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ABSTRACT 

The newly developed method known as Hilbert-Huang Transform (HHT) is ideal for nonlinear and non-
stationary data analysis as it is totally adaptive in nature. This paper will discuss the fundamentals of HHT 
method which consists of the empirical mode decomposition and Hilbert spectral transform. As a part of 
analysis, the HHT method is applied on two different data sets in which one is the annual mean global 
surface temperature anomaly and the other is the noise component measured by the Equatorial Atmosphere 
Radar located in Indonesia. The analysis of two data sets indicates that the HHT method is able to extract 
each and every frequency component, which might not be possible with the Fourier spectral analysis. 
Specifically, this study indicates that the decomposed components in EMD of HHT, namely the intrinsic 
mode function components contain observable, physical information inherent to the original data. Finally, 
the study illustrates that the HHT-based Hilbert spectra are able to reveal the time-frequency distributions 
more precisely.  

Key words: Nonlinear and non-stationary signals, Fourier spectral analysis, Empirical Mode 
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1.   INTRODUCTION 

Data analysis is a crucial part in pure 
research and real time applications. Data analysis 
mainly contributes to design the parameters that are 
required to construct a model as well as in verifying 
the viability of the constructed model. 
Unfortunately most of the data from physical 
measurements or numerical modeling most likely 
will have some problems like: (a) the total data 
span is too short; (b) the data are non-stationary; 
and (c) the data represent nonlinear processes. 
Although each of the above problems can be real by 
itself, the first two are related, for a data section 
shorter than the longest time scale of a stationary 
process can appear to be non-stationary. Facing 

such data, we have limited options to use in the 
analysis.  

2.  CONVENTIONAL METHODS FOR 
DATA ANALYSIS 

Historically, Fourier spectral analysis has provided 
a general method for examining the global energy-
frequency distributions. As a result, the term 
`spectrum' has become almost synonymous with the 
Fourier transform of the data. Because of its 
prowess and simplicity, Fourier analysis has 
dominated the data analysis efforts since soon after 
its introduction, and has been applied to all kinds of 
data. Although the Fourier transform is valid under 
extremely general conditions (see, for example, 
Titchmarsh 1948), there are some crucial 
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restrictions of the Fourier spectral analysis: the 
system must be linear; and the data must be strictly 
periodic or stationary [1]; otherwise, the resulting 
spectrum will make little physical sense. 
Unfortunately most of the practical data are 
nonlinear and non-stationary. So we need better 
methods to analyze the so-called data. 

3.  HILBERT-HUANG TRANSFORM 

The Hilbert-Huang Transform (HHT) developed by 
Huang et al. (1998, 1999); can represent non-
stationary nonlinear data efficiently. The HHT, 
which consists of two steps— empirical mode 
decomposition (EMD) and Hilbert spectral analysis 
(HSA), is summarized by Huang et al. (1998, 
1999).  

3.1 Empirical Mode Decomposition 

The EMD step builds on the assumption that any 
data set consists of different, simple, intrinsic 
modes of oscillation that need not be sinusoidal, 
with the non sinusoidal character of each mode of 
oscillation derived from the data. At any given 
time, the recorded data may have many different 
coexisting modes of oscillation, which may or may 
not relate to different seismological phases. Each of 
these oscillatory modes, called an intrinsic mode 
function (IMF), is defined by the following 
conditions: 

1. In the whole data set, the number of extrema and 
the number of zero crossings must either equal or 
differ at most by one; 2. At any point, the mean 
value of the envelope defined by the local maxima 
and the envelope defined by the local minima is 
zero. 

An IMF represents a simple oscillatory mode 
similar to a component in the Fourier-based simple 
harmonic function. One can decompose any 
waveform as follows. First, identify all the local 
extrema. Connect all local maxima by a cubic 
spline to produce the upper envelope, and repeat the 
procedure for the local minima to produce the 
lower envelope. The upper and lower envelopes 
should encompass all the data between them. The 
mean of these two envelopes is designated as m1, 

and the difference between the data X and m1 is the 
first component h1; i.e. 

     X (t) − m1 = h1                                                      (1) 

Ideally, h1 should be an IMF, since the construction 
of h1 described above should have made it satisfy 
all the conditions set in the definition of an IMF. 
Yet, in practice, all the conditions of an IMF cannot 
be achieved until the previous process, called the 
sifting process, is repeated. In the subsequent 
sifting process, h1 is treated as the data, then 

                h1 − m11 = h11                        (2)                                                

where m11 is the mean of the upper and lower 
envelopes of h1. After repeated shifting, up to k 
times which is usually less than 10, h1k given by 

               h1 (k−1) − m1k = h1 k                                  (3)                           

is designated as the first IMF component c1 from 
the data, or 

                         c1 = h1k;                                        (4) 

Typically, c1 will contain the finest-scale or the 
shortest-period component of the signal. One can 
remove c1 from the rest of the data to obtain the 
residue 

                 X (t) − c1 = r1                                  (5) 

This sifting process has two effects: (a) to eliminate 
riding waves; and (b) to smooth uneven amplitudes. 
The residue r1, which contains longer-period 
components, is treated as the new data and 
subjected to the same sifting process as described 
above. This procedure can be repeated to obtain all 
the subsequent rj functions as follows: 

     r1 − c2 = r2... rn−1 −cn = rn       :             (6) 

The sifting process can be terminated by either of 
the following predetermined criteria: (1) either the 
component cn or the residue rn becomes so small 
that it is less than a predetermined value of 
consequence; and (2) the residue rn becomes a 
monotonic function, from which no more IMF can 
be extracted. If the data have a trend, the final 
residue will be that trend. The original data are thus 
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the sum of the IMF components plus the final 
residue 

X (t) = ∑
=

n

j 1
cj+rn                               (7) 

Thus, the data are decomposed into n IMF 
components and a residue rn that can be either the 
mean trend or a constant. 

3.2   Hilbert Spectral Analysis 

For given data, X (t), the Hilbert transform, Y (t), is 
defined as 

       Y (t) = ∫ −
dt

tt
tCP

'
)'(1

π
                             (8) 

 where P denotes the Cauchy principal value. With 
this definition, C (t) and Y (t) can be combined to 
form analytical signal Z (t), given by 

Z (t) = X (t) + iY (t) = a (t) eiΘ (t);                     (9) 
where time-dependent amplitude a (t) and phase Θ 
(t) are found as      

a (t) = [X2(t) + Y 2(t)]1/2;                     (10) 

θ  (t) = arc tan(Y (t)/X (t))                   (11) 

From the polar coordinate expression, the 
instantaneous frequency can be defined                                                                                                                        

ω = 
dt
dθ

                                           (12) 

Applying the Hilbert transform to the n IMF 
components, the data X (t) can be written as 

     X (t) =R∑
=

n

j
a

1
j(t)eiΘ∫ω

j
(t)dt                   (13)                                 

where R is the real part of the value to be calculated 
and aj – the analytic signal associated with the jth 
IMF. The residue rn is not included because of its 
monotonic property (Huang et al. 1998). The above 
Equation (13) is written in terms of amplitude and 
instantaneous frequency associated with each 
component as functions of time, which differ from 

the time-independent amplitude and phase in the 
Fourier series representation of 

            X (t) =R∑
=

n

j
A

1
jeiΩ

j
t                          (14)        

where Aj=Fourier transform of X (t), a function of 
frequency Ωj. A comparison of the two 
representations in Equations (13) and (14) suggests 
that the Hilbert transform of the IMF can be 
considered as a generalized Fourier expansion. The 
time-dependent amplitude and instantaneous 
frequency in above equation might not only 
improve the flexibility of the expansion, but also 
enable the expansion to accommodate non-
stationary data. The frequency-time distribution of 
the amplitude is designated as the Hilbert amplitude 
spectrum, H (ω , t), or simply Hilbert spectrum, 
defined as 

H (ω , t) =∑
=

n

j
H

1

~
j (ω , t) ≡ ∑

=

n

j
a

1
j (t)          (15) 

where ≡  denotes ‘‘by definition’’ and H~ j=jth 
component of the total Hilbert spectrum H. The 
square of H reveals the evolutionary energy 
distribution or energy density. The marginal 
spectrum, h (ω ), defined as  

∑
=

=
n

j
hh

1

~)(ω J ( ∑∫
=

≡
n

j

T

a
1 0

)ω jd(t)dt               (16) 

provides a measure of total amplitude contribution 
from each frequency value, in which T denotes the 
time duration of data. It should be noted that the 
Hilbert transform described in Equations. (8)– (12) 
is not new. However, the incorporation of the 
Hilbert transform into the IMF components and 
thus the HHT representation of data in Eq. (13) are 
entirely novel. Huang et al. (1998) show that the 
instantaneous frequency has physical meaning only 
through its definition on each IMF component; by 
contrast, the instantaneous frequency defined 
through the Hilbert transform of the original data 
might be less directly related to frequency content 
because of the violation of the mono component 
condition on the Hilbert transform. 

4.  APPLICATION OF HHT ANALYSIS 
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In this section, we used annual mean global surface 
temperature anomaly data from one of the internet 
based data to illustrate the HHT analysis potential 
in nonlinear and non-stationary data analyses. It is 
also used a database on the noise component that 
present in the signal at various time intervals which 
is taken from the Equatorial Atmosphere 
Observatory website. The HHT calculation is 
carried out in MATLAB. 

4.1 HHT on annual mean global surface 
temperature anomaly  

Fig 1 represents the annual mean global 
temperature anomaly belongs to years from 1850 to 
2010. It is clear that the data is nonlinear and non-
stationary. In order to show the superiority of HHT 
over traditional data analysis method, it was 
calculated the Fourier spectrum for this data. Fig 2 
represents the Fourier spectrum of the above data 
calculated by using FFT algorithm.  Fourier 
spectrum explored all the frequency components 
present in the data corresponding to their respective 
amplitude 

 

 FIGURE 1 location 

 

FIGURE 2 location 

 

There are two major problems with this spectral 
analysis as pointed out in below 

1) Fourier spectral analysis is priory based 
analysis i.e. it explains data in terms of a 
superposition of trigonometric functions. 
If the actual data is very far from this 
assumption, then its leads to loss of 
important spectral components. 

2) Fourier spectral analysis doesn’t give any 
information regarding frequency 

components at instant time which is most 
important for many real time analyses. 

So, Fourier spectral analysis is not completely 
viable to analyze this type of data.  

HHT is applied to the same data. Fig 3 represents 
the Empirical Mode Decomposition (EMD) of the 
given data. The entire data can be split into 4 IMFs 
and a residue also known as trend whose behavior 
is explained in the above section. 

 

FIGURE 3 location 

FIGURE 4 location 

 

We can observe all IMFs are non-overlapping. 
Splitting the data into finite number of data sets 
makes the spectral analyses easier. The Hilbert 
spectrum in HSA shows a clear picture of temporal-
frequency energy distribution. Fig 4 represents the 
Hilbert spectrum of 3rd IMF. From this figure, it is 
possible to know the instantaneous frequency of 
that particular IMF. Since the HHT speaks only 

about data without any pre assumptions, no 
frequency component gets missed. So it’s entirely 
reliable and adaptive in nature. 

4.2 Application of HHT on Equatorial 
Atmospheric Radar data 

We now demonstrate the efficiency of HHT by 
using the data measured by the Equatorial 
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Atmospheric Radar located in Indonesia. Fig 5 
represents the noise level at different intervals of 
time. It is obvious to note that the above data is 
nonlinear and non-stationary in nature. We have 
also checked the efficiency of the Fourier spectral 
analysis in this case as we did for the global 

temperature anomaly data. As mentioned above, 
same drawbacks can also be seen here. In addition, 
Fourier spectrum does not provide information that 
is specific to the localized time scale (Figure 6). 
But HHT overcomes those problems. 

 

FIGURE 5 location 

FIGURE 6 location

Clearly, the data are associated with quite 
complicated local extrema, but no zero crossings 
are present. The mean can be treated as a zero 
reference, although defining it is hard, for the 
whole process it is transient. This example 
illustrates the advantage of adopting the successive 
extrema for defining the time scale; it also 
illustrates the difficulties of dealing with non-
stationary data and even a meaningful. Comparing 

this with the traditional Fourier expansion, one can 
immediately see the efficiency of the EMD: the 
expansion of a turbulence data set with only six 
terms. From the result, one can see a general 
separation of the data into locally non-overlapping 
time scale components. Figure 8 represents the 
corresponding instantaneous frequencies of 
respective IMFs. 

 

FIGURE 7 location 

FIGURE 8 location

. All the IMFs are non-overlapping as mentioned 
earlier. Further, as we don’t assume the data in 
terms of predefined functions, most of the data can 
be reconstructed. Thus, it is possible to reconstruct 
the entire data from these IMFs including residue 
with an accuracy of 99.99%. It is observed that the 
waveform gets smoothened as IMF number 
increases.  It is also obvious that the IMF 
components have provided a variable amplitude 
and frequency representation. However, in some 
components the signals are intermittent then the 
neighboring components might contain oscillations 
of the same scale. But signals of the same time 

scale would never occur at the same locations in 
two different IMF components. This allows us to 
remove the unwanted data according to its 
corresponding instantaneous frequency that is 
larger than a presumed threshold value. If we 
observe first IMF it constitutes higher frequency 
components but the amplitude is small when 
compared with the remaining IMFs. The next IMFs 
have a bit bigger amplitude with larger periods. It is 
quite reasonable to conclude that the HHT is a 
better method in analyzing nonlinear and non-
stationary data. 

5.    CONCLUSIONS 

HHT offers a potentially viable method for 
nonlinear and non-stationary data analysis, 
especially for time-frequency representations when 
compared with the traditional data analysis 
methods. Due to its adaptive natured analysis, the 
results are more accurate than any other traditional 
analysis methods. The IMF components contain the 

observable, physical information inherent to the 
original data and HSA provides us with the time-
frequency relations which are very crucial for any 
data analysis. From the discussed examples, it 
proves the fact that this method is the best 
alternative for analyzing nonlinear and non-
stationary signals. HHT has wide applications in 
geophysics, image analysis, oceanography and 
radar data analysis etc.  
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Figure 1: Annual mean global temperature anomaly data (courtesy from www.rcada.ncu.edu.tw). 
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Figure 2: Fourier Transform of temperature data 
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Figure 3: Empirical Mode Decomposition of temperature data 
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Figure 4: The IMF 3 (upper panel) and its instantaneous frequency (lower panel) 
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Figure 5: Noise level of signal measured by the Equatorial Atmospheric Radar  
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Figure 6: Fourier transform of EAR data 
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Figure 7: Intrinsic Mode Functions of the EAR data (except the last one which is called trend) 
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Figure 8: The corresponding instantaneous frequencies of the IMFs  


