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ABSTRACT 
 

This paper presents a discreet linear predictive control (DLPC). This strategy is applied to permanent 
magnet synchronous motor (PMSM) for monitoring the speed at trajectory and rejection of disturbance. 
The predictive control law is obtained by using a cost function and a Taylor series to perform prediction in 
a finite horizon. No information on the external disturbances and uncertainty parameters are necessary to 
ensure the robustness of the proposed strategy. Furthermore, in order to maintain the current phase within 
the saturation we used a cascade structure with a block anti-windup. Simulation results demonstrated the 
stability, robustness and effectiveness of control strategy proposed for the trajectory tracking and 
disturbance rejection of torque.            

 Keywords: Discrete Linear Predictive Control (DLPC) – Model Predictive Control (MPC) , Permanent 
Magnet Synchronous  Motor (PMSM)  

 
1. INTRODUCTION  

 
The PMSM has been gradually replacing DC and 

induction motors in a wide range of drive 
applications such as: robotic actuators, computer 
disk drives, domestic applications, automotive and 
renewable energy conversion systems. Despite its 
advantages, such as high efficiency, high power 
density and high torque to current ratio, the PMSM 
remains complicated and difficult to control when 
good transient performance under all operating 
conditions is desired. This is due to the fact that the 
PMSM is a nonlinear, multivariable, time varying 
system subjected to unknown disturbances and 
variable parameters. 

Over the past decades, various robust control 
techniques have been developed in order to 
improve the performances of the PMSM in the 
presence external disturbances. 

However, the widely used approach consists in 
using linear control theory with the disturbance 
estimate [5]-[6]. In [7], the robustness is ensured by 
using H∞ control theory. 

Disturbance observers which relay on time delay 
control approach have been reported in [8]. In [9], 
an observer is designed based on a Lyapunov 
function, to deduce the voltage disturbance caused 

by uncertainties. To take into account nonlinearities 
of the PMSM, different approaches have been 
adopted such as nonlinear control [6] and the 
sliding mode control. 

The main objective in the control of a PMSM is to 
design a robust controller for rotor speed trajectory 
tracking while regulating the d-axis current, in the 
presence of varying parameters and unknown load 
torque. Discrete time model predictive control 
(DTMPC) for nonlinear dynamic processes can 
improve some desirable features, such as robustness 
which can be handled using the internal model 
control (IMC) [12]-[13]. More detailed literature 
review on the robustness features of DTMPC for 
nonlinear systems can be found in [14]. However, it 
is still quite hard to adopt this strategy for nonlinear 
systems having fast dynamics such as electrical 
machines; as it requires heavy online computation. 

In order to apply MPC to fast nonlinear systems, 
many approaches have been proposed [15]-[19]. In 
[15] and [16], an optimal predictive control for a 
continuous time system is developed. Chen et al. 
[17] has proposed a NGPC based on Taylor series 
expansion to a certain order for Mutli-Input Multi-
Output (MIMO) systems. The control order is taken 
to be different from zero to analyze the stability of 
the closed loop system when the input relative 
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degree is higher than four. Robust nonlinear 
predictive control for a SISO system is introduced 
in [18], where the external disturbance is estimated 
and compensated in the control law. In [19] the 
robust NGPC is extended to MIMO systems. 

Nowadays, the MPC has been successfully 
applied for control of power electronics converters 
and electric drives. 

Hedjar et al [20]-[21] have designed a cascaded 
NGPC based on Taylor series expansion for an 
induction motor (IM). It is to be noted that NGPC 
based on Taylor series expansion can’t remove 
completely the steady state error under unknown 
disturbances. In [22]-[23], the robustness of the 
classical NGPC is improved by modifying its cost 
function. This strategy has proved to be effective 
when applied to the speed control of the PMSM 
[24]. However, the d-axis current regulation is not 
guaranteed when the electrical parameters vary. 

The MPC of a PMSM with unknown load torque 
based on linear plant models has been investigated 
in [25], where the decoupling method of current 
and voltage is used to obtain a linear model. In 
[26], the General predictive control (GPC) has been 
employed to generate the required torque to 
implement the DTC technique. Constrained MPC 
of PMSM is studied in [27]. 

In this paper, the DLPC based on the Taylor 
series expansion is revised to enhance the 
robustness in controlling a PMSM, which is a 
nonlinear system with fast dynamics. A novel 
performance index is proposed and the controller is 
developed under the assumption that there is no 
disturbance and no mismatched parameters. A 
cascade structure for the controller is adopted. This 
structure allows directly limiting the magnitude of 
the armature phase current by using saturation 
blocks. However, when the control saturates, the 
closed loop performances deteriorate significantly; 
resulting in a high overshoot and a long settling 
time. This is due to the fact that the DLPC contains 
an integral action. The windup phenomenon occurs, 
especially, when large set-point changes are made. 
To suppress this undesired effect, known as 
integrator windup, an anti-windup compensator 
based on the well known conditional integral 
method is used. 

Linearization and/or high-frequency switching 
based nonlinear speed control techniques, such as 
feedback linearization control and sliding mode 
control, have been implemented for the PMSM 
drives [4][17]. However, it is more efficient to use a 
nonlinear control method that is based on 
minimizing a cost function and allows one to 

tradeoff between the control accuracy and control 
effort. 

2. MODEL OF THE PMSM  
 

The dynamic model of a typical surface-mounted 
PMSM can be described in the well known (d-q) 
frame through the park transformation as follows 
[1][3]: 
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Where 

,sd squ u Direct-and quadratic-axis stator voltages 

,sd sqi i  Direct-and quadratic-axis stator currents 

qd LL ,  Direct -and quadratic-axis inductance 
p Number of poles 

sR  Stator resistance 

fΦ  Flux of  linkage 

Ω  Eelectrical rotor speed 
ω   Mechanical rotor speed ( Ω= .pω ) 

f  Viscous friction coefficient 
J   Moment of Inertia 

eT  Electromagnetic Torque 

LT   Load  Torque 

3. PRINCIPLE OF THE DLPC 
3.1 Case of SISO process 

In this article, we will design a so-called discrete 
linear predictive control [5], [7]. To do this, we 
assume that the process is monovariable and there 
are no constraints to be respected. Figure1 
illustrates the basic idea of predictive control. 
The predictive control is based on a priori 
knowledge of the process through a model that 
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provides predictions of changes in future outings. 
This prediction is then compared to the desired 
output of a finite horizon, called  the prediction 
horizon Np. The computer then determines the 
optimal sequence of controls to minimize the 
difference between the predicted output and the 
reference but only the first component is actually 
implemented. At the next sampling instant, the 
prediction horizon and not a slip of the optimization 
problem is repeated and so on. Therefore, this 
control strategy is called receding horizon control. 

 

Fig.1: principle of the Model Predictive Control  
 
The objective of continuing reference trajectory is 
formulated in terms of minimization of a criterion 
of optimization over a finite prediction slippery. 
We then bring back the following optimization 
problem: 
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Where γ is a positive parameter, which penalizes 
the variation of the order. 

 

Fig. 2: Structure of the control by the internal model 
       
From the expression (1), we note that the 
optimization problem is written based on the 
reference trajectory and the output of the process in 
the future. As for the reference trajectory, it is 

assumed to be known about the prediction horizon. 
By cons, on the output of the process, we only have 
measurements at the present time. Therefore, there 
must be a command structure for assessing the 
future outputs 

py  over the prediction horizon Np. 

Generally, to solve this problem, we use the 
structure for internal model control (IMC), whose 
block diagram is shown in Figure 2. Besides being 
easy to implement, it provides the robustness of the 
control in the presence of parametric uncertainties 
and disturbances on the output. 

( ) ( ) ( )d refy k y k e k= −                              (3)  

( ) ( ) ( ) ( )d re f py k y k y k y k= − +        
    (4)       

   Which implies : 
( ) ( ) ( ) ( )d ref py k y k y k y k− = −        

    (5) 

Substituting the above expression in the formula 
optimization criterion given by (1), we obtain: 
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Therefore, having the objective of continuing 
reference trajectory by the output of the process 
means that we want the output from the model to 
follow the desired signal yd. In addition, the 
continuing trajectory is ensured even if the 
output of the model is different from the process. 
For the realization of the order by the internal 
model [3], we take ( )e j  equal to ( )e k over 
the entire prediction horizon Np, that is to say: 

( ) ( ) 1 pe j e k j k k N⎡ ⎤=   ∀  ∈ + +⎣ ⎦ (7) 
Thus, knowing ( )r e fy j  of the prediction horizon, 
simply use the equation (3) to predict ( )dy j  of 
the prediction horizon. 

3.2 Case of MIMO process 
According to the above, the problem of predictive 
control monovariable, without constraints, amounts 
to a quadratic optimization problem. To generalize 
the control strategy for multivariable processes, 
simply change the performance criteria as follows 
[8]: 
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where 
Q and R are weighting matrixes, respectively, 
output and control. They are positive definite. 
In general, the predictive control is based on the 
following: 

 A reference trajectory in the future: it 
represents the desired behavior of the process. His 
determination is very important because it 
represents the specifications (dynamic performance, 
stability) of the process in closed loop. 

 A model of the process to be controlled: it 
represents the evolution of the dynamic behavior of 
the process. It provides the prediction of the future 
outputs of the prediction horizon. In most cases, the 
model is linear and discrete. 

 An optimization criterion in the future: it 
is also called performance criteria or cost function 
is the mathematical translation of the objectives of 
process control under the constraints of operation. 
In general, this criterion is quadratic, it is composed 
of two parts. The first part on the continued path is 
written based on the error between the output of the 
process and output of the model. The second part 
on the outcome of the penalty specifications 
(constraints) can be written according to the order 
of state variables and outputs of the process. In our 
case, it is given by (8). 

 The solution method: it is an algorithm 
that provides the control sequence that allows the 
output of the process to continue the reference 
trajectory over a prediction. In our case, the 
derivative of the cost function with respect to the 
order is sufficient to develop the optimal control. 
 
 

4. APPLICATION TO PMSM 
The model of the system plays a central role in 
predictive control. Indeed, if the model is nonlinear, 
solving the optimization problem (5) must be done 
online, which may require significant computation 
time. Another disadvantage is the fact that finding a 
global optimum is not always guaranteed. To 
remedy this problem, we use the linear model 
obtained via the strategy of decoupling 
compensation while neglecting the reluctance 
torque. 
Thus, from the objectives of the control equations 
and Park, the behavior of the motor can be 
represented by the following linear model: 
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The state vectors x and output y are respectively 
given by: 
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A new order is given by 
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In addition, for simplicity in developing the order, 
the linear model given by (6) must be written in 
discrete time as follows 
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   Ts is a sampling time. 
By exploiting the above equations, the model 
prediction on the receding horizon Np is given in 
the following vector form. 
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Suppose that the control horizon is equal to the 
prediction, the cost function given by (7) becomes: 
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The optimal solution is then obtained by derivation 
of the performance index (11) compared to control 
vector V(k). The calculation of the derivative of the 
cost function gives: 
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On the other hand we note that: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆

R
RR

RR
RR

R
kdV
kVd

T

0000
0

00
00

)(
))((

LM

MOOOM

O

L

   

(18) 

This leads to: 

)1(ˆ2)(~2)(
)(
))((2 −−=∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∆ kvRkVRkVR
kdV
kVd

T

   
(19) 

With 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−

=

RR
RRR

RRR
RR

R

000
20

02
02

~

M

MOOOM

L

LL

 ; 0
ˆ 0

0
0

R

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(20) 

     
Ensuring the optimal solution minimizing the 
performance criterion on the horizon fleeing comes 
down to solving the following system of equations : 
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From the above equation, we can show that the 
optimal control is expressed as follows: 
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The optimization provides the analytical sequence 
future orders which only the first component will 
be effectively implemented on the system. The 
procedure is repeated again at the next sampling 
period according to the principle of receding 
horizon. 

 
Figure3 : simulation scheme of DLPC controller 

 

5. SIMULATION RESULTS 
  

5.1 PMSM parameter’s 

TABLE I :  PARAMETERS OF PMSM 

parameter  value  

(16)

(21)
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Maximal voltage of food  300 v 
Maximal speed  3000 tr/s to 150 Hz 
Nominal Torque ;Tn 14.2 N.ms 
Rs  0.4578 Ω 
Number of pair poles :p 4 
Ld  3.34 mH 
Lq  3.58 mH 
The moment of inertia J 0.001469 kg.m2s 
Coefficient of friction viscous f  0.0003035 Nm/Rad/s 
Flux of linquage  Фf 0.171 

5.2 Simulation parameter’s 
Note that when the discrete linear predictive control 
(DLPC) is capable of giving good results, it is 
always with good choice of the prediction horizon 
Np and the matrixes Q and R, considered as 
important parameters of the synthesis. In our case, 
we chose: 
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5.3 Results  
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         Fig. 4: Trajectory of the Load Torque 
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Fig. 5 : Response of electromagnetic torque 
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Fig. 6: speed response due to disturbance torque 
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       Fig. 7: Stator currents isabc 

The figures (4 to 7) show the performance of 
controller (DLPC) with respect to the rejection of 
disturbances due to load torque variation.                      
( Wref=200 Rad/s) 
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Fig. 8: Tracking trajectory of the rotor speed   

(TL=0 N.m) 
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Fig. 9: Response of electromagnetic torque  
 
The figures (8 and 9) show the system's ability to 
follow the trajectory imposed by the speed 
reference. 
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Fig. 10: Electromagnetic Torque ( TL=6 N.m at 

t=0.2s  and TL=-2Nm at t=0.3s)   
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Fig. 11: Speed response with and without a 

block anti-windup.  
 

CONCLUSION 
In this paper we reviewed some control laws for the 
permanent magnet synchronous motor, namely the 
scalar control, vector control, the command input-
output linearization, flatness control by the direct 
control of torque and receding horizon predictive 
control. 

As for the scalar control and vector control, they 
are robust vis-à-vis the load torque and parameter 
uncertainty. This is particularly due to the integral 
contained in the control loop. However, it is known 
that these strategies do not provide good 
performance when tracking trajectories. 
The side of the non-linear control, namely the 
linearization and control the order by platitudes, 
they are ideal for the pursuit of trajectories. 
However, their performance depends strongly on 
the value of the load torque, which is assumed 
known, and parameters of the machine. We are thus 
led to combine the order non-linear adaptive 
algorithms or other methods of control to ensure 
robustness. On the receding horizon predictive 
control, it can provide good dynamic performance 
and static. However, it is difficult to implement for 
systems with fast dynamics, because it requires 
more computing power for real-time applications. 
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