
Journal of Theoretical and Applied Information Technology 
30th September 2011. Vol. 31 No.2 

                                                                  © 2005 - 2011 JATIT & LLS. All rights reserved.                                                                                                                   
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
113 

 

PERFORMANCE ANALYSIS OF A PARALLEL 
IMPLEMENTATION OF GLOBAL MOTION ESTIMATION 

ON MULTIPROCESSORS 
1HUSSEIN R.  AL-ZOUBI AND 2RAMI A. AL-NAMNEH 

1 Asstt Prof., Computer Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk 
University, Irbid 21163, Jordan. 

2 Asstt Prof., Department of Software Engineering, Faculty of Computer and Information Technology  
Jordan University of Science & Technology, Irbid 22110, Jordan. 

Emails: 1halzoubi@yu.edu.jo, 2ramir11@just.edu.jo  

 

ABSTRACT 

Video compression is an important field in our daily life. Motion inside videos can be classified as local or 
global. The two techniques: motion estimation and compensation are used in the modern compression and 
decompression standards. However, these two techniques require high computational power. This mandates 
the need for efficient methods to make video coding faster. To this end, we propose a parallel 
implementation for global motion estimation and present a performance analysis on shared memory 
multiprocessors. 

Keywords: Video Compression, Global Motion Estimation (GME), Global Motion Compensation (GMC), 
Parallel Implementation, Levenberg-Marquardt Algorithm (LMA). 

 

1. INTRODUCTION 

Video processing is one of the most 
important research fields in today’s world for its 
large number of applications including remote 
vision, video conferencing, and video 
surveillance [1]. Video processing deals with the 
manipulation of visual data in order to analyze, 
compress, or segment them. 

The video represents an image sequence 
(e.g. 30 pictures/second), where each image is a 
rectangular matrix of picture elements, or pixels. 
Typically, each pixel requires 24 bits of storage 
space (8 bits for red, 8 bits green, and 8 bits for 
blue in the RGB system). This imposes very high 
storage space requirements for video. 
Fortunately, video compression can help. 
However, most video compression techniques 
are lossy, which means part of the data will be 
lost by compression. 

The motion in a video can in general be 
classified as local and global motion. Global 
motions are caused by the motion of the camera 

like pan, tilt, and zoom. Local motions, on the 
other side are caused by the movement of 
individual objects inside the scene. In light of 
this, any video compression technique should 
consider these types of motion. Therefore, global 
motion estimation and compensation are two 
fundamental methods used in most modern video 
compression standards [2]. 

In order to estimate and compensate for 
global motions, transformation motion models 
are used like the affine and perspective models 
[2], as well be illustrated in the next section. 
Global motion is estimated between the current 
and the previous images (frames) using a motion 
model. The output of motion estimation is a set 
of parameters. For motion compensation, the 
model parameters and the previous frame are 
used to generate the current compensated frame. 
Because the compression is lossy, there will be 
an image difference between the current and the 
compensated frames. The overall process is 
illustrated by the data flow model shown in 
Figure 1. 



Journal of Theoretical and Applied Information Technology 
30th September 2011. Vol. 31 No.2 

                                                                  © 2005 - 2011 JATIT & LLS. All rights reserved.                                                                                                                   
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
114 

 

Because of the intensive computations 
needed for motion estimation and compensation, 
long times are required for compression and 
decompression. Parallel computing has been 
used in many applications [5-6]. To reduce the 
time of global motion estimation and 
compensation, it is possible to parallelize the 
operations performed on the images (which are 
treated as matrices). In this paper, we provide 
performance analysis of a parallel 
Implementation of global motion estimation on 
multiprocessors. To the best of our knowledge, 
we think that this work is the first to address the 
parallelization of global motion estimation and 
compensation. 

The rest of the paper is organized as follows: 
In Section 2, we provide the algorithm 
specification of the global motion estimation and 
how to estimate the parameters of the perspective 
motion model using the Levenberg-Marquardt 
algorithm (LMA). Next, in Section 3, we 
illustrate our parallel implementation of the 
global motion estimation. In Section 4, details 
the simulation results. Finally, Section 5 
concludes the paper.      

 

Figure 1: Data Flow model  

2. ALGORITHM SPECIFICATION 

If one has two consecutive image frames in 
a video, say ܫ௞ (previous frame) and ܫ௞ାଵ (current 
frame) and want to apply global motion 

estimation on them to produce a predicted image 
of the current frame ܫሚ௞ାଵ, it is desirable to 
minimize the difference between ܫ௞ାଵ and ܫሚ௞ାଵ. 
That is, the goal when performing global motion 
compensation is to minimize the following sum 
of squared differences 
 

ܧ ൌ ∑ ݁ଶሺ݅, ݆ሻ,                                             (1) 

where 

݁ሺ݅, ݆ሻ ൌ ,௞ାଵሾ݅ܫ ݆ሿ െ ,ሚ௞ାଵሾ݅ܫ ݆ሿ 

       ൌ ,௞ାଵሾ݅ܫ ݆ሿ െ ,ሺ݅ݔ௞ሾܫ ݆ሻ, ,ሺ݅ݕ ݆ሻሿ.            (2) 

where ݅, ݆ are indexes of the current frame and 
,ݔ  are indexes in the previous frame obtained ݕ
by transforming pixels in ܫ௞. Many models can 
be used for transformation. The perspective 
motion model, which consists of eight motion 
parameters, ݉ଵ through ଼݉, is one of the most 
popular and was adopted by the MPEG-4 video 
coding standard [2]. The transformation carried 
by the perspective model can be obtained by the 
following equations: 

,ሺ݅ݔ ݆ሻ ൌ ௠భ௜ା௠మ௝ା௠య
௠ళ௜ା௠ఴ௝ାଵ

                                     (3) 

,ሺ݅ݕ ݆ሻ  ൌ ௠ర௜ା௠ఱ௝ା௠ల
௠ళ௜ା௠ఴ௝ାଵ

                         (4) 
 

The eight motion parameters, ݉ଵ 
through ଼݉ of the perspective model can be 
evaluated using the Levenberg-Marquardt 
algorithm (LMA) [3], which iteratively 
minimizes ܧ in (1). At iteration (n+1) of the 
LMA, the motion vector ࢓ ൌ ሾ݉ଵ, ݉ଶ, … , ଼݉ሿ is 
updated by: 
 

ሺ௡ାଵሻ࢓ ൌ ሺ௡ሻ࢓ ൅  ሺ௡ሻ,                                (5)࢙
 
where the update ࢙ሺ௡ሻ can be found after solving 
the liner equation   

ሺ௡ሻ൯࢓൫ࡶሺ௡ሻ൯࢓൫்ࡶൣ ൅ ሺ௡ሻ࢙൧ࡵሺ௡ሻߤ ൌ
െ்ࡶ൫࢓ሺ௡ሻ൯࢘൫݉ሺ௡ሻ൯,                         (6) 

where ࡵ is the identity matrix, and µ is a non-
negative scalar parameters. ࢘ሺ࢓ሻ is a column 
vector given by:  

ሻ࢓ሺ࢘ ൌ ሾ݁ሺ1,1ሻ, ݁ሺ1,2ሻ, … , all ݅, ݆ሿ                 (7) 

 ሻ, as given in (8), is the jacobian matrix of࢓ሺࡶ
 :ሻ. That is࢓ሺ࢘



Journal of Theoretical and Applied Information Technology 
30th September 2011. Vol. 31 No.2 

                                                                  © 2005 - 2011 JATIT & LLS. All rights reserved.                                                                                                                   
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
115 

 

ሻ࢓ሺࡶ ൌ

ۏ
ێ
ێ
ێ
ۍ

డ௘ሺଵ,ଵሻ
డ௠భ

డ௘ሺଵ,ଵሻ
డ௠మ

… డ௘ሺଵ,ଵሻ
డ௠ఴ

డ௘ሺଵ,ଶሻ
డ௠భ

డ௘ሺଵ,ଶሻ
డ௠మ

… డ௘ሺଵ,ଶሻ
డ௠ఴ

… …       … all ݅, ے݆
ۑ
ۑ
ۑ
ې
         (8) 

The entries of this Jacobian matrix can 
be evaluated using the following chain rule: 

డ௘ሺ௜,௝ሻ
డ௠ೖ

ൌ డ௘ሺ௜,௝ሻ
డ௫

డ௫
డ௠ೖ

     (9) 

డ௘ሺ௜,௝ሻ
డ௠ೖ

ൌ డ௘ሺ௜,௝ሻ
డ௬

డ௬
డ௠ೖ

     (10) 

 

Table 1 shows what values డ௫
డ௠ೖ

 and డ௬
డ௠ೖ

 
can take, where ܦ ൌ ݉଻݅ ൅ ଼݆݉ ൅ 1 

 

And finally, 

߲݁ሺ݅, ݆ሻ
ݔ߲ ൌ ൫1 െ ௜ݔ௞ሾܫ௙൯ሺݕ ൅ 1, ௜ሿݕ െ ,௜ݔ௞ሾܫ  ௜ሿሻݕ

൅ݕ௙ሺܫ௞ሾݔ௜ ൅ 1, ௜ݕ ൅ 1ሿ െ ,௜ݔ௞ሾܫ ௜ݕ ൅ 1ሿሻ.      (11) 

Similarly 

߲݁ሺ݅, ݆ሻ
ݕ߲ ൌ ൫1 െ ,௜ݔ௞ሾܫ௙൯ሺݔ ௜ݕ ൅ 1ሿ െ ,௜ݔ௞ሾܫ  ௜ሿሻݕ

    ൅ݔ௙ሺܫ௞ሾݔ௜ ൅ 1, ௜ݕ ൅ 1ሿ െ ௜ݔ௞ሾܫ ൅ 1,  ௜ሿሻ. (12)ݕ

where ݔ௜, ݕ௜ are the integer part and ݔ௙, ݕ௙ are 
the fractional part of coordinates ݔ and ݕ, 
respectively. 

 

3. THE PARALLEL IMPLEMENTATION 

The serial implementation to perform global 
motion estimation on two consecutive images 
consists of the following steps: 

1. Input two consecutive frames. 
2. Vector and matrix calculations: 

a. Calculation of ࢘ሺ࢓ሻ vector. 
b. Calculation of ࡶሺ࢓ሻ matrix. 
c. Calculation of ்ࡶሺ࢓ሻࡶሺ࢓ሻ 

matrix. 
d. Calculation of  ்ࡶሺ࢓ሻ࢘ሺ࢓ሻ 

vector. 
3. Gaussian algorithm: 

a. Solve for ࢙ using Equation (6). 
4. Update the value of vector ݉ using 

Equation (5). 
 

In light of the above steps and using the 
shared memory approach to parallelize the global 
motion estimation, our focus was on 
parallelizing steps 2 and 3. For matrix 
multiplication, shared address space was used in 
the parallel algorithm, where matrices were 
divided into blocks of rows. Blocks were 
assigned to threads and each thread was 
responsible for multiplying its share, an example 
can be shown in Figure 2 below. Data 
decomposition was used in this project because 
there is no data dependency. 
 

 

Fig 2: Parallel matrix multiplication 

   In Gaussian elimination, threads should 
process rows sequentially because there is 
dependency in data, which in turn requires that 
all threads should finish their tasks before going 
to the next row, which is called “barrier” as 
shown in figure 3. 

 

Fig 3: Parallel Gaussian elimination 

4. SIMULATION RESULTS 

The simulator and cross-compiler binaries are 
compiled for an IA32 native machine running 
Linux. Therefore, Linux was installed on a 



Journal of Theoretical and Applied Information Technology 
30th September 2011. Vol. 31 No.2 

                                                                  © 2005 - 2011 JATIT & LLS. All rights reserved.                                                                                                                   
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
116 

 

machine with a processor based on an IA32 ISA. 
The cross-compiler is based on gcc-3.2 and is 
used to compile C/C++ source code into MIPS 
binaries for use with the simulator. The simulator 
that we have used in the experiments is based on 
SESC (sesc.sourceforge.net), which is an 
advanced execution-driven simulation 
environment that supports a dynamic superscalar 
processor model in which every component of 
the architecture is modeled cycle by cycle. It 
supports both uniprocessor and multiprocessor 
architectures.  

The execution time in terms of the number of 
clock cycles is shown in Table 1, where we have 
used 5 image sizes: 32×32, 64×64, 128×128, 
256×256, and 512×512 pixels. Table 1 shows the 
number of clock cycles required to complete 
GME when 1, 2, 3, 4, 5, 6, 7, and 8 threads were 
used. it is obvioues that the number of cycles 
decrease as the number of threads increase. 

 

 

Fig 4: Speed up 

The obtained speedup is shown in 
Figure 4. The relation should be theoretically 
linear and should express the following relation: 

݌ݑ݀݁݁݌ݏ ݈ܽ݉݅ݐ݌ܱ ൌ  (13)  ݏ݀ܽ݁ݎ݄ݐ ݂݋ ݎܾ݁݉ݑ݊

Practically, the relation was not linear in 
all cases. The reason is that an 8×8 matrix when 
solved by the Gaussian elimination method, 
unbalanced distribution will show up: 

ሻݏ݀ܽ݁ݎ݄ݐ ݂݋ ݎܾ݁݉ݑሺ݊ ݀݋݉ 8 ് 0          (14) 

To illustrate, consider the case when 
seven threads are utilized,  so that one of the 
threads (say thread 0) processes two rows while 
the other threads each will process  one row 

which means that these threads will wait until 
(thread 0) finishes its task . The efficiency is 
defined as follows: 

ݕ݂݂ܿ݊݁݅ܿ݅ܧ ൌ ௌ௣௘௘ௗ௨௣
ே௨௠௕௘௥ ௢௙ ௧௛௥௘௔ௗ௦

              (15) 

Because of the non-linear speed up, the 
efficiency is affected as shown by Figure 5. We 
can notice from Figure 5 that there are some 
values of efficiency higher than one, these values 
represent cases called ”super speed up”. Super 
speed up case occurs when: 

݌ݑ݀݁݁݌ܵ ൐  (16)              ݀ܽ݁ݎ݄ݐ ݂݋ ݎܾ݁݉ݑܰ

This is due to cashing and cash 
prefetching. The only limitation in our algorithm 
is that our algorithm generates an 8×8 matrix 
which cannot be parallelized by more than 8 
threads. In other words, we cannot use more than 
8 threads (processes) to process this matrix of 
size 8×8. 

 

 

Fig 5: Efficiency 

 

5. CONCLUSIONS 

In this paper, we have implemented global 
motion estimation in shared memory 
multiprocessors and obtained high speed up 
using different image sizes. The results show 
that, for the same data sizes, as we increase the 
number of threads, the clock cycles decrease. 
Moreover, the results (figures and tables) show 
that we can get linear speed-up when we use 
large data sizes (larger than 512). However, 
practically, the relation was not linear in all 

0.00

5.00

10.00

2 3 4 5 6 7 8

Number Of threads

Speed Up

32

64

128

256

512
0.00

0.50

1.00

1.50

2 3 4 5 6 7 8

Number Of Process

Efficiency

32

64

128

256

512

Data 
Size 



Journal of Theoretical and Applied Information Technology 
30th September 2011. Vol. 31 No.2 

                                                                  © 2005 - 2011 JATIT & LLS. All rights reserved.                                                                                                                   
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
117 

 

cases; this is due to unbalanced distribution of 
threads when we use power of two data-sizes and 
odd threads (data size mod (number of threads) ≠ 
0).  For example, if the data size is 8 and number 
of thread are 3, two threads process three rows 
and the third thread processes two rows 
(unbalanced load). Another thing that worth to 
be mentioned is that the efficiency is more than 
100% in some cases, since cashing and pre-
fetching using shared memory multiprocessors 
reduce the cash misses and decrees the total time 
required to parallelize our code . 

 

REFERENCES 

[1] H. Yin, C. Du, C. Ren, Z. Chen, H. Min, 
and C. Lin, “A secure and scalable video 
conference system based on peer-assisted 
content delivery networks,” ,” 
International Journal of Computer 
Systems Science and Engineering, vol. 24, 
no. 5, September 2009. 

 
[2] F. Dufaux and J. Konrad, “Efficient, 

robust, and fast global motion estimation 
for video coding,” IEEE Trans. Image 
Processing, vol. 9, no. 3, March 2000, pp. 
497-501. 

 
[3] MPEG-4 video verification model version 

18.0, in: ISO/IEC JTC1/SC29/WG11 
N3908, Pisa, Italy, 2001. 

 
[4] W. Press, S. Teukolsky, W. Vetterling, and 

B. Flannery, Numerical Recipes in C: The 
Art of  Scientific Computing, Second 
Edition, Cambridge University Press, 
2002. 

 

[5] D. M. Quan, J. Altmann, and L. T. Yang, 
“Improving the capability of the SLA 
workflow broker with parallel processing 
technology,” International Journal of 
Computer Systems Science and 
Engineering, vol. 24, no. 5, September 
2009. 

 

[6] Y. Tang, Y. Zhang, and H.Chen, 
“Aԛparallel shortest path algorithm based 
on graph-partitioning and iterative 
correcting,” International Journal of 
Computer Systems Science and 
Engineering, vol. 24, no. 5, September 
2009. 

 

AUTHOR PROFILES: 

 
Dr. Hussein R. Al-
Zoubi received his MSE 
and Ph.D. in Computer 
Engineering from the 
University of Alabama 
in Huntsville, USA in 
2004 and 2007, 
respectively. Since 2007, 

he has been working as an assistant professor 
with the Department of Computer 
Engineering, Hijjawi Faculty for Engineering 
Technology, Yarmouk University, Jordan. His 
research interests include Image Processing, 
Video Coding, Machine Learning, Computer 
Architecture, Wireless Networks, and Parallel 
Processing. 
 
 
 

Dr. Rami A. Al-Namneh 
received his MSE and 
Ph.D. in Computer 
Engineering from the 
University of Alabama in 
Huntsville, USA in 2003 
and 2006, respectively. 

Since 2006, he has been working as an 
assistant professor with the Department of 
software Engineering, Faculty of Computer 
Information Technology, Jordan University of 
Science and Tecnology, Jordan. His research 
interests include Parallel algorithms and 
parallel programming. 
 

 
 
 
 

 



Journal of Theoretical and Applied Information Technology 
30th September 2011. Vol. 31 No.2 

                                                                  © 2005 - 2011 JATIT & LLS. All rights reserved.                                                                                                                   
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
118 

 

Table 1: Partial derivatives of ݔ and ݕ with respect to motion parameters. 

݇ 1 2 3 4 5 6 7 8 

ݔ߲
߲݉௞

 
݅
 ܦ

݆
 ܦ

1
െ 0 0 0 ܦ

݅ݔ
ܦ  െ

݆ݔ
ܦ  

ݕ߲
߲݉௞

 0 0 0 
݅
 ܦ

݆
 ܦ

1
െ ܦ

݅ݕ
ܦ  െ

݆ݕ
ܦ  

 

Table 2: Execution time in cycles 

 1 2 3 4 5 6 7 8 

32 1520194 813483 625295 490984 471705 445942 421328 336632 

64 5619336 2766428 2026344 1478712 1334595 1241813 1170898 858718 

128 42715747 20864745 14110953 10623504 9021732 8452800 8124291 5490458 

256 170645659 83497328 60379490 42094571 38908211 37094441 35905198 21817401 

512 681934334 332834337 243708431 167034859 157573411 150194605 144945089 84762585 

 

 

 

 

 

 

 

 

 

 


