
Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

107

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

GENETIC ALGORITHM FOR SHORTEST PATH IN PACKET
SWITCHING NETWORKS

1 ANU CHAUDHARY, 2 NEERAJ KUMAR PANDEY

1Associate Professor , Dept. of IT, A.K.G. Engineering College, Ghaziabad (U.P)-India.
2Assistant Professor, Dept. of CS, College of Engineering Roorkee, (Uttrakhand)-India.

E-mail: getanuchaudhary@yahoo.com , neerajpandey11@gmail.com

ABSTRACT

The problem of finding the shortest path between two nodes is a well known problem in network analysis.
Optimal routing has been widely studied for interconnection networks this paper considers the problem of
finding the shortest path. A Genetic algorithm based strategy is proposed and the algorithm has been
developed to find the shortest (Optimal) Path Variable-length chromosomes (strings) and their genes
(parameters) have been used for encoding the problem. The crossover operation exchanges partial
chromosomes (partial routes) at positionally independent crossing sites and the mutation operation
maintains the genetic diversity of the population. The proposed algorithm can cure all the infeasible
chromosomes with a simple repair function. Crossover and mutation together provide a search capability
that results in improved quality of solution and enhanced rate of convergence. Even though shortest path
routing algorithms are already well established, there are researchers who are trying to find alternative
methods to find shortest paths through a network. One such alternative is to use genetic algorithm (GA).
GA is a multi-purpose search and optimization algorithm that is inspired by the theory of genetics and
natural selection.

Keywords: Genetic Algorithm (GA), Shortest Path, Packet Switching, Variable Length Chromosomes

1. INTRODUCTION

For the information-oriented society in the early
years of 21st century, communication by packet
flow in large-scale computer networks becomes
much more important in our daily life than ever
before. The problem of finding the shortest path
between two nodes is a well-known problem in
network analysis. Shortest path algorithms have
been a subject of extensive research, resulting in a
number of algorithms for various conditions and
constrain [1-3].
Adaptive routing algorithms [4-8], which can select
the route of packets dynamically, have been widely
studied to make the best use of bandwidth in
interconnection networks of massively parallel
computers and system area networks (SANs). Most
of real SANs for PC clusters [9-10] have not
employed adaptive routing. This is because
adaptive routing introduces new problems in the
networks. First, it does not guarantee in-order
packet delivery in which some message passing
libraries require. Second, switch complexity may be
increased, because they compute alternative output
channels and select one of them introducing
selection logic. In the context of SANs, some works
have also proposed simple methods to support
adaptive routing in InfiniBand switches [11]. In a

packet switching network, communication between
two hosts generally takes place in the following
manner: the transmitting host delivers to a node a
block of data, called a packet, which are addresses
to the destination host. The objective of a routing
strategy is essentially to minimize the mean delay
of the packets in a network, subject to some
reliability or capacity constraints [12-16]
There exist some extra mathematical programming
methods which are based on certain properties of
mean delay function to solve the problem of
optimal routing [17, 18, 19].
The implementation of these methods necessitates
complex and lengthy calculations. As a result,
heuristic routing procedures have been used in
order to determine, within reasonable computation
time, the routes along which the packets must travel
without causing network congestion [13, 15, 20, 21,
22].

 In today’s IP networks, routing protocols are
responsible for building a path that carrys a data
packet to its destination [23]. Each router in the
network has to send the packet to its next hop,
independently from what other routers are doing at
the time, on rules based only on its own knowledge

Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

108

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

base. These routing tables are built based on
topological and traffic information, send or capture

from information being received from other routers.

2. GENETIC ALGORITHM

 Genetic algorithms have been developed by John
Holland, the goals of their research have been
twofold (i) to abstract and rigorously explain the
adaptive processes of natural system, and (ii) to
design artificial systems software that retains the
important mechanisms of natural systems. This
approach has led to important discoveries in both
natural and artificial systems science. The central
theme of research on genetic algorithms has been
robustness, the balance between efficiency and
efficacy necessary for survival in many different
environments. Genetic algorithms have been
implemented in scheduling problems and Finite
State Machines [24].
 Yinzhen et.al[25] presented a genetic algorithm
for solving shortest path problems, which was
based on the technology of dynamic coding of the
priority of vertex and gene weight. The
microevolution strategy was also considered fully
in that paper. After putting forward the measure of
the importance of a vertex in a network structure
and its formula, the real coding priority of a vertex
was generated in a non-uniform distribution
function with the parameters of the measure of the
vertex importance. Flexible fitness functions, elitist
genes selection, the mountain climbing method for
local optimum and other methods were adopted.
Chang Wook Ahn, Ramakrishna, R.S.[26] also
proposed a genetic algorithmic approach to the
shortest path (SP) routing problem. Variable-length
chromosomes (strings) and their genes (parameters)
had been used for encoding the problem. The
crossover operation exchanges partial
chromosomes (partial routes) at positionally
independent crossing sites and the mutation
operation maintains the genetic diversity of the
population. The proposed algorithm can cure all the
infeasible chromosomes with a simple repair
function. Crossover and mutation together provides
a search capability that results in improved quality
of solution and enhanced rate of convergence. They
have also developed a population-sizing equation
that facilitates a solution with desired quality. It
was based on the gambler ruin model, the equation
had been further enhanced and generalized. The
equation relates the size of the population, quality
of solution, cardinality of the alphabet, and other
parameters of the proposed algorithm

 A Genetic Algorithm starts with an initial
population that evolves though generations This
evolution starts with an initial population randomly
generated and the ability of an individual to span
though different generations and to reproduce
depends on its fitness.

 The GA is based on two fundamental
evolutionary concepts:
(i)A Darwinian notation of fitness, which describes
an individual’s ability to survive, and
(ii)Genetic operators, which determine the next
generations genetic makeup based upon the current
generation.
Conventionally, genetic operations are achieved
though crossover and mutation operators. The
crossover operator creates new individuals called
offspring, by recombining the genetic material of
two individuals, deemed the parents. Individuals
with higher fitness scores are selected with greater
probability to be parents and “pass on” their genes
to the next generation. This is known as fitness
proportional selection method.
 Crossovers allow exploitation of successful
subspace of the solution space. The mutation
operator randomly alters one or more genes in an
individual. Mutations add genetic diversity to the
population. Through mutation, GAs can search
previously unexplored sections of the solution-
space. Mutations consequently assure that the entire
search space is connected. Through crossover and
mutations, GAs is able to simultaneously explore
new subspace while exploiting successful ones.

3. SHORTEST PATH USING GENETIC
 ALGORITHM

 Routing is one of the most important issues that
have a significant impact on the network's
performance [27], [28]. An ideal routing algorithm
should strive to find an optimum path for packet
transmission within a specified time so as to satisfy
the Quality of Service (QoS) [28]-[30]. There are
several search algorithms for the shortest path (SP)
problem: the breadth-first search algorithm, the
Dijkstra algorithm and the Bellman-Ford algorithm,
to name a few [27]. Since these algorithms can solve
SP problems in polynomial time, they will be
effective in fixed infrastructure wireless or wired
networks. But, they exhibit unacceptably high
computational complexity for real-time
communications involving rapidly changing net-

Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

109

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

work topologies [29], [30]. In most of the current
packet-switching networks, some form of SP
computation is employed by routing algorithms in the
network layer [28], [30]. Specifically, the network
links are weighted, the weights reflecting the link
transmission capacity, the congestion of networks
and the estimated transmission status such as the
queuing delay of head-of-line (HOL) packet or the
link failure. The SP problem can be formulated as
one of finding a minimal cost path that contains the
designated source and destination nodes. In other
words, the SP routing problem involves a classical
combinatorial optimization problem arising in many
designs and planning contexts [28]-[33]. Since
neural networks (NNs) [28]-[30] and genetic
algorithms (GAs) (and other evolutionary
algorithms) [31] [34] promise solutions to such com-
plicated problems, they have been used successfully
in various practical applications. On the other hand,
NNs and GAs may also not be promising candidates
for supporting real-time applications in packet
switching networks because they involve a large
number of iterations in general. However, hardware
implementations of NNs or GAs are extremely fast.
Furthermore, they are not very sensitive to network
size [30], [35]. The quality of the solution (i.e.,
computed path) returned by NNs is constrained by
their inherent characteristics. GAs is flexible in this

regard. The quality (of the solution) can be adjusted
as a function of population. In addition, NN
hardware is limited in size: it cannot accommodate
networks of arbitrary size because of its physical
limitation. GA hardware, on the other hand, scales
well to networks that may not even fit within the
memory. It is realized by employing parallel GA over
several nodes. Therefore, GAs (especially hardware
implementations) is clearly quite promising in this
regard.

4. PROPOSED APPROACH

4.1 CODING OF SOLUTIONS: The coding of an
individuals is composed by m strings {e1, e2,
e3………….em}, each {ei} represents distance
between two nodes. Our fitness function is used to
minimize the distance from source node to
destination node with continuity.

Objective function = min (∑ei, source- destination),
with continuity
 Where, (i = 1, 2, 3…………….m)

CHROMOSOME REPRESENTATION:
A network can be thought of interconnection of
nodes where distance between two nodes is
represented by {ei}

Various paths of a network are shown in fig-1:

 B 7 C

2 2 3 3
 2

 A E F D

 1 2 2
 6
.
 G 4 H

(Fig-1)

Let, e1 = AB = 2 e3 = CD = 3
e2 = BC = 7 e4 = GH = 4
e5 = AG = 6 e7 = BE = 2
e6 = EF = 2 e8 = CF = 3
e9 = DH = 2 e11 = GE = 1

 e10 = FH = 2

Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

110

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

One of the combinations of edges can be:
{e5 (6), e2 (7), e4 (4), e6 (2)}
Each edge is represented by four bit string therefore
the above combination of edges can be represented
by following strings:
0110 0111 0100 0010
And,
{e1 (2), e11 (1), e10 (2), e3 (3)} these combinations
can be represented by following Strings:
0010 0001 0010 0011

4.2 INITIAL POPULATION: The initial
population is randomly generated, based on
distance between nodes of the networks. The
distance between each node is coded into 4 bit
strings and total string length is 20 bit long.

4.3 CROSSOVER: We applied two points
crossover on initial population
Suppose four randomly generated individuals are:
 e2 (7) e4 (4) e3 (3) e5 (6) e8 (3) sum of edges 23
 e1 (2) e11 (1) e5 (6) e2 (7) e6 (2) sum of edges 18
 e4 (4) e7 (2) e3 (3) e11 (1) e6 (2) sum of edges 12
 e1 (2) e3 (3) e6 (2) e2 (7) e7 (2) sum of edges 16

 Before Crossover,

 0111 010 0 0011 011 0 0011 sum of edges 23
 0010 000 1 0110 011 1 0010 sum of edges 18
 0100 001 0 0011 000 1 0010 sum of edges 12
 0010 001 1 0010 011 1 0010 sum of edges 16

(Applying two point Crossover)
 After Crossover,
 (7) (5) (6) (7) (3)
 0111 0101 0110 0111 0011 sum of edges 28
 (2) (0) (3) (6) (2)
 0010 0000 0011 0110 0010 sum of edges 13
 (4) (3) (2) (7) (2)
 0100 0011 0010 0111 0010 sum of edges 18
 (2) (2) (3) (1) (2)
 0010 0010 0011 0001 0010 sum of edges 27

4.4 MUTATION: Mutation of a string is
implemented through a very simple protocol. We
will replace first four bits with source and last four
bits with destination.
Since in our network source node is A and
destination node is D, therefore we replace first
four bits by 0010 and last four bits by 0010
 (2) (5) (6) (7) (2)
 0010 0101 0110 0111 0010 sum of edges 22
 (2) (0) (3) (6) (2)
 0010 0000 0011 0110 0010 sum of edges 13
 (2) (3) (2) (7) (2)

 0010 0011 0010 0111 0010 sum of edges 16
 (2) (2) (3) (1) (2)
 0010 0010 0011 0001 0010 sum of edges 10

4.5 SELECTION:
In the above problem our fitness function is = min
(∑ei), with continuity
After mutation, we have minimum path length from
source node to destination node is: 10 (min path
length from A->D) (0010 0010 0011 0001 0010)
 Path-> AB BE FC EG FH
We Observed that it is not a continuous path,
therefore we have to select minimum path with
continuity.
After iterations we get, minimum path length 10
with continuity
 10 (min path length after selection) (0010
0010 0010 0010 0010)
 Path-> AB BE EF FH HD
This is the most optimal path.

5. ALGORITHM FOR THE CODING:

Algorithm 1:- Algorithm for identifying path from source to
destination

path(source, destination,*source node)
 {
 Identify source and destination in given
graph
 push(source);
 while(top!=NULL)
 {
 temp node = pop(&top);
 check weather the node is visited or not
 if not visited set flag=1
 {
 while(temp node->info!=destination &&
temp arc!=NULL)//
 {
 push(temp node);
 p[i][j]=temp arc;
 temp node=temp arc->adj;
 temp arc=t node->edg;
 j=j+1;
 if(tempnode->info==destination)
 {
 p[i][j]=NULL;
 i=i+1;
 }
 End if
 }
 End while
 }

End while
 }

End }

Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

111

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

Algorithm 2:- Algorithm for create node from
source to destination
 randompath(*source_node) //In the following
algorithms the '*' symbol use to represent pointer
notion in c language
//Create a Structure for create a node
 {
store all edges in an array
 intilize len=0
 repeat step 3,4,5 while(len<length_of_array)
 use mode function index=(3*random_num)%4 to
select an edge from array
 assign the selected edge to two diminsion array
 len=len+1
 End
 }

Algorithm 3:- Algorithm for Push function

Push(node,*data,**top) //Create a Structure for
store the edges between the nodes
 {
 Declare a temp pointer variable of stack
Structure type

 Initialize size of Stack in temp
 Assign the data in add part of temp node
Assign the top reference in link part of temp node
//Create a Structure for push data from the Stack
 }

Algorithm 4:- Algorithm for store values in
binary encoded form through crossover process

PushBin(val,stackbin **top,**temp //Create a
Structure for creating a stack
//Create a Structure for creating a stack which
stores the encoded decimal number in binary form
 {
 Assign size of stackbin of structure type in
temp

 Insert val in data part of temp node
 Assign Refrence of *top in Link part of
temp node
 *top = temp
 }

Algorithm 5:- Algorithm for creating a node
CreateNode(**source,*temp,*tc,c,data)
 {

Assign a block of size from the memory
heap in to temp
 temp->next=NULL
 temp->edg=NULL
 temp->info=data
 {

If(*source==NULL)

 {
 Then *source=temp
 else
 tc=*source
 {

while(tc->next!=NULL)
 {

tc=tc->next
 End While
 }

tc->next=temp
 }
 End Else
 }
 End If
 }
 }

Algorithm 6:- Algorithm for Connect Nodes
which are present in the whole graph

ConnectNodes(*source,*temp,*back,*track,*tc,*ptr)
 {

 temp=source
 back=temp

while(temp->info!=p)
 {

temp=temp->next
 back=temp
 End While
 }
 temp=source
 track=temp
 while(temp->info!=c)
 {
 temp=temp->next
 track=temp
 End While
 }

Print : Enter the Weight of edge
 Assign a block of size from memory heap
to the tc
 tc->w=wit
 tc->adj=track
 tc->nextptr=NULL
 tc->flag=0
 If(back->edg==NULL)
 {

Then back->edg=tc
 End If
 }
 Else
 {
 ptr=back->edg
 while(ptr->nextptr!=NULL)
 {

Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

112

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

 ptr=ptr->nextptr;
 End While
 }
 ptr->nextptr=tc;
 End Else
 }

Algorithm7:- Convert Decimal values into
Binary Values for performing Encoding
//In this function we need a 2d array int data[][]
dimensions are depend on our choice and a 1d array
int decimal data[] to store final ecoded binary
values
Convert
Decimal(data[i][j],decimaldata[k],CurrentPosition,
multi)
 {
 Initialize i=0,j=0
 Start While(data[i][j] != -1)
 {
 Initialize decimalData[i]=0
 Start While(data[i][j] != -1)
 {
 If(CurrentPosition == 0) Then
 {
 Assign CurrentPosition = 4
 End If
 }
 multi =Call power(CurrentPosition)
 decimalData[i] = decimalData[i] +
(data[i][j] * multi)
 Increment j=j+1
 Decrement CurrentPosition =
CurrentPosition - 1
 End While
 }

Assign j = 0
 Increment i=i+1
 End While
 }

decimalData[i] = -1
 Initialize i=0 and j=0
 Start While(data[i][j] != -1)
 {
 Start While(data[i][j] != -1)
 {
 Print data[i][j]
 Increment j = j + 1
 Increment len = len + 1
 Print decimalData[i]
 Assign j= 0 , len = 0
 Increment i = i + 1
 End While
 }
 End While

 }
 }

Algorithm 8:-Algorithm for Crossover operation
Crossover (data [][])
 {

For i = 0 to 3
 {
 For j= 0 to 15
 {
 If (j==4)
 {
 Data [i][j] =! data[i][j]
 }
 If (j==11)
 {
 Data [i][j]=!data[i][j]
 }
 }
 }
 }

Algorithm 9:-Algorithm for Performing
Mutation
Mutation(data[i][j],position, counter, limit) //For
performing Mutation we need a 2d array
 {

Initialize position = 0, i = 1, j = 0 and
counter = 1
 Start while(i < limt)
 {
 pos=pos+4
 Increment i=i+1
 End While
 }

Assign i=0
 Start while(data[i][0] != -1)
 {
 Assign counter=1
 Assign j=0
 Start while(j < 4)
 {
 {
 If(counter == 3) Then
 data[i][j] = 1
 End If
 }
 Else data[i][j]=0
 }

End Else
 }

Increment counter = counter + 1
 Increment j=j+1
 End while
 }

Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

113

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

Assign j=pos
 Assign counter=1
 Start while(j < (pos + 4))
 {

If(counter == 3)
 {

Assign data[i][j]=1
 End If

 }
Else data[i][j]=0

 }
End Else

 }
Increment counter = counter + 1

 Increment j = j + 1
 End While
 }

Increment i = i + 1
Printf "After Mutation " Call displaybin(data)
//Call to displaybin() function with passing an
argument data.
 Call convertDecimal(data) //Call
convertDecimal function with passing an argument
data
 }
 }

Algorithm 10:- Algorithm for Convert binary
data into decimal data.

We need a self refrential structure edge of pointer
type and a 2d array data[i][j]
ConvertBinary(struct arc
p[i][j],weight,length,difference,position,i,,j,k,l,binar
y,data[i][j])
 {
 Assign struct stackbin *top = Null
 //Assign Null in to top of Dynamic Stack
 {

Initialize l=0 and j=0
 Start For(i=0 ; p[i][j] != Null ; i++)
 Initialize k=0

Start For(j=0 ; p[i][j] != Null ; j++)
 {
 Assign length = 0
 weight = p[i][j] -> w
 Start while(weight > 0)
 {

binary = weight % 2
 Call pushbin(binary , &top)
 weight = weight / 2
 Increment length=length+1
 End While
 }

difference = 4 - length
 position = length - 1

 Start while(position >= 0)
 {

data[l][k + difference] = popbin(&top)
 Decrement position=position - 1
 Increment k = k + 1
 End While
 }

position = k - length
 If(length < 4) Then
 {

Start while(difference > 0)
 Assign data[l][position] = 0
 Decrement difference =difference - 1
 Increment pos = pos + 1
 Increment k = k + 1
 End while
 }

End If
 }

End For
 }

Assign data[l][k] = -1
 Increment l = l + 1
 Assign j = 0
 End For
 }

Assign data[l][0] = -1
 Call crossover(data) //Call to
Crossover function with passing an argument data.
 }
 }

Algorithm 11:- Algorithm for Main Function

We need a pointer variable source of node structure
type and Source and Destination in Graph
Main(source,destination,struct node *source)
 {

Initialize source = Null
 Call createNode(&source)
 If(source != Null) Then
 {

Call connectNodes(source)
 Input source and destination
 Call randomPath(source)
 Call path(source,destination,Source)
 }
 }

Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

114

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

6. RESULT:

Figure 6.1: Result for identifying path from
source to destination

Figure 6.2 : Result for creating a node

Figure 6.3: Result for Connect Nodes which are
present in the whole graph

Figure 6.4: Result for Identify the parent node,

adjacent node & weight of the edge.

Figure 6.5: Result for identifying source and
destination node.

Figure 6.6: Result for Convert Decimal values
into Binary Values for performing Encoding

Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

115

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

Figure 6.7: Result for Crossover operation

Figure 6.8: Result for Mutation operations

Figure 6.9: Result for Convert binary data into
decimal data

Figure 6.10: Result for (Main function) shortest

path between source to destination

Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

116

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

6. CONCLUSION:

Genetic Algorithm provides a useful problem
solving technique. The proposed approach shows,
how GA can be used to solve a very general version
of shortest path problem. A GA encoding along
with the genetic operators is defined. The
performance of the algorithm is better than previous
work. For the practical implementation of the
proposed work Coding of the algorithm is also
included. This technique can be very useful to
evaluate the shortest path in various networks. This
research work presented a genetic algorithm for
solving the SP routing problem. The crossover and
the mutation operations work on variable-length
chromosomes. The crossover is simple and
independent of the location of crossing site.
Consequently, the algorithm can search the
solution space in a very effective manner. The
mutation introduces, in part, a new alternative route.
In essence, it maintains the diversity of population
thereby avoiding local traps. A treatment for
infeasible solutions (chromosomes) has also been
investigated without unduly compromising on
computational requirements. The proposed
algorithm can search the solution space effectively
and speedily compared with other algorithms.

REFRENCES:

[1]. E.W. Dijkstra, “A note on two papers in

connection with graphs”, Numeriske
Mathematics 1

 pp.269-271, 1959.
[2]. D.Eppstein, “Finding the k shortest paths”,

SIAM journal on Computing 28(2) pp.653-
674 , 1998.

[3]. R.W Floyd,“Algorithm97: Shortest paths”,
Communications of the ACM 5 pp.345- 357,
1962.

[4]. A.A. Chien, J.H. Kim, “Planar-adaptive
routing:low-cost adaptive networks for
multiprocessors”, J. ACM 42(1) pp. 91-123
1995.

[5]. W.J.Dally,H Aoki, “Deadlock-free adaptive
routing in multicomputer networks using
Virtual channels”, IEEE Trans. Parallel
Distribu. Systems 4(4) pp.466-475, 1993.

[6]. J. Duato, “A necessary and sufficient condition
for deadlock-free adaptive routing in
wormhole networks”, IEEE Trans.Parallel
Distrib. Systems 6(10) pp.1055-1067,2005.

[7]. M. Koibuchi , A . Funahashi , A . Jouraku, H .
Amano, “L-turn routing:An adaptive routing
in irregular networks”, Proc. International

Conference on Parallel Processing,” pp.374-
383 Sep 2001.

[8]. F. Silla, J. Duato, “High –performance routing
in networks of workstations with irregular
Topology,” IEEE Trans. Parallel Distrib.
Systems 11(7) pp. 699-719, 2000.

[9]. N. J. Boden ,et.al, “Myrinet:a gigabit-per-
second local area network”, IEEE Micro.
15(1) pp.29-35, 1995.

[10]. T. Kudoh, S. Nishimura, J. Yamamoto, H.
Nishi,O. Tatebe,H.Amano, “RHINET:A
Network for high performance parallel
computing using locally distributed
computing”, Proc IWIA pp. 69-73, Nov 1999.

[11].J.C.Martinez,J.Flich,A.Robles,P.Lopez,J.
Duato, “Supporting adaptive routing in IBA
switches”, Systems Architect 49 pp. 441-449,
2004.

[12]. Baransel C,Dobosiewicz W, Gburzynski p,
“Routing in multihop packet switching
networks:Gb/s challenges”, IEEE Network
9(3) pp.38-61, 1995.

[13]. Beaubrun R, Pierre S, “Routing algorithm for
distributed communication networks”, Proc
22nd IEEE Conference on Computer
Networks,LCN 97 pp. 99-105, Nov 1997.

[14]. Kershenbaum A, Kermani P,Grover GA,
“MENTOR:an algorithm for mesh Network
topotogical optimization and routing”, IEEE
Trans Comm pp.503-513, 1991.

[15]. Khasnabish B, “A new method for evaluating
packet routing policies in supra-high-Speed
metropolitan (or wide) area networks”, Comp
Networks ISDN Syst pp.195- 216, 1993.

[16]. Suk-Gwon C, “Fair integration of routing and
flow control in communication
networks”, IEEE Trans Commun 40(4) pp.
821-34, 1992.

[17]. Courtois PJ,Semal P, “flow assignment
algorithm based on the flow deviation
method”, Proc of the ICCC pp.77-83, 1980.

[18]. Gavish B, “Topological design of computer
networks-the overall design problem”, Eur J
Oper Res 58 pp. 149-72, 1992.

[19]. Neumann I, “System A. For priority routing
and capacity assignment in packet switched
networks”,Ann Oper Res 36 pp. 225-46,
1992.

[20]. Lee S,Chang S, “Neural network for routing
of communication networks with Unreliable
components”, IEEE Trans Neural Networks
4(5) pp. 854-63, 1993.

[21]. Mehmet M,Kamoun F, “Neural networks for
shortest path computation and routing In

Journal of Theoretical and Applied Information Technology
31st July 2011. Vol. 29 No.2

 © 2005 - 2011 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

117

 Publication of Little Lion Scientific R&D, Islamabad PAKISTAN

computer networks”, IEEE Trans Neural
networks 4(6) pp.941-54, 1993.

[22].Moopenn A,Thakoor AP,Duong T, “A neural
network for Euclidean distance
minimization”, Proc IEEE Int Conf Neural
Networks 2 349-56, 1988.

[23]. Internetworking Technology Handbook:
Internet Protocols (IP), Cisco Sytems, Inc.,
2002.

[24]. Chyzy Mariusz,Kosinski Witold,
“Evolutionary Algorithm for State
Assignment of Finite State Machines”,
Proc IEEE of the Euromicro Symposium on
Digital System Design(DSD’02) pp.
7695-99, 2002.

[25].“Evolutionary Computation”, IEEE
Transactions on Communication Volume 6,
Issue 6, Dec 2002 pp. 566 – 579 Digital
Object Identifier
10.1109/TEVC.2002.804323.

[26]. Yinzhen Li1 Ruichun He1Yaohuang Guo2
“Faster Genetic Algorithm for Network Path”,
The Sixth International Symposium on
Operations Research and Its Applications pp.
382-389, 2000.

[27]. W. Stalling, High-Speed Networks: TCP/IP
and ATM Design Principles. Englewood
Cliffs, NJ: Prentice-Hall, 1998.

[28]. M. K. Ali and F. Kamoun, “Neural networks
for shortest path computation and routing in
computer networks”, IEEE Trans. Neural
Networks, vol. 4, pp. 941-954, Nov. 1993.

[29]. D. C. Park and S. E. Choi, “A neural network
based multi-destination routing algorithm for
communication network” in Proc. Joint Conf.
Neural Networks, pp. 1673-1678 , 1998.

[30]. C. W. Ahn, R. S. Ramakrishna, C. G. Rang,
and I. C. Choi, “Shortest path routing
algorithm using hopfield neural network”,
Electron. Lett., vol. 37, no. 19, pp. 1176-
1178, Sept. 2001.

[31]. M. Munemoto, Y. Takai, and Y. Sato, “A
migration scheme for the genetic adaptive
routing algorithm”, in Proc. IEEE Int. Conf.
Systems, Man, and Cybernetics, pp. 2774-
2779 , 1998.

[32]. J. Inagaki, M. Haseyama, and H. Kitajima, “A
genetic algorithm for determining multiple
routes and its applications”, in Proc. IEEE Int.
Symp. Circuits and Systems, pp. 137-140,
1999.

[33]. Y. Leung, G. Li, and Z. B. Xu, “A genetic
algorithm for the multiple destination routing
problems”, IEEE Trans. Evol. Comput, vol.
2, pp. 150-161, Nov. 1998.

[34]. G. Syswerda, “Uniform crossover in genetic
algorithms”, in Proc. 3rd Int. Conf. Genetic
Algorithms. San Mateo, CA: Morgan
Kaufmann, pp. 2-9, 1989.

[35]. G. Tufte and P. C. Haddow, “Prototyping a
GA pipeline for complete hardware
evolution”, in Proc. 1st NASA/DoD Workshop
on Evolvable Hardware, pp. 76-84, 1999.

[36]. X. Hue, “Genetic algorithms for optimization:
Background and applications”, Edinburgh
Parallel Computing Centre, Univ. Edinburgh,
Edinburgh, Scotland, Ver 1.0, Feb. 1997

AUTHOR PROFILES:

Dr. Anu Chaudhary received
MCA degree from Madras
University in 2001 and Ph.D
degree in Computer Science from
G.K. University, Hardwar (U.K)-
India, in 2010. He is currently

working as an Associate Professor at AKG
Engineering College Ghaziabad (U.P)-India. His
interests are in Computer Communication and
Performance evaluation of networks.

Mr. N.K. Pandey received the
B.Tech. degree in Computer
Science and engineering from the
Dr. Bhim Rao Ambedkar
University, Agra (U.P)- India, in
2003. He received M.Tech.

degree in Computer Science engineering from
Shobhit University Meerut (U.P)-India in 2010.
Currently, he is Working as Assist. Professor in
College Of Engineering Roorkee in department of
Computer Science & Engineering . His interests
are in Theory of Automata & Formal Language,
Operating System.

