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ABSTRACT 
 

Mathematical Morphology arose in 1964 by the work of George Matheron and Jean Serra, who developed 
its main concepts and tools. It uses concepts from algebra and geometry. (Set theory, complete lattice 
theory, convexity etc,). The notion of adjunction is very fundamental in Mathematical Morphology.  
Morphological systems is a broad class of nonlinear signal operators that have found many applications in 
image analysis. Morphological Transforms are a type of non linear signal transform for morphological 
systems. The Moore family stands for the family of closed objects. When the ETI and DTI systems are 
related via an adjunction, then there is also a close relationship between their impulse responses. Namely 
,let  ε be an ETI system, and let∆   be its adjoint dilation. It is easy to show that ∆  is a DTI system[11], 
and therefore   ( )f f g∆ = ⊕  ,where g is the lower impulse response.  In this paper, we will try to 
present the inter-relationships between Moore family, adjunctions and Morphological transforms.  
 
Keywords: Dilation, Moore Family, Adjunction, Slope Transforms, Support Function. 

1. INTRODUCTION  

1.1 NOTATION AND IMAGE DEFINITIONS 

TYPES OF IMAGES 

An image is a mapping denoted as I, from a set, NP, 
of pixel coordinates to a set, M, of values such that 
for every coordinate vector, p =  in NP, 
there is a value I(p) drawn from M.  NP is also 
called the image plane.[1] 
Under the above defined mapping a real image 
maps an n-dimensional Euclidean vector space into 
the real numbers. Pixel coordinates and pixel values 
are real. 
A discrete image maps an n-dimensional grid of 
points into the set of real numbers.   Coordinates 
are n-tuples of integers, pixel values are real. 
A digital image maps an n-dimensional grid into a 
finite set of integers. Pixel coordinates and pixel 
values are integers. 
A binary image has only 2 values.  That is, 
M= {mfg , mbg}, where mfg, is called the foreground 
value and mbg is called the background value. 

The foreground value is mfg = 0, and the 
background is mbg = –∞.  Other possibilities are 
{mfg, mbg} = {0,∞}, {0,1}, {1,0},  {0,255}, and 
{255,0}.    

1.2 DEFINITION 

The foreground of binary image I is 
.  

The background is the complement of the 
foreground and vice-versa 
 
1.3 DILATION AND EROSION 
 Morphology uses ‘Set Theory’ as the foundation 
for many functions [1].  The simplest functions to 
implement are ‘Dilation’ and ‘Erosion’. 
 
1.3.1 DEFINITION : DILATION  
 
 Dilation of the object A by the structuring element 

B is given by  
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Usually A will be the signal or image being 
operated on A and B will be the Structuring 
Element’ 
 
1.3.2 DEFINITION  EROSION  
 
The opposite of dilation is known as erosion. 
Erosion of the object A by a structuring element B 
is given by 

  
Erosion of A by B is the set of points x such that B 
translated by x is contained in A. 

1.4 OPENING AND CLOSING 

Two very important transformations are opening 
and closing. Dilation expands an image object and 
erosion shrinks it. Opening, generally smoothes a 
contour in an image, breaking narrow isthmuses 
and eliminating thin protrusions. Closing tends to 
narrow smooth sections of contours, fusing narrow 
breaks and long thin gulfs, eliminating small holes, 
and filling gaps in contours.  
 
1.4.1 DEFINITION : OPENING 
 
The opening of A by B, denoted by , is 
given by the erosion by B, followed by the dilation 
by B, 

 that is  
 
1.4.2 DEFINITION :CLOSING 
 
The opposite of opening is ‘Closing’ defined by 

 
Closing is the dual operation of opening and is 
denoted by . It is produced by the dilation 
of A by B, followed by the erosion by B:  
 
2 MORPHOLOGICAL OPERATORS   
   DEFINED ON A LATTICE 
 
2.1 DEFINITION: DILATION  

Let be a complete lattice, with infimum 
and minimum symbolized by and , 
respectively.[1],[2].[11] 
 A dilation is any operator that 
distributes over the supremum  and preserves the 
least element.  

,  

.  
 
2.2 DEFINITION: EROSION  
 
An erosion is any operator that 
distributes over the infimum  

, .  
 
2.3 GALOIS CONNECTIONS: 
Dilations and erosions form Galois connections. 
That is, for all dilation δ there is one and only one 
erosion that satisfies 

 for all 
. 

Similarly, for all erosion there is one and only one 
dilation satisfying the above connection. 
Furthermore, if two operators satisfy the 
connection, then δ must be a dilation , and an 
erosion. 
 
2.4 DEFINITION : ADJUNCTIONS : 
 
Pairs of erosions and dilations satisfying the above 
connection are called "adjunctions", and the erosion 
is said to be the adjoint erosion of the dilation, and 
vice-versa. 
 
2.5 OPENING AND CLOSING: 

For all adjunction , the morphological 
opening and morphological closing 

are defined as follows:[2] 
, and .  

The morphological opening and closing are 
particular cases of algebraic opening (or simply 
opening) and algebraic closing(or simply closing). 
Algebraic openings are operators in L that are 
idempotent, increasing, and anti-extensive. 
Algebraic closings are operators in L that are 
idempotent, increasing, and extensive. 
 
 2.6 PARTICULAR CASES: 
 
Binary morphology is a particular case of lattice 
morphology, where L is the power set of E 
(Euclidean space or grid), that is, L is the set of all 
subsets of E, and is the set inclusion. In this case, 
the infimum is set intersection, and the supremum 
is set union. 
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Similarly, grayscale morphology is another 
particular case, [2] where L is the set of functions 

mapping E into , and , , 
and , are the point-wise order, supremum, and 
infimum, respectively. That is, is f and g are 
functions in L, then if and only if 

; the infimum 
is given by 

; and the 
supremum is given by 

.[1] 
 
3 MOORE FAMILY AND MATHEMATICAL 

MORPHOLOGY 
 
3.1 DEFINITION: MOORE FAMILY: 
 
Let L be a poset. 

i) A subset M of L is a Moore family if every 
element of L has a least upper bound in M. 

  
ii) A closure operator on L is an increasing, 

extensive and idempotent operator from 
        L L. 

3.2 PROPOSITION: 
 
Let L be a poset. There is a one to one 
correspondence between Moore families in L and 
closings on L, given as follows. 

i) To a Moore family M, associate the 
closing  defined by setting for every 

x L; (x) is equal to the least y M such 

that y x. 

ii) To a closing , one associates the Moore 
family M which is the invariance domain 
of : M =Inv   

       (i.e. M= . 

3.3 RESULT: 
 
Let L be a complete lattice. A subset M of L is a 
Moore family iff M is closed under the infimum 
operation. 
  

In particular  

Given a Moore family M corresponding to a 
closing  is a complete lattice with 

greatest element 1 and least element  
and where the supremum and infimum of a family 
N M are given by  and Nrespectively. 

(  (1)=1 and N) = N) 

Also , . 
 
EXAMPLE 
 
Let F be the family of closed sets in a topological 
space E. 
Since F is closed under arbitrary intersections, and 
contains the empty intersection , F 
corresponds to a closing, which is the topological 
closure operator cl, where for X E, cl(X) is the 
least element of F containing X.� F is a Moore 
family of P(E) (ordered by inclusion) 
 
3.4 PROPERTIES OF MOORE FAMILY: 
 
i. where F is the Moore 
family. 
ii. F is closed under binary union for C1, C2 , 

C1 C2 F cl(C1 C2)=C1 C2 

F is the set of cl(X) for X P(E) and Ci=cl(Xi) 

X1, X2 P(E), cl(X1 X2) = cl(X1)  cl(X2) 
 
3.5 RESULT: 
 
In a Poset L, a dual Moore family is a subset M 
such that every element of L has a greatest lower 
bound in M. 
 
3.6 DEFINITION: MORPHOGENETIC FIELD 
 
Let X≠ ϕ  and W )(XP⊆ such that i)φ , X  ∈ 

W , ii) If B ∈  W    then its complement    B   ∈W 
iii)   If Bi∈W  is a sequence of signals defined in 

X, then    ∈
∞

=
U

1n

Bi  W.  

Let A={ })()(&)()(/: iiii AAAAUW φφφφφ ∧=∧∨=∪→  
Then WU is called   Morphogenetic field [7]where   
the family Wu is the set of all image signals defined 
on the continuous or discrete image Plane  X and 
taking values in a set U .The pair ( Wu, A ) is called 
an operator space where  A is the collection of 
operators defined on X.   
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3.7 DEFINITION : MORPHOLOGICAL 
SPACE 
 
The triplet (  X, Wu,  A ) consisting of a set X, a 
morphogenetic field  Wu  and an operator  A(or 
collection of operators) defined on X is called a 
Morphological space. 
      Note: If X = Z2 then it is called Discrete 
Morphological space 
 
3.8 DEFINITION: ADJUNCTION 
 

Let ),,( AWX u & ),,(
−

AWY u  be a morphological 

spaces. The pair ),(
−

AA  is called an adjunction iff 

)()( YAXYXA
−

≤⇔≤ where 
−

A is an inverse 
operator of A. 
3.9 PROPOSITION: 
 
Let ),,( δuWX & ),,( εuWY  be a morphological 
spaces with operators dilation and erosion on A. 
Then )()( YXYX εδ ≤⇔≤ . 
 
 3.10 PROPOSITION (FOR LATTICE): 

Let ),,( AWX u & ),,(
−

AWY u  be a morphological 

spaces. The pair ),(
−

AA  is called an adjunction iff 

∃∈∀ ,, Xvu an adjunction ),( ,, uvvu ml on U such 

that ))(())(( , vxmuxA uvXv∈

−

∨= and 

))(())(( , uylvyA vuXu∈
∧= ,∀ UWyxXvu ∈∈ ,,, .

 
 
 3.11 DEFINITION: 
 
The operator δεφ o= defines a closure called 

morphological closure and εδφ o=∗  defines a 
kernel, called morphological kernel. 
 
3.12 PROPERTIES: 
 
Let ),,( AWX u  be a morphological space and let 

 and  in A. Then  

i.  and  are increasing,  =   and  = 

.[14] 

ii.  is a closing on A,  is an opening on B. 

iii.  Inv( ) = (B) and Inv (  = δ(A). 

iv. (B) defines a Moore family. 

v.  (A) defines a dual Moore family 

vi.  The restriction of  to (B) is an isomorphism 

from (B)  whose 

inverse is the restriction of 

. 

vii. B  is an erosion if it commutes with the 

infimum operation .That is   (xi, iЄI)  B, 

. 

viii.  is a dilation if it commutes with 

the supremum operation. That is  (xi, iεI)  

B, . 
 
3.13 PROPOSITION: 
Let ),,( AWX u  be a morphological space and  

and  in A. Let V and W be two sets in X. Let P be 
a relation between elements of V and of W. Define 

: P(V)  P(W), the dilation by  and : 

P(W) P(V), the erosion by  

as: X P(V), (X) =  

 
 
3.14 DEFINITION: 
 
Let ),,( AWX u  be a morphological space and  

and  in A. Let V and W be two sets in X. Let P be 
a relation between elements of V and of W. Let N: 
V P(W) and : W P(V) 

, w  

i.e., N(v) = and 

W)=  
When V=W, the set N(v) is called a neighbourhood 
function [14]or a window function. 
 
3.15 PROPOSITION: 
 
Let ),,( AWX u  be a morphological space and  

and  in A. Let V and W be two sets in X. Let P be 
a relation between elements of V and of W. Let N: 
V P(W) and : W P(V) 
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For every x P(V), 

 N(x)= =  

For every y P(W), 

N(Y) =  

Also ( N,  N)is an adjunction. 
 
3.16 PROPOSITION: 
 
Let ),,( AWX u  be a morphological space 

.Consider a relation  on a set E [14]in X and the 

corresponding maps, N, : E P(E).  
Then 
 a)  is reflexive. 

b)  N is extensive  

c)  N is anti-extensive  

d)  is extensive  

e)  is anti-extensive  are equivalent statements. 

Proof: Let ),,( AWX u  be a morphological space 

.Consider a relation  on a set E in X. Let E be in 
X. Let P be a relation between elements of E and E. 
Let N: E P(E) and : E P(E) 

v Eε , w  

i.e., N(v) = and 

W)=  
By using the definitions of Dilation, Erosion and 
Neighbourhood function we can prove the above. 
 
3.17 PROPOSITION: 
 
a)  is symmetrical  b)  N is 
extensive 
c)  N  is anti-extensive d) N  is extensive 

e)  N is anti-extensive 
 
3.18 PROPOSITION: 
 
a)  is transitive  b)  N

2
N   

c) N
2

N                        d) 2   

e) 2 . 
 
 
 
 

4. MORPHOLOGICAL TRANSFORMS: 
 
4.1 LINEAR TIME – INVARIANT SYSTEMS: 

DEFINITION (LTI SYSTEMS): 
 
An LTI system is defined as a signal operator L, 
mapping on input signal x(t) to an output L[(x(t)] 
which obeys the linear super position principle L 
[ ] =  and is time-
invariant. 
i.e. L[x(t-t0)] =[L(x)](t- t0)   where {xi} is a finite 
collection of signals, t0  is an arbitrary time shift, 
and i are real or complex weights.   
 
4.2 DEFINITION: DILATION TRANSLATION 

INVARIANT (DTI) SYSTEM 
 
A signal operator D:x y = D(x) is called a  
dilation translation invariant (DTI) system if it is 
translation invariant.  
i.e. D[x(t-to)+c]=C+[D(x)(t-to)] for any real 
constants to and c. 
Equivalently, a system is DTI if it is time - 
invariant and obeys the Morphological Supremum 
of sums superposition principle 
D[ + ]= +D ( )] 
 
4.3 PROPOSITION: 
 
Any morphological dilation is a DTI system. A 
system is DTI if and only if its output signal is the 
morphological dilation of the input by its impulse 
response. 
D is DTI  D(x) = x , g  D( ) 

The lines, i.e. affine signals x(t) = (t) + b are 
Eigen functions of any DTI system D because 
D( t+b) =  

=  where the corresponding Eigen 

value is G( ) = ( )
t

g t tα−∨ which is the slope 

response of the DTI system. It measures the amount 
of shift in the intercept of the input lines. 
 
4.4 DEFINITION: EROSION – 

TRANSLATION INVARIANT (ETI) 
SYSTEM  

 
The Morphological erosion is a dual operation of 
the dilation with respect to signal negation. 
A signal operator x)} is called an 
Erosion translation Invariant (ETI) system if it is a 
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lattice erosion i.e. distributes over any infimum of 
input signals and is translation invariant. 
Equivalently is an ETI system if it is time -
invariant and obeys the morphological infimum of 
sums super position principle 

 
A system is ETI iff its output is the infimal 
convolution of the input with the impulse response. 
The affine signals x(t) = t+b are Eigen functions 

of any ETI system  because  

 ( t+b)= t+b+F( ) with corresponding Eigen 

value F( ) = - t). F( ) is the slope 
response of the ETI system. 
 
4.5 DEFINITION: CONVEX AND CONCAVE 

SIGNALS 
 
Given a function f: R, f is concave iff 

 f(t)>,  p ,q,>0 and t. 

A concave function is called proper if f(t)>–  for 

atleast one t and f(t) < + t. 
A function f is convex if – f is concave. 
 
4.6 LEGENDRE TRANSFORM: 
 
Let the signal x(t) be concave and have an 
invertible derivative x  = . The Legendre 

transform [13]of x is based on the concept of 
imagining the graph of x, not as a set of points (t, 
x(t)) but as the linear envelope of all its tangent 
lines. 
 
4.7 PROPOSITION:  
 
Let Fun (Rd) be the function mapping Rd into 

=R  , which defines a complete 
lattice under the partial order given by point wise 
inequality f1 ≤ f2 ,f1(x) ≤ f2(x) for every x Rd, 

f C f(x) = C x Rd 

 
4.8 FUN RD DEFINES A MOORE FAMILY: 
 
Since Fun Rd defines a complete lattice, a least 
upper bound for every subset M of Fun Rd. 
Therefore we can prove that Fun Rd defines a 
Moore Family. 
 

4.9 PROPOSITION: 
 
f M Fun Rd is upper semi continuous iff M is a 
Moore family. 
Proof: 
Since the function f M Fun Rd is upper semi 

continuous if, for every t  and x Rd , 

f(x)  for every y in some 

neighbuorhood of x. M is a Moore family. 

Similarly M Fun Rd defines a Moore family 
implies that f is upper semi continuous. 
[M=FunuRd].  
Similarly l.s.c functions defines a dual Moore 
familiy. 
 
4.10 DEFINITION: UPPER SLOPE 

TRANSFORM 
 
Given a signal f, its upper slope transform[13] is 
defined as (f)(v) =  – <x,v>, 

v Rd. 
Upper and lower slope transforms provide 
information about the slope content of signals. It 
also give a description of morphological systems in 
a slop domain. 
 
4.11 DEFINITION: ADJOINT UPPER SLOPE 

TRANSFORM 
 
The adjoint upper slope transform  is defined as  

for a 

function   The upper slope transform 

maps the affine function  

onto an upper impulse which equals b for  

and +  elsewhere. By applying to this upper 
impulse, the original input function 

is obtained. 
 
4.12 PROPOSITION: 
 

 is an adjunction on Fun (Rd) . 

 i.e. g  
Proof: 
If part: g  – 

<x,v> ,  v Rd. 

for  v Rd 
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. 
Ie.  
Similarly, only if part. 
 
4.13 PROPERTIES OF AV AND  : 
 

be an adjunction implies 

i.   and   are increasing operators. 

ii.  Av = Av  Av and  =  Av  

iii.   is a closing on Fun (Rd). 

iv.  is an opening on Fun (Rd). 

v.   defines a Moore family where  is lower 
slope transtor. 

vi.  Av is a Dual Moore family. 
 
4.14 DEFINITION:SUPPORT FUNCTION 
 
For a set X  , its support function (x) is 

defined by[13] (x) (v)=   ,  
Support function is the point wise supremum of the 
affine functions v <x,v>,x X 

 (f) is defined as  (f)  =  

  is a closed convex set for every function f. 

(v, f(v) )= {x Rd/<v, x>  f(v)} 
 
4.15 PROPOSITION: 
 

is an adjunction between Fun (Rd) and 
P(Rd). 
i.e (x)  f  (f) 
Proof: 
Let (x)  f and x X. 

If part: (x)  f(v) 

(v, f(v) )  
Only if part: 
Let  (f)=  

.  

(x)  f(v) (x)  f 

(v,b) iff (x)  
 
 
 

4.16 PROPOSITION: 
 
  defines a Dual Moore family. 

Since X   (v ,b),  (x) (v)   defines a 
Dual Moore family. 
Also  defines a 
Moore family. 
 
4.17 PROPOSITION: 
 
Let N: P (Rd) Fun (Rd) and : Fun (Rd) P(Rd). 

Define a relation  as  v Rd, w Fun (Rd) 

w Fun (Rd) iff   (w) iff v  Iff  v  w 
where 
v  w Av (f)(v) = W =  – <x,v> 

v Rdand also N(v) = { w Fun (Rd) / v  w}, 

v Rd / v  w}. 
 
4.18 PROPOSITION: 
 
For every X P(Rd), 

} 

For every Y Fun(Rd)  
 
4.19 PROPOSITION: 
 
 = and    
 
4.20 PROPOSITION: 
 
Let V be a non empty set. Define the binary 
operation  as Dilation on V such that (V, ) is an 

abelian Monoid. Let ‘ ’ be a partial order relation 

on V such that (v, ) is a poset. Define an 

equivalence relation ‘~’on V, then (V, , , N) is 
said to be MOPE if the following conditions are 
satisfied. 

i. If a ~b, c ~d then a c~b d, a,b,c,d V 

ii. If e a, e b then e b 

MOPE is an algebraic structure – Monoid , Poset, 
Equivalence 
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5. CONCLUSIONS:  
 
In this paper we presented the relationship between 
Moore family and Morphological operators. We 
hope that this analysis is useful for a better 
treatment of images and signals. Algebraic 
structures play an important role in finding new 
applications of Mathematical Morphology. We 
hope that this paper give an edge towards new ideas 
in this field. Conventional method to process an 
image is by using Fourier and Discrete Fourier 
approach. Mathematical Morphology is purely 
based on sets and algebraic structures. So it is more 
useful than Fourier operators. Repeated application 
of Morphological operators in various combinations 
gives us new operators which are more useful for 
getting information about the images and signals.    
So ,in the construction of operators, these ideas are 
very important. So, such a theoretical frame work 
and analysis is necessary for improving the 
efficiency of operators and enriching the theory.  
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