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ABSTRACT 
 

Maintaining system security is an important factor in the operation of a power system. The aim of this 
study is to evaluate the reliability using artificial neural network (ANN) in static security assessment to 
determine the security status of a power system. Feed Forward Back Propagation Neural Network is 
implemented to classify the security condition of IEEE 9 bus system. The input data of ANN are derived 
from offline Newton Raphson load flow analysis. The result obtained from the ANN method is compared 
with the Newton Raphson load flow analysis in terms of accuracy to predict the security level of IEEE 9 
bus system and the computational time required by each method. The average time required by Newton-
Raphson load flow analysis to evaluate security level of IEEE 9 bus system is 0.0481 seconds while the 
average time required by neural network is 0.0119 seconds.  The accuracy of 13 hidden neurons feed 
forward back propagation neural network to predict the security level of IEEE 9 bus system is 98.57%. In 
conclusion, ANN is found to be reliable to evaluate the security level of IEEE 9 bus system.    
 
Keywords: Newton-Raphson Load Flow, Contingency Analysis, Security Assessment, Feed Forward Back 

Propagation Neural Network. 

1. INTRODUCTION 
 
Power system security assessment is very crucial to 
determine whether a power system is reasonably 
safe from serious interference on its operation or in 
the emergency (insecure) state [1]. The power 
system security assessment can be divided into 
three major functions which are system monitoring, 
contingency analysis and security control. System 
monitoring provides up-to-date information such as 
voltages, currents, power flows and the status of 
circuit breaker through the telemetry system. From 
this system monitoring, operators can easily 
identify the system in the normal state or in 
abnormal condition. On the other hand, 
contingency analysis is carried out to evaluate the 
outage events in power system and it is a critical 
part in security assessment. During the insecure 
condition, security control will take the preventive 
actions to ensure the system is back to secure 
condition.  
 
In static security assessment, load flow equations 
are required to identify the power flows and voltage 

levels throughout the transmission system [2]. 
Repeated power flow studies are run for each 
outage and then the operational limits are checked 
in order to evaluate the security status of the power 
system.  
 
Load flow analysis (also known as power flow 
analysis) can be solved by three methods which are 
the Newton-Raphson method, Fast-Decoupled 
method and Gauss-Seidel method. The most 
common power flow method is the Newton-
Raphson due to the fact that it can converge very 
quickly as the iteration begins near the desired root.  
 
In static security analysis, contingency analysis is 
used to predict the possible systems outage and 
their effect [3]. Referring to [4], a power system is 
vulnerable to different types of contingencies. 
These contingencies analysis can be divided into 
three which are single element outage (N-1), 
multiple-element outage (N-2 or N-X) and 
sequential outage. When carrying out the 
contingency analysis, power flow analysis is 
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required to find the new changes in power flow and 
bus voltage for each contingency. 
 
In modern power system, fast security assessment 
is an importance task. This is due to the fast 
security assessment that enables the operators to 
identify the overload lines very quickly and can 
take the corrective action. Therefore, end users will 
have reliable and secure electricity. Artificial 
intelligence (AI) methods can be used to reduce the 
computation time of security assessment. The 
accuracy of AI method is in the acceptable range so 
the application of AI based approaches in the 
operation and control of power system become a 
trend in nowadays [5-6]. Artificial neural network 
(ANN) is one of AI method which has been 
emerged in recent years in power system especially 
in the power system security assessment.  
 
ANN is modeled to reflect the configuration of the 
biological neuron. The X1 and X2 in Figure 1 
provide the data used by the neuron in order to 
generate an output. W1 and W2 are the weights 
which are multiplied with the input signal. The 
weight increase or decrease of the input signal 
allows the neuron and the network as whole to be 
more accurately trained because the weight can be 
adjusted in order to generate the correct result. ‘B’ 
is bias value which is similar to the weights. It is 
used to adjust the total input value. This value is 
also changed during training so that the output is 
more accurate. The summation function allows the 
neuron to evaluate the total input. Therefore, it can 
generate the correct output signals required by the 
ANN. The active function generates the outputs 
required for the network so that a correct decision 
can be made.  
 

 
 

Figure 1: Components of ANN 

ANN is more commonly used to perform static 
security assessment for power systems. The reason 
is because the ANN has potential in terms of speed 
and accuracy. Besides that, ANN had been 
successfully applied in the large power system 
compared to other methods like AC load flow and 
DC load flow.  
 
Sean and Khairuddin [7] had stated that ANN 
method is more accurate and much better in terms 
of computational time taken compared to decision 
tree and adaptive network based fuzzy interference 
system. Some different methods were proposed to 
determine the security states of a power system but 
error classification and computational time issues 
were not considered in these methods [8-11].  
 
Many research proved the feed forward back 
propagation neural network suitable for application 
in power system security assessment. Fischer [12] 
showed how a number of back propagation neural 
networks which used the partial least-squares 
model can be trained to predict power system 
security after a contingency. This method is applied 
to the 10-machine New England Power System 
Model. Lu [13] had applied feed forward back 
propagation neural network in predicting power 
system bus voltage and generator transformer units. 
Sidhu and Lan [14] stated a good calculation 
accuracy, high contingency capturing rate and 
faster analysis can obtained by using back 
propagation feed forward neural network.  

 
The feed forward back propagation neural network 
has high accuracy after training because the error 
between the actual and expected results is 
calculated so that the error in the output will be 
minimal. Another advantage of feed forward back 
propagation neural network is feed forward back 
propagation neural network algorithm is not as 
complicated and it can be improved by the partial 
least square technique to reduce high dimensional. 
Besides that, feed forward back propagation neural 
network is most popular choice for further study in 
dynamic behavior for security assessment [15-17]. 

 

2. METHODOLOGY 
 

1. Newton-Raphson Load Flow Analysis  
Newton-Raphson load flow analysis is performed 
to evaluate the security status of IEEE 9 bus system. 
The structure of IEEE 9 bus system is shown in 
Figure 2. Referring to Figure 2, IEEE 9-bus system 
consists of three buses with generators which are 
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bus 1, bus 2 and bus 3, and three buses with load 
which are bus 5, bus 7 and bus 9. This 9 bus system 
also consists of 6 transmission lines which are line 
8-7, line 7-6, line 8-9, line 6-5, line 9-4 and line 5-4.  
 

 
 

Figure 2: IEEE 9 bus system [18] 
 
The Newton-Raphson load flow is implemented to 
calculate the new voltage at each bus and power 
flows in each line for every contingency cases. In 
this paper, N-1 contingency analysis is performed 
because this project only considers single line 
outage. The bus voltage limits and thermal line 
limit are the parameters to evaluate the security 
status of IEEE 9-bus test system. 
 
The general form for the security status of IEEE 9 
bus system is determined by the equation (1): 
 
ܼ௅ ൒ ܼሺݑ, ଵሻܥ ൒ ܼ௎                       (1) 
 
The superscripts L and U in equation (1) represent 
the lower and upper limits of ܼሺݑ,  .ଵሻ respectivelyܥ
ܼሺݑ,  ଵሻ is used to represents the line flows and busܥ
voltages. During secure condition, equation (1) 
must satisfy the thermal line limit and bus voltage 
limit. When ܼሺݑ,  ଵሻ is used to represents the lineܥ
flows and bus voltages, the equation (1) will 
become as equation (2) and (3) respectively.  
 

ெܸ௜௡ ൏ ௜ܸ ൏ ெܸ௔௫        ݅ ൌ 1, … , ݊                     (2) 
 

௜ܵ ൏ ܵெ௔௫                       ݅ ൌ 1, … , ݊                     (3) 
 

    
 

If the power system exceeds either the voltage limit 
or thermal line limit in equations (2) and (3) 
respectively, the power system is considered as 
insecure condition for that contingency case. If the 
power system inside the voltage limit and thermal 
line limit in equations (2) and (3) respectively, then 
the power system is considered as secure condition. 
Referring to [2], the minimum and maximum bus 
voltage value is 0.9 per unit and 1.1 per unit 
respectively. According to [19], the thermal line 
limit is 80%. This is due to the fact that when the 
thermal line reaches 80%, the operator still has time 
to take an action to bring the system back to secure 
condition. If thermal line limit is set as 100%, there 
is nothing can be done since the system already in 
insecure condition. 

 
Binary number is used to represent the security 
condition of a power system. Binary numbers 1 and 
0 stand for the secure and insecure conditions, 
respectively.  
 

2. ANN Implementation 

ANN implementation is used to design the best 
ANN configuration. Later, the best configuration of 
ANN is used to predict the security status of IEEE 
9 bus system. Figure 3 shows the sequence of the 
ANN implementation.  
 
The process of ANN implementation starts from 
data collection and ends with the comparison 
accuracy for each hidden neuron. Percentages of 
classification accuracy and mean square error are 
used to represent the performance of ANN in terms 
of accuracy to predict the security level of IEEE 9 
bus system.  
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Figure 3: ANN implementation flow chart 

 

2.1 Data Collection 
Input data of ANN are derived from offline 
Newton-Raphson load flow analysis. The input data 
consists of bus voltage value and line thermal value 
for each contingency case. In data collection, the 
input data are divided into two groups which are 
train data and test data, respectively.  
 
The train data consisting of bus data and line data 
that run on the nominal condition which is at load 
of 100%. Later, the load will increase 2% from this 
nominal condition for every bus load until it 
reaches 120%.  

 
For testing data, the load start in 101% then the 
load is increased up to 120%. Each time the load 
will increase 2% from load variation at 101% level. 
The collected data will be stored as the input data 
for normalization. 
 

2.2 Data Normalization 
The results in data collection are generally on 
widely different scales thereby data normalization 
is applied. Priddy and Keller [20] had stated 
normalizing the input data for the data collection is 
important because normalization can minimize the 
bias within the neural network.  Hence, an accurate 
forecast output results will be obtained. Data 
normalization can also speed up training time 
because the training process for each feature in 
same scale.  
 
The train and test data are normalized by using 
min-max normalization because most features are 
rescaled to lie within a range of 0 to 1. The min-
max normalization is accomplished by using linear 
interpolation equation which is shown in equation 
(4): 
 
 
௜ݔ
′ ൌ ௫೔ିெ௜௡ೡೌ೗ೠ೐

ெ௔௫ೡೌ೗ೠ೐ିெ௜௡ೡೌ೗ೠ೐
൫ݔܽܯ௧௔௥௚௘௧ െ ௧௔௥௚௘௧൯ ݊݅ܯ ൅

 ௧௔௥௚௘௧                                                                (4)݊݅ܯ
 

Where: 

Maxvalue is initial maximum value of x. 

Minvalue is initial minimum value of x. 

Maxtaget is maximum value for range of interval. 

Mintarget is minimum value for range of interval. 

 

2.3 ANN Structure  
The feed forward back propagation neural network 
has three layers which are the input layer, hidden 
layer and target layer. The input layer has 12 
neurons since the number of variables in the input 
neural network is 12.  
 
The number of hidden neurons are varying from 2 
to 20 in order to compare the performance of each 
hidden neurons. The neural network will be trained 
for each change in the number of hidden neurons. 
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The more hidden neurons are used to train the 
neural network, the more computational time will 
be consumed due to the fact that the neural network 
requires longer time for solving more complicated 
problems [21].  
 
In the target layer, the neural network has two 
output vector which is either 0 for insecure or 1 for 
secure but naturally, neural network output is a 
closer analogue value in a range [0, 1]. Therefore, 
the output of neural network more than or equal 0.9 
will be considered as secure condition while output 
of neural network less than or equal 0.1 will be 
considered as insecure condition.  
 

2.4 Training ANN 
Training process of neural network is to identify the 
topology of neural network and its interconnect 
weights. Training process is important since it will 
ensure the neural network reacts with the fastest 
speed and without losing any important data. The 
training speed depends on the speed factor such as 
the learning rule, the transfer function of neurons or 
initialization of the network [22]. During the 
training, neural network needs enough knowledge 
information in order to simulate a good prediction 
of power system security.  
 
In the training process of the neural network, a set 
of network inputs and target outputs are required. 
During training, the weights and biases of the 
network are iteratively adjusted to minimize the 
network performance function.  
 
The feed forward back propagation neural network 
can be trained with different training algorithms. 
These algorithms use the gradient of the 
performance function to adjust the weights. 
Therefore, the network error will be minimized and 
obtain a better performance. The gradient is 
determined using a technique called back 
propagation, which involves performing 
computations backward through the network. 
 
The basic back propagation training algorithm is it 
updates the network weights in negative gradient 
direction. There are two different methods to apply 
gradient descent algorithm which are incremental 
mode and batch mode. For incremental mode, after 
all input is called to the neural network, the 
gradient of the network weights is computed and 
the weights are updated. For batch mode, each 
input is called to the neural network before the 
weights are updated. 

 
Batch gradient descent and batch gradient descent 
with momentum are often too slow for practical 
problems. The faster algorithms of training are the 
variable learning rate back propagation (VLRBP), 
resilient back propagation (RBP), conjugate 
gradient (CG), Quasi-Newton (QN) and Levenberg-
Marquardt (LM). The VLRBP and RBP are the 
heuristic techniques which are the same techniques 
with the batch gradient descent and batch gradient 
descent with momentum. Whilst the CG, QN and 
LM use the standard numerical optimization 
techniques.  
 
In this work, LM training technique is used due to 
its faster training and good convergence [23]. 
Besides that, LM algorithm is suitable for medium-
size neural network and its algorithm was designed 
to approach second-order training speed without 
having to compute the Hessian matrix. For example, 
when mem_reduc is set to 2, then only half of the 
Jacobian is computed at one time. This saves half 
the memory used by the calculation of the full 
Jacobian. The parameter mem_reduc determines 
how many rows of the Jacobian are to be computed 
in each submatrix. 
 

2.5 Performance Neural Network 
The performance of the feed forward back 
propagation neural network is evaluated by the 
percentages of classification accuracy (CA) and 
mean squared error (MSE) [24]. The percentages of 
CA for the neural network are calculated by using 
equation (5). 
 

CA ሺ%ሻ ൌ ୬୳୫ୠୣ୰ ୭୤ ୱୟ୫୮୪ୣ ୡ୪ୟୱୱ୧ϐ୧ୣୢ ୡ୭୰୰ୣୡ୲୪୷
୲୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭୤ ୡୟୱୣୱ

X100              
(5) 

 
The MSE is calculated by using equation (6).  MSE 
is average squared error between the network 
outputs and the target outputs. In a best 
configuration neural network, the mean square error 
in the network is very small. The neural network 
use least MSE algorithm to adjust the weights and 
biases of the neural network in order to minimize 
the MSE.  
 

MSE ൌ
1
n ෍ሺ

୬

୩ୀଵ

E୩ሻଶ 

          =ଵ
୬

∑ ሺ୬
୩ୀଵ |DO୩ െ AO୩|ሻଶ|  

       (6) 
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When there is an increase in load variation in the 
power system, the impedance in the power system 
will increase. Therefore, there is progressive fall of 
voltage occurs in buses. The progressive fall of 
voltage happens because some of the voltages drop 
in the impedance of power system. Besides that, 
power which sent to the load is also increased when 
the load is increased. As a result, the number of 
buses exceed bus voltage limit and the number of 
transmission lines exceed the thermal line limit are 
increased. Hence, insecure cases are increased in 
the system when the load is increased.  

2. Data Collection  
The The data obtained in offline Newton-Raphson 
load flow by using the MATLAB software are used 
as input data for data collection. The data derived 
from offline Newton-Raphson load flow have 
matrix size [12X147]. In data collection, these input 
data are divided into two groups which are train 
data and test data. The matrix size of train data is 
[12X77] while the matrix size of test data is 
[12X70].  
Table 1 shows the train data at load variation of 
104%. Referring to the table, the number of 
variables in the train data are 12 which consist of 6 
buses voltage and 6 thermal lines. The 6 buses 
voltages are V4, V5, V6, V7, V8 and V9. The 6 
thermal lines are line 7-8, line 6-7, line 8-9, line 5-6, 
line 9-4, and line 4-5.  
 
The bus voltages V1, V2 and V3 are not included in 
the train data and test data because they are 
generator buses. They will be controlled by the 
(automatic voltage regulator) AVR system. The 
advantage of the AVR system is power source is 
not affected by sudden loads change. The AVR 
system will maintain the output voltage within the 
specified limits. 
 
In train data, there are 40 train data in secure 
condition while 37 train data in insecure condition. 
For test data, there are 37 test data which are secure 
status while 33 test data are insecure status.   
 

 
 
 
 
 
 
 
 
 
 
 

Table 1: Train data in load variation 104% 
 

Load 
Variation 104% 

Case 
Base 
Case C1 C2 C3 C4 C5 C6 

V4 (p.u.) 0.986 
0.9
74 

0.9
82 

0.9
51 

0.9
61 

0.9
99 

0.9
88 

V5 (p.u.) 0.973 
0.9
56 

0.9
69 

0.9
31 

0.9
15 

0.9
79 

0.8
98 

V6 (p.u.) 1.002 
0.9
79 

1.0
05 

0.9
88 

0.9
96 

0.9
92 

0.9
85 

V7 (p.u.) 0.983 
0.9

3 
0.9
42 

0.9
7 

0.9
74 

0.9
51 

0.9
72 

V8 (p.u.) 0.995 
0.9
88 

0.9
78 

0.9
89 

0.9
85 

0.9
49 

0.9
91 

V9 (p.u.) 0.955 
0.9

3 
0.9
48 

0.8
85 

0.9
24 

0.7
71 

0.9
58 

line 7-8 
(%) 31.5 0 

44.
1 

65.
3 11 

10.
3 

47.
4 

line 6-7 
(%) 24.1 

73.
5 0 

43.
6 

57.
3 

58.
9 

18.
1 

line 8-9 
(%) 33.8 

65.
3 

23.
7 0 

57.
4 

64.
5 

19.
9 

line 5-6 
(%) 40.1 

26.
4 

57.
1 

94.
1 0 

15.
9 

66.
5 

line 9-4 
(%) 24 

25.
2 

32.
5 

57.
8 

19.
5 0 

36.
2 

line 4-5 
(%) 15.4 

46.
8 8.8 

20.
5 

39.
8 

36.
9 0 

 
 

3. Data Normalization 
The results in data collection are generally on 
widely different scales thereby the gap different 
between bus voltage and thermal lines are large. In 
order to solve the gap different between bus voltage 
and thermal line, data normalization is implemented. 
In this p\work, the max-min normalization is used 
to rescale the bus voltage and thermal line lie 
within a range of 0 to 1.  
 
Table 2 shows the normalization data at load 
variation of 104%. All the bus voltage and thermal 
line value are located in the range of 0 to 1. By 
comparing data in Tables 1 and 2, the gap different 
between bus voltage value and thermal line value in 
Table 2 is smaller than Table 1. The smaller gap 
difference in the input data of neural network can 
speed up the training process. Besides that, the 
smaller gap difference in the input data also gives 
an accurate forecasts output results. 
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Table 2:  Normalization data in load variation 
104% 

 
Load 

Variation 104% 

Case 
Base 
Case C1 C2 C3 C4 C5 C6 

V4 
0.758

6 
0.5
517 

0.6
897 

0.1
552 

0.3
276 

0.9
828 

0.7
931 

V5 
0.921

9 
0.7
891 

0.8
906 

0.5
938 

0.4
688 

0.9
688 

0.3
359 

V6 
0.930

2 
0.3
953 
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4. Neural Network Performance 
The neuron in hidden layer is varied from 2 neurons 
to 20 neurons. The different number of neurons in 
hidden layers are used to determine the accuracy of 
prediction for the neural network. Figure 7 shows 
that 13 hidden neurons in hidden layer have the 
highest accuracy to predict the security status of the 
system. The accuracy of 13 hidden neurons is 
98.5%. Therefore in this work, 13 hidden neurons 
are used to predict the security status of the system.  
 

Figure 7: Percentage accuracy of neural network 
against number of hidden neuron 

MSE performance index for the 13 hidden neurons 
for training is shown in Figure 8. The value of 
mean square error is 1.74171x10-12 which is very 
small. This reflects the right selection of 13 hidden 
neurons for providing the highest accuracy to 
predict the security level of the system. 
 

 
Figure 8: Mean square error against number of 

epochs 
 
The function of linear regression analysis is to 
compare the actual output of neural network with 
the corresponding target output. The closer the R 
value to 1, the more accurate the prediction. 

 
 

Figure 9: Linear regression of 13 hidden neurons 
trained neural network 

 
Figure 9 shows the R value of linear regression of 
13 hidden neurons is 0.98259 which is indeed very 
close to 1. Again, the good results obtained from 
MSE and linear regression analysis proved that the 
justification of the selection in providing  the best 
performance of the neural network 
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4. CONCLUSIONS 
This paper proves that static security assessment 
using the ANN method is reliability. The ANN 
method had been implemented in this project by 
using IEEE 9 bus system.  The structure of feed 
forward back propagation neural network in this 
project had performed in well condition because it 
gave a high accuracy of prediction to the security 
level in the power system. The proper selection 
number of hidden neurons is required to ensure the 
high performance of a neural network. Besides that, 
data normalization is required to implement in all 
the input data of neural network in order to make 
sure the train data and test data in the same range. 
In a nutshell, ANN is reliability to apply in power 
system static security assessment. 
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