
Journal of Theoretical and Applied Information Technology
30th September 2011. Vol. 31 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

147

ASPECT-ORIENTED SOFTWARE DEVELOPMENT VERSUS
OTHER DEVELOPMENT METHODS

1VAHDAT ABDELZAD, 2FEREIDOON SHAMS ALIEE

1 Department of Computer Engineering, Science and Research Branch, Islamic Azad University,

Tehran, Iran.
2 Electrical and Computer Engineering Faculty Shahid Beheshti University, GC, Evin,

Tehran, Iran.

E-mail: v.abdelzad@srbiau.ac.ir, f_shams@bu.ac.ir

ABSTRACT

Nowadays, there are many software development methods that are used by developers in order to produce
high-quality software systems. Aspect-oriented software development as a new software development
method tries to obtain the quality of software systems through the modularity of crosscutting concerns in
the whole of software development process. However, there are some doubts about using aspect-oriented
software development instead of others in operational environments. Some questions that everyone asks
are: why is aspect-oriented software development used? Why should we start to change our software
development method? Therefore, in this paper to answer these questions, aspect-oriented software
development is compared with use case driven development as one of the popular and proper methods for
software development. The result of comparison is a set of technical and useful points that express clearly
what improvements are obtained by using aspects in the process of software development.

Keywords: Aspect-Oriented Software Development, Use Case Driven Development, Crosscutting
Concerns, Aspect-Oriented Programming

1. INTRODUCTION

The goal of developing a software system is
satisfying stakeholders' concerns. A concern is one
or several requirements depending on stakeholders
and system development that is able to be
implemented by a code structure. Concerns are
dynamic and relative, that is, concerns relevant to a
particular software unit which will change over
time. The best method for producing a software
system including many and various concerns is
breaking a system into independent and loose
coupling modules. These modules must be
complied separately and also have interfaces for
connecting to other modules [1].

In developing of software systems, separation of
concerns has a critical role so software
development methods have been trying to represent
particular concepts and separation techniques to
their development process. However, these
concepts do not completely support all criteria,
such as modularity. For example, structured
methodologies suffered from a system state being

controlled through a large number of global
variables that could be modified by any line of
code in the application. Furthermore, object-
oriented methodologies have tangling and
scattering problems in their structures.

Aspect-Oriented Software Development (AOSD)
as a new development method tries to introduce
aspect orientation for supporting separation of
concerns in the best form so that it increases the
software qualities such as modularity,
maintainability, and evolution. In fact, it provides
unique and advanced program structuring and
modularization techniques [2]. However, there are
some questions about its usability. The head
question of all of them is what mechanisms and
factors motivate us to utilize AOSD. In order to
answer these types of questions, we preferred to
depict them through comparing AOSD with Use
Case Driven Development (UCDD). UCDD is one
of the most practical and popular software
development methods in operational and academic
environment. Thus, results of comparing AOSD
with UCDD will be easily understandable for

Journal of Theoretical and Applied Information Technology
30th September 2011. Vol. 31 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

developers and researchers. We illustrate, in this
comparison, differences which cause to move for
using AOSD instead of UCDD.

The rest of this paper is organized as following.
Section 2 gives brief information about AOSD,
UCDD and their structure and development phases.
Section 3 expresses benefits of AOSD versus
UCDD. Section 4 presents technical and useful
points for AOSD. Finally, Section 5 concludes this
paper.

2. SOFTWARE DEVELOPMENT

The term software development is often used to
refer to the activity of computer programming
which is the process of writing and maintaining the
source code, whereas the broader sense of the term
includes all activities between the conceptions of
the desired software and the final manifestation of
the software. Therefore, the general phases of
software development are composed of
requirements engineering, architecture and design,
implementation, and testing. AOSD and UCDD as
two development method follow these phases and
present their own specific approaches to each phase
so that they can build a convenient software
system.

2.1 Use Case Driven Development

In UCDD, use cases are primitive elements which
whole development process is conducted by them.
The concept of use case firstly was introduced by
Jacobson and in his view each use case is the
specification of a set of actions performed by a
system, which yields an observable result that is
typically valuable for one or more actors or other
stakeholders of a system [3].

UCDD is started by use case elicitation. Use cases
are elicited by some techniques from requirements
of the system and then these use cases, in addition to
the dependencies which are exist between them, are
used for modeling of use cases. In fact, the system is
modeled as black box in which each box represents a
use case. After the system was modeled by use case,
these use cases should be realized. In the process of
realization, classes of use cases and their
responsibilities are determined because the classes
are used for realization of use cases. In other words,
contents of black boxes are specified.

Finally, the realization of use cases, which is
depicted as design diagrams, are verified to be
certain that all stakeholders' concerns have been

considered in the system design. After it was
accepted that all stockholders' requirements have
been satisfied, the classes which had been
determined previously would be implemented by an
object-oriented or structured language. At the end of
this simple development process, the system is
tested to be sure that software system supports all
stakeholders' requirements without any mistake or
misunderstand. Therefore in UCDD, use cases are a
software engineering technique used to drive the
whole software development life cycle [3].

2.2 Aspect-Oriented Software Development

AOSD as a new development method tries to
develop a system through defining a new concept in
order to get a high-modular system. This new
concept is aspect and the aspect is structure that
encapsulates crosscutting concerns. For the first
time, aspect was introduced at the implementation
level by Aspect-Oriented Programming (AOP) [4].
AOSD, now, is not just AOP because it
encompasses a whole range of techniques to achieve
better modularity. Therefore, AOSD focuses on
modularity of crosscutting concerns in the whole of
software development life cycle.

AOSD commences its process with a phase
named aspect-oriented requirements engineering
which focuses on separation of crosscutting
functional and non-functional properties during
requirements engineering which would otherwise be
scattered across and tangled with other requirements
[5, 6]. In other words, AORE approaches provide a
representation of crosscutting concerns in
requirements artifacts and focus on the composition
principle [7]. AOSD is continued by aspect-oriented
architecture which focuses on the localization and
specification of crosscutting concerns in architecture
designs. It improves and broadens the understanding
of the identification and management of architecture
design concerns. Aspect-oriented architecture
utilizes aspect-oriented modeling and design for
describing the architecture of the system.

Aspect-oriented design just lays in the fact that
scattering and tangling in more traditional
approaches can be modularized. Typically, such an
approach includes both process and language. The
process takes requirements as input and produces a
design model. The produced design model
represents separate concerns and their relationships.
The language provides constructs that can describe
the elements represented in the design and
relationships which can exist between those
elements.

Journal of Theoretical and Applied Information Technology
30th September 2011. Vol. 31 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

149

For implementation of a system based on aspect-
oriented modeling, AOSD uses AOP that includes
programming techniques and tools for modularity of
crosscutting concerns in the code level [8]. In this
process, independent and separate elements, which
are determined separately, are implemented in the
code level. Finally, AOSD utilizes aspect-oriented
testing techniques for testing the system. The goal of
testing is to show and review this fact that
implemented aspects in the implementation level
actually add crosscutting concerns characteristics to
the system in order to addressing stakeholders'
requirements [9].

According to described process, AOSD in the
whole of software development life cycle focuses on
two subjects which they are following:

 Concerns of a system, which cannot be designed
separately, can be applied independently and
separately to the system by defining new
structures in design, modeling, and architecture.

 Increase understandability and maintainability by
establishing models, designs, and
implementations for components that have
minimum overlap with each other.

3. BENEFITS OF AOSD VERSUS UCDD

We believe that the proper approach for examine
a new software development is comparing it with an
accepted software development method, because this
approach is really obvious and understandable to
majority of developers. Therefore, based upon this
fact we express key points which can be discussed
on these two methods.

1) Keeping peer concerns separate

Peer concerns are concerns that are distinct from
each other. No peer is more important than another.
However, significant overlap between peer
concerns occurs when peer concerns are being
implemented in the same system [10]. UCDD is
unable to keep separate peer concerns on all of the
development phases through requirements to
implementation and testing. This deficiency of
UCDD is a problem for system modularity.
However, AOSD keep separate peer concerns. It
used an aspect for each peer concern in order to
implement them separately.

2) Keeping extension concerns separate

Extension concerns are concerns that are defined
on top of a base concern. They represent additional
service or features [10]. UCDD is unable to keep

separate extension concerns as independent and
distinct concerns, therefore, decreases
understandability and maintainability of systems.
However, AOSD in all of development phases can
keep separate extension concerns. In AOSD,
extensions are defined as advices then they are
mixed with one another using composition
mechanism.

3) Axis of development

Axis of development expresses what types of
requirements will be used in the beginning of
software development. The importance of this
factor is that, if there are many developments axis
for a development method then utilization of the
development method increases. In the UCDD axis
of development is functional requirement, because
use cases are mainly a type of functional
requirement. However in AOSD it is possible to
consider both functional and non-functional
requirements as axis of development. Indeed,
concerns in the form of aspects are considered as
fundamental development elements in AOSD.

4) Implementation language

In UCDD, an object-oriented language is used for
implementing of systems. Object-oriented languages
do not have ability for modularity of crosscutting
concerns, so this causes tangling and scattering
problems in the implementation phase. However,
AOSD use aspect-oriented languages for
implementation of systems. Aspect-oriented
languages implement every crosscutting concern as
local elements, so it does not create tangling and
scattering problems.

5) Parallel development

UCDD focuses on use cases. Use cases are mainly
a kind of crosscutting concerns which cannot be
maintained separately, thus, it is impossible to
develop a use case in parallel by different software
development teams. However, AOSD can transform
use cases to use-case slices and use-case modules.
Whereof, a use-case module is independent so
working on each use-case module can proceed in
parallel as separate projects [10].

6) Full comprehension of modeling

UCDD is unable to comprehend all knowledge
that exists during use case realization. This subject is
due to cohesion of use cases and distributing their
knowledge throughout models. In AOSD, extracting
all embedded knowledge, which exists in use cases,
can be obtained by defining aspects and other
structures.

Journal of Theoretical and Applied Information Technology
30th September 2011. Vol. 31 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

150

7) System testing

For testing systems, UCDD use black-box, white-
box, and stress tests [11]. In AOSD besides of such
test, we have to perform other testing on aspect
behaviors. Testing of aspect behaviors encompasses
environment and type of its application into
environment [12].

8) Selected operation for executing in each phase

In UCDD, the developer has to implement every
operation in its own phase so it is impossible to
implement the operations in other phases. However,
in AOSD it is possible to perform the important
subjects such as functional requirements in the early
phases and postpone the other requirements to next
phases. For example, security problem in UCDD is
considered from the first development phase, but
according to composition and decomposition
capability in AOSD, it is possible that such
operations (security) to be considered at the final
development phase [10].

9) Interdisciplinary

This subject is due to applying development
method in the systems that knowledge of software
engineering may not satisfy their requirements (i.e. a
system is very complex or systems of systems [13]).
In UCDD, it is impossible that system development
activities to be performed by people who are not
familiar with software engineering techniques (they
are not experts). However in AOSD, the system
requirements that their answers are in other areas
can be referred to experts in those areas. In this
method, first, the system is developed by engineers,
scientists, sociologists, etc through languages and
techniques which they are familiar with them (e.g.
UML) [14]. Second, an aspect-oriented mechanism
combines their results together. So UCDD is not an
interdisciplinary method.

10) Development nature

UCDD likes to implement system requirements
that provide valuable results for users. However,
AOSD satisfies mentioned objective and also it
improves modularity of functional and non-
functional requirements. In other words, UCDD
does not have enough attention to modularity of
non-functional requirements.

11) Separation of concerns

UCDD supports one-dimensional separation of
concerns that is known as “tyranny the dominant
decomposition” [15]. However, AOSD supports
multi-dimensional separation of concerns [16].

4. TECHNICAL AND USEFULL POINTS

Aspect-oriented thinking as a method based on
model has excellent characteristics. These
characteristics are following: broad applicability,
improved management of complexity,
interdisciplinary, improved knowledge management,
improved productivity, and reducing defects [14].
The result of aspect-oriented thinking in software
engineering area is AOSD that includes all these
characteristics (the characteristics have significant
role in the success of AOSD).

Aspect-oriented programming which is used in
AOSD supports modularity of crosscutting concerns
in code level. Therefore, it prevents two important
problems in UCDD known as scattering and
tangling. Also aspect-oriented programming as a
new language provides many application capabilities
for developing of software systems in the various
areas, such as middleware and real time systems
[17].

AOSD with interdisciplinary characteristics in its
own nature can be applied in development of
software systems that software engineering
knowledge is unable to solely satisfy them. As the
thinking of the method is continuous learning and
changing, we can first analyze, model and simulate a
system with a certain method then determine
requirement elements (such as hardware, software,
and processors) for implementing and validating the
system using the same method.

Process of AOSD by providing a method based on
aspects keeps separate crosscutting concerns
throughout software development life cycle. AOSD
by identifying and separately modeling each use
case (a type of crosscutting concern) in requirements
and modeling phases causes that developers of next
phases have better understanding of use cases.
Moreover, they get familiar with non-functional
requirements in the same modeling bases on aspects.
Therefore, they can produce proper architecture and
implementation. Aspect-oriented architect with
obtaining proper feedback from aspects will be able
to select proper architecture style and also produces
an architecture based on aspect-oriented style which
increases comprehensibility, usability and success of
architecture. Finally, by applying aspects to
development process of a system, we can provide
well-defined and proper components. These
components can encompass test cases in their own
metadata when they are changing to off-the-shelf
and business components [18].

Journal of Theoretical and Applied Information Technology
30th September 2011. Vol. 31 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

151

All characteristics explained in the above and
previous section indicate that AOSD is an excellent
software development method. However expressing
these technical and useful points for acceptance of
AOSD does not mean use cases have deficiencies
because use cases can be considered as one of the
important and basic concepts in AOSD and
expressing these points about use cases only
mentions the nature of use case driven development
method.

5. CONCLUSIONS

In this paper, we compared two development
methods namely aspect-oriented software
development and use case driven development to
answer these question: Why is aspect-oriented
software development used? Why should we go to
change their software development method? The
result of the comparison is a set of benefits and
differences that yield to a number of acceptance
points. These acceptance points express that
aspect-oriented software development with
supporting aspect-oriented thinking and aspect-
oriented programming has many capabilities than
use case driven development. However, to
persuade developers for using aspect-oriented
software development we need to develop tools for
each phases of it. Some tools have been developed
but they are not complete. In the future, we are
going to categorize these tools and create a
framework for using them. In this framework, there
will be some instructions for developers to follow
them so that they product a high-quality software
system.

REFRENCES:

[1] Grady Booch, Ivar Jacobson, and James
Rumbaugh, Object Oriented Analysis and
Design with Applications 3rd Edition, Addison
Wesley, ISBN: 0-201-89551-X, 2007.

[2] Johan Brichau and Theo D’Hondt, Introduction
to Aspect-Oriented Software Development,
Report of the EU Network of Excellence on
AOSD, 2005.

[3] Ivar Jacobson, Maria Ericsson, and Agneta
Jacobson, The Object Advantage: Business
Process Reengineering with Object
Technology, Wokingham, England: Addison-
Wesley, ISBN: 0-201-42289-1, 1994.

[4] Gregor Kiczales, John Lamping, Anurag
Mendhekar, Chris Maeda, Christina Vidiera
Lopes, Jean-Marc Loingtier, and John Irwin,
"Aspect-Oriented Programming", European
Conf. on Object-Oriented Programming
(ECOOP), Springer, LNCS 1241, pp. 220-242,
1997.

[5] Awais Rashid, Ana Moreira, and Joao Araujo,
"Modularisation and Composition of Aspectual
Requirements", 2nd Int'l Conf. Aspect-Oriented
Soft-ware Development, ACM, pp.11-20, 2003.

[6] Awais Rashid, "Aspect-Oriented Requirements
Engineering: An Introduction", 16th IEEE
International Requirements Engineering
Conference, 2008.

[7] Ruzanna Chitchyan, Awais Rashid, Pete
Sawyer, Alessandro Garcia, Survey of Analysis
and Design Approaches, Report of the EU
Network of Excellence on AOSD, 2005.

[8] Joseph D. Gradecki and Nicholas Lesiecki,
Mastering AspectJ: Aspect-Oriented
Programming in Java, Wiley Publishing, ISBN:
0-471-43104-4, 2003.

[9] Reza MeimandiParizi and Abdul AzimGhani,
A Survey on Aspect-Oriented Testing
Approaches, Fifth International Con-ference on
Computational Science and Applications,
IEEE, pages 78-85, 2007.

[10] Ivar Jacobson and Pan-Wei Ng, Aspect-
Oriented oftware Development with Use cases,
Addison-Wesley, ISBN: 0-321-26888-1, 2004.

[11] Roger s. Pressman, software engineering: A
practitioner's Approach, fifth edition, McGraw-
Hill, ISBN: 0-07-365578-3, 2001.

[12] Bart De Win, Wouter Joosen, and Frank
Piessens, "Developing Secure Applications
Through Aspect-Oriented Programming", 2002.

[13] Lisa Brownsword, David Fisher, Ed Morris,
James Smith, and Patrick Kirwan, System-of-
Systems Navigator: An Approach for
Managing System-of-Systems Interoperability,
Technical Note CMU/SEI-2006-TN-019.

[14] Shayne R. Flint, "Aspect-Oriented Thinking: An
interdisciplinary approach to complex system
engineering", college of engineering and
computer science Australian national
university, 2006.

[15] Peri Tarr, Harold Ossher, William Harrison,
and Stanley Sutton, "N Degrees of Separation:

Journal of Theoretical and Applied Information Technology
30th September 2011. Vol. 31 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

152

Multi-Dimensional Separation of Concerns",
ICSE, ACM, pp. 107, 1999.

[16] Ana Moreira, Awais Rashid, and Joao Araujo,
Multi-Dimensional Separation of Concerns in
Requirements Engineering, Int'l Conf. on
Requirements Engg. (RE), IEEE CS, pp. 285-
296, 2005.

[17] Omer Erdem Demir, Eric Wohlstadter, and
Stefan Tai, "An Aspect-oriented Approach to
Bypassing Middleware Layers", ACM, 2007.

[18] Sami Beydeda and Volker Gruhn (Eds.), Testing
Commercial-off-the-Shelf Components and
Systems, Springer, ISBN: 3-540-21871-8 2005.

