
Journal of Theoretical and Applied Information Technology
30th September 2011. Vol. 31 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

109

 MINI TCP/IP FOR 8-BIT CONTROLLERS

R.MANIKANDAN
Assistant Professor, School of Computing , SASTRA University,Thanjavur-613401,India

E-mail: manikandan75@core.sastra.edu

ABSTRACT

 Internet introduced sweeping changes in communication and information Technology. Information super
highway linked every nook and corner of this world and flow of information brought down and almost
eliminated the time spent in searching and sifting information. The benefits are endless. In recent years the
interest of connecting small embedded devices to the IP networks has increased. In order to communicate
over Internet the TCP/IP protocol stack is required. Unfortunately, for most electronic devices,
implementing the technology to achieve this networking connectivity based on open Internet standards does
not come easily. For example, most household appliances are based on very low-cost 8-bit controller
technology and chances are that the host MCU includes neither a network port nor the hardware resources
to support TCP/IP and other Internet protocols without disrupting their primary function. So, the normal
TCP/IP way of implementation will fail. Here we have to incorporate certain optimization techniques for
developing small TCP/IP stack. The usage of this stack is for Remote data acquisition and control systems,
and many more utilities. [1],[2],[4]

 Keywords: TCP, IP, FITO buffer, RAM, Mini TCP/IP

1. INTRODUCTION

 With the success of the Internet , the TCP/IP
protocol suite has become a global standard for
communication. TCP/IP underlying protocol used
for web page transfers, e-mail transmissions, file
transfers, and peer-to-peer networking over the
Internet. For embedded systems, being able to run
native TCP/IP makes it possible to connect the
system directly to an intranet or even the global
Internet. Embedded devices with mini TCP/IP
support will be first-class network citizens, thus
being able to fully communicate with other hosts in
the network. Traditional TCP/IP implementations
have required far too much resources both in terms
of code size and memory usage to be useful in small
8 or 16-bit Systems. Code size of a few hundred
kilobytes and RAM requirements of several
hundreds of kilobytes have made it impossible to fit
the mini TCP/IP stack into systems with a few tens
of kilobytes of RAM and room for less 100
kilobytes of code.

TCP is both the most complex and the most widely
used of the transport protocols in the TCP/IP stack.
TCP provides reliable full-duplex byte stream
transmission on top of the best-effort IP layer.
Because IP May reorder or drop packets between
the sender and receiver, TCP has to implement
sequence numbering and retrasmissions in order to

achieve reliable, ordered data transfer. We have
studied how the code size and RAM usage of a
mini TCP/IP implementation affect the features of
the TCP/IP implementation and the performance of
the communication. We have limited our work to
studying the implementation of TCP and IP
protocols and the interaction between the mini
TCP/IP stack and the application programs. Aspects
such as address configuration, Security, and energy
consumption are out of the scope of this
work.[1],[2],[3]

The main contribution of our work is that we have
shown that is possible to implement a mini TCP/IP
stack that is small enough in terms of code size and
memory usage to be useful even in limited 8-bit
systems. Furthermore, Existing TCP/IP
implementations for small systems assume that the
embedded device always will communicate with a
full-scale TCP./IP implementation running on a
workstation-class machine. Under this assumption,
it is possible to remove certain TCP/IP mechanisms
that are very rarely used in such situations. Many of
those mechanisms are essential, however, if the
embedded device is to communicate with another
equally limited device, e.g., when running
distributed peer-to-peer services and protocols.

Journal of Theoretical and Applied Information Technology
30th September 2011. Vol. 31 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

110

2. TCP/IP OVERVIEW

From a high level view point, the TCP/IP stack can
be seen as black box that takes incoming packets,
and de-multiplexers them between the currently
active connections. Before the date is delivered to
the application, TCP sorts the packets so that they
appear in the order they were sent. The TCP/IP
stack will also send acknowledgements for the
received packets. Data arrives asynchronously form
both the network and the application, and the
TCP/IP stack maintains queues in which packets
are kept waiting for service. Because packets might
be dropped or reordered by the network, incoming
packets may arrive out of order. Such packets have
be queued by the TCP/IP stack until a packet that
fills the gap arrives. Furthermore, because TCP
limits the rate at which data that might not be
immediately sent out onto the network.[1],[2]

 The mini TCP/IP suite consists of numerous
protocols, ranging from low level protocols such as
ARP which translates IP addresses to MAC
addresses, to application level protocols such as
SMTP that is used to transfer e-mail. We have
concentrated our work on the TCP and IP protocols
and will refer to upper layer protocols as “the
application”. Lower layer protocols are often
implemented in hardware and will be referred to as
“ the network device” that are controlled by the
network device driver. TCP provides a reliable byte
stream to the upper layer protocols. It breaks the
byte stream into appropriately sized segments and
each segment is sent in its own IP packet. The IP
packets are sent out on the network by the network
device driver. If the destination is not on the
physically connected network, the IP packet is
forwarded onto another network by a router that is
situated between the two networks. If the maximum
packet size of the other network is smaller than the
size of the IP packet, the packet is fragmented into
smaller packets by the router. If possible, the size of
the TCP segments are chosen so that fragmentation
is minimized. The final recipient of the packet will
have to reassemble any fragmented IP packets
before they can be passed to higher layers.[1],[2].

3. RELATED WORK

The problem at hand was analysed in detail before
implementing the stack. In various industrial
applications where control and instrumentation is
applied, there is a necessity of measuring the field
point values of a changing physical parameter; for

example measurement of temperature in a chemical
plant where the contents in a bath is mixed at a
constant temperature and pressure for a specified
output. Monitoring temperature in olden days is
done at the field point itself. But now there arises
the need for monitoring and controlling field point
values from a single control room. If the distance
between the field point and control room is short,
standard techniques like serial communication can
be applied for measuring and controlling data. But
if the distance is large these methods cannot be
applied and thus one has to device alternate
methods for this communication. The various
possibilities can be [3],[5],[6]

1.Using simple RF communication at an
unlicensed frequency. 2.Using GPS systems.
3.Using telephonic systems with the
manipulation of analog data. 4. Using TCP/IP
and Internet infrastructure.

Let us analyse these methods one by one. First, if
we use the simple RF communication for
transportation and controlling the data we will face
the problem of the frequency to be used for
modulation. Using an unlicensed frequency will
definitely cause interference and there may be a
permanent loss of data.In the second method using
GPS systems we should necessarily have a GPS
network. If it is not there then the proposed method
will not work. If there is a GPS network, then the
hardware involved for doing this communication
will be very high and it will overshoot the
sophistication of the problem.

The method of telephonic systems can be used
effectively if remote data acquisition is not
required. For example, a server in some other
country wants to utilize the data already collected.
The final method is more suited because the
Internet infrastructure is well established and the
hardware involved for this communication is very
cheap. All that we have to do is to write a minimal
version of the TCP/IP protocol which can run very
well in a single 8-bit microcontroller.[2][4][5]

4. ARCHITECTURE AND FUNCTIONALITY

Mini TCP/IP can be seen as a code library that
provides certain functions to the system. The figure
III shows the relations between mini TCP/IP the
underlying system and the application program.
Mini TCP/IP provides three function to the
underlying system, ip_init(), ip_input() and
ip_periodic(). The application must provide a call
back function to mini TCP/IP. The call back
function is called when network or timer events

Journal of Theoretical and Applied Information Technology
30th September 2011. Vol. 31 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

111

occur. Mini TCP/IP provides the application with a
number of function for interacting with the stack.
Note that most of the functions provided by mini
TCP/IP is implemented as C Language macros for
speed, code size efficiency, and stack usage
reasons.[1][2][3]

Figure-I:

The our proposed architecture is shown in the

Figure-I.

The BSD socket interfaces used in most operating
systems is not suitable for small systems. Since it
forces a thread based programming model on the
application programmer. A multithreaded
environment is significantly more expensive to run
only because of the increased code complexity
involved in thread management, but also because of
the extra memory needed for keeping per-thread
state. The execution time overhead in task
switching also contributes to this. Small systems
may not have enough resources to implement such
a multithread environment, and therefore an
application interface, which requires this, would not
be suitable for mini TCP/IP. Instead, mini TCP/IP
uses an event based programming model where the
application is implemented as a C language
function that is called by mini TCP/IP in response
to certain events.[2][3][4]

Figure-II:

Backbone functions in Mini TCP/IP Stack

Mini TCP/IP calls the application when data is
received, when data has been successfully delivered
to the other end of the connection, when a new
connection has been setup, or when data has to be
retransmitted. The application is also periodically
polled for new data. The application program
provides only one call back function; it is up to the
application to deal with mapping different network
services to different ports and connection.

5. CODE SIZE REDUCTION

 The 8-bit controllers have a restriction on the
program memory and data memory,
implementation of the above issues takes
precedence. In realising the proposed mini TCP/IP,
we have to incorporate the board support package,
the device driver for the physical layer, the IP and
TCP protocols and the application layer.
Considering an Intel 8051 microcontroller, the
memory available (64K data and 64K program
memory) is less. Thus lot of optimization has to be
done in memory usage. The features of the
implementation includes Very small code size, Low
memory usage, Implementation of full fledged IP
and TCP Layer, Single threaded Application and
No operating system is involved.[1],[2],[4],[5]

APPLICATION

Ip_input(),ip_init(),ip_periodic()

IP AND TCP LAYER

HARDWARE

Journal of Theoretical and Applied Information Technology
30th September 2011. Vol. 31 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

112

Figure III:

ip_input() ip_periodic()

6. MEMORY MANAGEMENT AND BUFFER
MANAGEMENT

Getting more help from the application layer

thereby reducing the overhead for the stack. By
retransmitting the data from the application layer
and not keeping it in the buffer. This retransmission
of the data involves only the application layer and
not the stack. This reduces the source code and the
memory usage to a maximum extent.
FITO buffer has been used for the implementation.
It has one IN and two OUT pointers. Two OUT
pointers are used to keep track of the
acknowledgement signal.[2],[3]

7. CONCLUSION

 A mini TCP/IP has been developed to meet the
ever increasing demands of connecting small
embedded devices to the Internet. It is highly
portable across various platforms and is intended
for single threaded applications.

8. FUTURE WORK

Security aspects: When computing systems to a
global Internet the security of the system is very
important. Identifying levels of security and
mechanisms for implementing security for

embedded devices is crucial for Connecting
systems to the global Internet.
 Performance Enhancing Proxy: It might be
possible to increase the performance of
communication with the embedded devices
through the use of a proxy situated near the devices.
Such a proxy would have more memory than the
devices and could assume responsibility for
buffering data.

REFERENCES

[1]. The Protocols (TCP/IP Illustrated, Volume I)
by Richard Stevens, Addison-Wesley, 1994.

[2]. The Protocols (TCP/IP Illustrated, Volume II)
by Richard Stevens, Addison-Wesley, 1995.

[3]. TCP/IP Application layer protocols for
Embedded Systems by M.Tim Jones, Firewall
Media,2003

[4]. Programming and Customizing the 8051
Microcontroller by Myke Predko, McGraw-
Hill, 1998.

[5]. The 8051 microcontroller Architecture
programming &Applications (2nd edition) by
Kenneth J.Ayala Penram International

[6]. The 8051 Microcontroller and Embedded
Systems by Muhammad Ali Mazidi Janice
Gillispie Mazidi, Prentice-Hall India

System

Network device
driver

Periodic Timer

Application

Mini TCP/IP

