database before the system can produce the results.
It may take some time to provide source codes
examples.

Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

97

Program source codes can be represented in
various ways for instance, through software
interface visualizations and abstract tree structure.
Although current state-of-the-art used agents to
detect source codes similarities but they do not
provide the semantics of the source codes. The
significance of the proposed model is that it
explains the semantics of two related source codes
that can aid novices to comprehend in depth the
concepts of OOP. Here, program source codes are
represented by the role of intelligent agents that
hold the semantic knowledge of the program source
codes.

7. CONCLUSION AND FUTURE WORKS

An agent-based model featuring three intelligent
agents namely, SemanticAgentGUI, semanticAgent
and noviceAgent have been designed to assist
novice students to comprehend the OOP concepts.
The whole process involves preprocessing,
comparison, extraction, generate semantics and
classification techniques. In this paper, semantic
knowledge is represented by intelligent agents. This
system is programming language dependent which
is based on Java programming source codes.

Author plan to extend and improve the proposed

algorithm to cover a large number of keyword
similarity exist in Java constructs. The database
will also be added to include more source codes
examples to be compared. In addition, the
algorithm should also adapt with source codes
statements in different writing ways but same
meaning. For example, an object and method can
be accessed by assigning them to a variable and
then print the result. Therefore, this involves two
statements as in our example in Figure 6 and 7.
The two statements are also equivalent to one
statement where the object and method can be
written in one print statement. Future work also
includes integrating the proposed agent model in an
Integrated Development Environment (IDE).

REFERENCES:

[1] L. Longshu, and X. Yi, “The Teaching Research
on a Case of Object-Oriented Programming”,
The 5th International Conference on Computer
Science & Education, Hefei, China, August 24-
27, 2010, pp. 619-621.

[2] R. Noa, “A Pedagogical Approach to Discussing
Fundamental Object-Oriented Programming
Principles”, ACM Inroads, Vol. 1, No. 2, 2010,
pp. 43-52.

[3] X. Stelios, “An Interactive Learning
Environment for Teaching the Imperative and
Object-Oriented Programming Techniques in
Various Learning Context”, Communications in
Computer and Information Science, 111 CCIS
(PART 1), 2010, pp. 512-520.

[4] H.M. Qusay, D. Wlodek, and S. David, “Making
Computer Programming Fun and Accessible”,
Computer, Vol. 37, No. 2, 2004, pp. 108+106-
107.

[5] L. Chuck, and R. John, “Learning O-O Concepts
in CS1 Using Game Projects”, ITiCSE '04:
Proceedings of the 9th Annual SIGCSE
Conference on Innovation and technology in
Computer Science Education, Leeds, United
Kingdom, June 28-30, 2004, pp. 237.

[6] K. Michael, “GreenFoot – A Highly Graphical
IDE for Learning of Object-Oriented
Programming”, ITiCSE '08 Proceedings of the
13th annual conference on Innovation and
technology in computer science education,
Madrid, Spain, June 30-July 2, 2008, pp. 327.

[7] K. Machael, and R. John, “Blue – A Language
for Teaching Object-Oriented Programming”,
SIGCSE '96: Proceedings of the Twenty-seventh
SIGCSE Technical Symposium on Computer
Science Education, Philadelphia, USA, 1996,
pp. 190-194.

[8] S. Yaskawa, and A. Sakata, “The Application of
Intelligent Agent Technology to Simulation”,
Mathematical and Computer Modelling 37,
Mathematical and Computer Modelling, Vol.
37, No. 9-10, 2003 pp. 1083-1092.

[9] B.L. Iantovics, “Agent-based Medical Diagnosis
Systems”, Computing and Informatics, Vol. 27,
No.2, 2008, pp. 593-625.

[10] D.A. Bell, A. Beck, P. Miller, Q.X Wu, and A.
Herrera, “Video Mining –Learning Patterns of
Behaviour via an Intelligent Image Analysis
System”, Proceedings of the 7th International
Conference on Intelligent Systems Design and
Applications, ISDA 2007, art. no. 4389651,
2007, pp. 460-464.

Journal of Theoretical and Applied Information Technology
15th October 2011. Vol. 32 No.1

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

98

[11] H. Li, F. Karray, and O. Basir, “A Framework
for Coordinated Control of Multi-agent
Systems”, Studies in Computational
Intelligence, Vol. 310, 2010, pp. 43-67.

[12] J. Aguilar, and W. Zayas, “A Multiagents
System to Create Control Agents”, Applied
Artificial Intelligence, Vol. 24, No. 8, 2010, pp.
785-806.

[13] J. Tvarožek, J., and M. Bielikovả, “Feasibility
of a Socially Intelligent Tutor”, Lecture Notes
in Computer Science, 2010. pp. 423-425.

[14] M. Wooldridge, and M.R. Jennings,
“Intelligents: Theory and Practice”, The
Knowledge Engineering Review, Vol. 10, No. 2,
1995, pp. 115-152.

[15] http://jason.sourceforge.net/Jason/Jason.html
[16]http://en.wikipedia.org/wiki/Belief-Desire-

Intention_software_model
[17] L., Padgham, and M., Winikoff, 2004.

“Developing Intelligent Agent Systems: A
Practical Guide”, Wiley, Chichester, 2004.

[18] M. Lanna, and D. Amyot, “Spotting the
difference, Software Practice and Experience,
Vol. 41, No. 6, 2010, pp. 607-626.

[19] J.K. Yih, and F.H. Chu, “Code Analyzer for an
Online Course Management System”, The
Journal of Systems and Software, Vol. 83, No.
12, 2010, pp. 2478-2486.

[20] L. Aversano, L. Cerulo, and M.P. Di, “How
Clones are Maintained: An Empirical Study”, in
Proceedings of the 11th European Conference
on Software maintenance and Reengineering,
CSMR 2007, art. no. 4145027, 2007, pp. 81-90.

[21] K. Cory, and W.G. Michael, “Cloning
Considered Harmful: Patterns of Cloning in
Software”, Empirical Software Engineering,
Vol. 13, No. 6, 2008, pp. 645-692.

[22] E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner, “Do code clones matter?” in
Proceedings of the 31st International
Conference on Software Engineering, ICSE’09,
Vancouver, Canada, May 16-24, 2009, pp. 485-
495.

[23] K. R. , Chanchal, R. C., James, and K. Rainer,
“Comparison and Evaluation of Code Clone
Detection Techniques and Tools: A Qualitative
Approach”, Science of Computer Programming,
Vol. 74, 2009, pp. 470-495.

[24] T. Kamiya, S. Kusumoto, and K. Inoue,
“CCFinder: A Multilinguistic Token-Based
Code Clone Detection System for Large Scale
Source Code”, IEEE Transactions on Software
Engineering, Vol. 28, No. 7, 2002, pp. 654-670.

[25] B. Baker, “A Program for Identifying
Duplicated Code”, in Proceedings of
Computing Science and Statistics: 24th
Symposium on the Interface, vol. 24, 1992, pp.
49-57.

[26] M. S., Elhadi, and H., Richard, “An Agent for
Web-based Structured Hypermedia Algorithm
Explanation System”, Journal of Universal
Computer Science, Vol. 15, No. 10, 2009, pp.
2078-2108.

[27] W., HuaiQing, “LearnOOP: An Active Agent-
Based Educational System”, Expert Systems
with Applications, Vol. 12, No. 2, 1997, pp.
153-162.

[28] M. John, B. Alex, J. Matthias, and K. Manolis,
“Telos: A Language for Representing
Knowledge About Information Systems” ACM
Transactions on Information Systems, Vol. 8,
No. 4, 1990, pp. 325-362.

[29] H., Wang, “Repositories for Co-operative
Information Systems”, Information and
Software Technology, Vol. 38, No.5, 1996, pp.
333-341.

[30] K., Deepak, H., Susan, and S.A., Syed,
“Towards a Unified AI Formalism”,
Proceedings of the Twenty-Seventh Annual
Hawaii International Conference on System
Sciences, Vol. 3, 1994, pp. 92-101.

