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ABSTRACT 
 

Data uncertainty is common in real-world applications due to various causes, including imprecise 
measurement, network latency, out-dated sources and sampling errors. These kinds of uncertainty have to 
be handled cautiously, or else the mining results could be unreliable or even wrong. We propose that when 
data mining is performed on uncertain data, data uncertainty has to be considered in order to obtain high 
quality data mining results. We present a Probabilistic Neural Network model which is suitable for 
classification problems. This model constitutes an adaptation of the classical RBF network where the 
outputs represent the class conditional distributions. Since the network outputs correspond to probability 
densities functions, training process is treated as maximum likelihood problem and an Expectation-
Maximization (EM) algorithm is proposed for adjusting the network parameters. Experimental results show 
that proposed model exhibits superior classification performance on uncertain data. 

Keywords: Uncertain data, RBF Network, Maximum likelihood Problem Data Mining, Expectation-
Maximization (EM) algorithm 

 
1. INTRODUCTION  
 

Data is often associated with uncertainty because 
of measurement inaccuracy, sampling discrepancy, 
outdated data sources, or other errors. This is 
especially true for applications that require 
interaction with the physical world, such as 
location-based services [1] and sensor monitoring 
[3]. For example, in the scenario of moving objects 
(such as vehicles or people), it is impossible for the 
database to track the exact locations of all objects at 
all-time instants. Therefore, the location of each 
object is associated with uncertainty between 
updates [4]. These various sources of uncertainty 
have to be considered in order to produce accurate 
query and mining results. We note that with 
uncertainty, data values are no longer atomic. To 
apply traditional data mining techniques, uncertain 
data has to be summarized into atomic values. 
Taking moving-object applications as an example 
again, the location of an object can be summarized 
either by its last recorded location or by an 
expected location. Unfortunately, discrepancy in 

the summarized recorded value and the actual 
values could seriously affect the quality of the  

mining results. In recent years, there is significant 
research interest in data uncertainty management. 
Data uncertainty can be categorized into two types, 
namely existential uncertainty and value 
uncertainty. In the first type it is uncertain whether 
the object or data tuple exists or not. For example, a 
tuple in a relational database could be associated 
with a probability value that indicates the 
confidence of its presence. In value uncertainty, a 
data item is modelled as a closed region which 
bounds its possible values, together with a 
probability density function of its value. This model 
can be used to quantify the imprecision of location 
and sensor data in a constantly-evolving 
environment. 

1.1. Uncertain Data Mining 
There has been a growing interest in uncertain data 
mining[1], including clustering[2], [3], [4], [5], 
classification[6], [7], [8], outlier detection [9], 
frequent pattern mining [10], [11], streams 
mining[12] and skyline analysis[13] on uncertain 
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data, etc. An important branch of mining uncertain 
data is to build classification models on uncertain 
data. While [6], [7] study the classification of  

uncertain data using the support vector model, [8] 
performs classification using decision trees. The 
focus is on the use of a probabilistic neural network 
(PNN) for representing the distribution of feature 
vectors of each class in order to generate a feature-
label interaction constraint. The classical PNN is 
similar to  an “intelligent memory” since each 
training pattern is stored as one unit of the layer of 
Gaussians. Algorithms that train PNNs are 
therefore infeasible for large datasets because the 
resulting network contains as many neurons as 
there are patterns in the training dataset. PNN is 
often an excellent pattern classifier, outperforming 
other classifiers including backpropagation. This 
paper unprecedentedly explores yet another model, 
using Probabilistic Neural Networks, and extends 
them to handle uncertain data. For uncertain 
classification problems, however, we should learn 
the class conditional density from uncertain data 
objects represented by probability distributions.  

2.  RESEARCH BACKGROUND 
2.1   Neural Networks for Data Mining 

Neural networks are suitable in data-rich 
environments and are typically used for extracting 
embedded knowledge in the form of rules, 
quantitative evaluation of these rules, clustering, 
self-organization, classification and regression, 
feature evaluation and dimensionality reduction. 
The following are the major stages in solving a DM 
problem. The entire DM process is iterative, and 
the result in each step can be feed back to any of the 
previous steps for improvement. The loop will 
continue until a satisfactory result has been 
obtained. A lot of work in current DM has been 
done in developing integrated systems to support all 
7 stages not only stages 5 and 6 that are typical for 
NN and machine learning. There are many nice 
features of NN, which make them attractive for 
DM. These features include learning and 
generalization ability, adaptivity, content 
addressability, fault tolerance, self-organization, 
robustness, and simplicity of basic computations. 
NN are useful especially when there is no a priori 
knowledge about the analyzed data. They offer a 
powerful and distributed computing architecture, 
with significant learning abilities and they are able 
to represent highly nonlinear and multivariable 
relationships 

 
Figure 1: Data modeling process  

2.2 Probabilistic Neural Networks 
In pattern recognition it is well-known that a 
convenient way to consider a classifier is on the 
basis of inferring the posterior probabilities of each 
class. From the statistical point of view this 
inference can be achieved by first  evaluating the 
class conditional densities ( | )P x k and the 
corresponding prior probabilities ( )P k  and then 
making optimal decisions for new data points by 
combining these quantities through Bayes theorem 

( | ) ( )
( | )

( | ') ( ')'

p x k P k
P k x

p x k P kk
=
∑

                              (1) 

and selecting the class with maximum ( | )P k x .  
Consequently, the above approach is based on the 
evaluation of each class conditional 
density ( | )P x k    which is estimated separately by 
considering only the data points of the 
corresponding class k . In the proposed probabilistic 
network we combine characteristics of the 
statistical and neural approaches. In particular, the 
developed RBF neural network which provides 
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output values corresponding to the class conditional 
densities ( | )P x k . Since the network is RBF, the 
kernels are shared among classes and each class 
conditional density is evaluated using not only the 
corresponding class data points (as in the traditional 
statistical approach), but using all available a 
points. In order to train the PRBF network, an 
Expectation-Maximization (EM) algorithm been 
derived, which provides a fast iterative procedure 
for adjusting the network parameters.  

 
Figure 2: The architecture of the probabilistic network 

 

2.3 Description of the Network 

Consider a classification problem with C classes 
and a training set X having N supervised ( )n nx k  

where nx א  dR  and nk  is an integer indicating the 
class of the pattern nx . The original set X can 
easily be partitioned into C independent subsets Xk 
with Nk elements, where k = 1…, C, so that each 
subset contains only the data of the corresponding 
class. As mentioned in the introduction our 
intention is to model the class conditional densities 
using an RBF network. The network architecture is 
displayed in Fig. 2. Typically this probabilistic 
network has d input units and C output units (one 
for each class). The main difference with a classical 
RBF network lies on the specific functional form of 
the basis functions which are considered to be 
densities functions as well as on some constraints 
involving weights from the hidden to the output 
layer. More specifically, each basis function j (j = 1. 
. . M) in the hidden layer is Gaussian kernel of the 
form 

2|| ||1
( | ) exp{ }22 2(2 )

x jP x j
d

jj

µ

σπσ

−
= −      (2) 

where jµ is a vector representing the center of the 

j  kernel and  2
jσ   is the corresponding variance. 

This specific form of the kernel function assumes 
that the components of the pattern x  are 
independent and can be represented by a common 
variance. Each output unit k  provides density 
function values ( | )P x k for the corresponding class 
k  in the following way: 

   ( | ) ( | )
1

M
p x k p x jjkj

π= ∑
=

                                (3) 

where the weight jkπ  represents the prior 

probability that a data point has been generated 
from kernel, j  given that it belongs to class k . 
These parameters satisfy the constraints 

    1  0
1

and
M

jk jkj
π π= ≥∑

=
 for every k               (4) 

Using the Bayes theorem we can compute the a 
posterior probability ( | , )P j k x  that kernel j  is 
responsible for generating pattern x  given that it 
belongs to class k  

   
( | )

( | , )
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p x jjkP j k x
p x jj j k

π

π
=
∑

                        (5) 

From the above it is clear that the adjustable 
parameters of the PNN network are the means 

jµ and 2
jσ   variances of the M Gaussian kernels 

and also the priors πjk. We denote the whole 
parameter vector by θ.  

2.4 Maximum Likelihood 

Let P(k) where k = 1. . .C denotes the prior 
probability of the k class. In order to use Bayes rule 
(1) for unlabeled input data we have to find first 
appropriate values for both prior probabilities and 
parameter vector θ (PNN). The whole adjustable 
parameter vector is θ′ = (θ, P (1). . . P(C)). 
Assuming that all data points have been 
independently drawn from an underlying process, 
we can write the log-likelihood function of the 
dataset X as 

   ( ') log ( | ') log ( , )
1

N n nL p X p x k
n

θ θ= = ∑
=

        (6) 

Using the relation p(x, k) = P(k) p(x|k) and the fact 
that the dataset X consists of C independent subsets 
Xk, the above equation takes the for 
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( ') log ( ) log ( | )
11 1

NC C k nL N P k p x kk nk k
θ = +∑ ∑ ∑

== =
       (7) 

Maximization of the first term in the above 
equation yields P (k) = Nk/N (k = 1. . . C), while the 
maximization of the second term is equivalent to 
training the PNN network. Consequently, the 
appropriate log-likelihood function for PRBF 
training is given by 

      ( ) log ( | )
11

NC k nL p x k
nk

θ = ∑ ∑
==

                         (8) 

In order to maximize L(θ) it is possible to employ 
computationally intensive nonlinear optimization 
techniques. Nevertheless, since we seek maximum 
likelihood estimates, it is also possible to employ 
the iterative EM algorithm  

2.4 The EM algorithm 

The Expectation-Maximization (EM) algorithm is a 
general technique for maximum likelihood 
estimation. The algorithm assumes the existence of 
two data sets; the incomplete data set that consists 
of the actual observations and the hypothetical 
complete data set which contains some additional 
values called unobservable or hidden variables. The 
notion of hidden variables suggests that the 
problem to be solved would be straightforward if 
these variables were known. One iteration of the 
EM algorithm consists of two steps: i) the 
expectation step (E-step) where the expected value 
of the log-likelihood of the complete data set is 
evaluated, given the current parameter vector and 
the incomplete data set and ii) the maximization 
step (M-step) where this expected value is 
maximized with respect to the parameters of the 
model. In order to apply the EM for maximizing we 
have to express the complete data set; the 
corresponding uncertain data set is X. We express 
this uncertain information by introducing for each 
data point xn a variable zn which is an M-
dimensional vector of one-zero values specifying 
the kernel that generated xn. If xn was generated 
from kernel j, then, 1nz j = otherwise. 0nz j = . 

Using these hidden variables the complete data set 
Y is defined as follows: 

1{ , .... },nY y y= Where ( , , )n n n ny x k z=           (9) 
and the corresponding log-likelihood function is 
written in the form 

   ( ) log{ ( | )}
1 1

N M n nL z p x jnc j jkn j
θ π= ∑ ∑

= =
    (10) 

At the t + 1 iteration the current expected value of 

the nz j , given the data point xn is equal to the 

posterior probability ( ) ( | , )t n nP j k x where t 
reminds us that this probability have been evaluated 
using the current parameters θ(t). Eventually, the 
quantity to be maximized in the M-step is given by 

( ) ( )( ; ) ( | , ){log log ( | )}
1 11

NC Mkt t n nQ P j k x p x jjkn jk
θ θ π= +∑ ∑ ∑

= ==
                                                                            (11)  
 It can be shown that M-step is analytically 
implemented. The above equation can be written as Q 
= Q1 + Q2 where 

1
( ) ( )( ; ) ( | , ) log

1 11

NC Mkt t nQ P j k x jkn jk
θ θ π= ∑ ∑ ∑

= ==
  (12) 

and 

2
( ) ( )( ; ) ( | , ) log( | )

1 11
n

NC Mkt t nQ P j k x x j
n jk

θ θ = ∑ ∑ ∑
= ==

  (13) 

The quantity Q1 depends solely on the parameters 
πjk, while the quantity Q2 depends solely on the 
parameters of the kernels. In order to maximize Q1 
we must take  into account the constrain 

1
1M

j jkπ
=

=∑   πjk = 1 which holds for every class 

k. Therefore we introduce C multipliers λk and after 
performing some algebra we finally find that the 
update equation of the prior πjk at the M-step is 

   ( 1) ( )

1

1 ( | , )
kN

t t n
jk

kk

P j k x
N

π +

=

= ∑                      (14) 

for k = 1, . . . ,C and j = 1, . . . ,M . Taking the 
derivatives of Q2 with the respect to jµ and 

2
jσ respectively and setting them to zero we obtain 

the following equations for j = 1. . . M                         

    
( ) ( | , )1 11

( ) ( | , )11

N t n nC k P j k x xt nk
j N t nC k P j k xnk

µ
∑ ∑+ ===
∑ ∑ ==

          (15)                                     

( ) 1 2( | , ) || ||11( 1)2 1( )
( ) ( | , )11

N t n n tC k P j k x x jnkt
j d N t nC k P j k xnk

µ
σ

+−∑ ∑ ==+ =
∑ ∑ ==

   (16) 

Starting from some initial parameter values, we 
perform alternatively the E-step and M-step until 
we reach convergence. 

3. RELATED WORKS 

3.1 How the PNN Works 
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A probabilistic neural network (PNN) has 3 
layers of nodes. The Figure.2 below displays the 
architecture for a PNN that recognizes K = 2 
classes, but it can be extended to any number K of 
classes. The input layer (on the left) contains N 
nodes: one for each of the N input features of a 
feature vector. These are fan-out nodes that branch 
at each feature input node to all nodes in the hidden 
(or middle) layer so that each hidden node receives 
the complete input feature vector x. The hidden 
nodes are collected into groups: one group for each 
of the K classes as shown in the Figure.3 

 
Figure 3: Probabilistic Neural Network 

 
At the output node for Class k (k = 1 or 2 here), all 
of the Gaussian values for Class k are summed and 
the sum is scaled to so the probability volume under 
the sum function is unity so that the sum forms a 
probability density function. Here we temporarily 
use special notation for clarity. Let there be P 
exemplar feature vectors {x(p): = 1,..., P} labeled as 
Class 1 and let there be Q  exemplar feature vectors  
{ y (r) : = 1,...,R } labeled as Class 2. In the hidden 
layer there are P nodes in the group for Class 1 and 
R nodes in the group for Class 2. The equations for 
each Gaussian centered on the respective Class 1 
and Class 2 points x(p)   and y (q) (feature vectors) 
are (where N is the dimension of the vectors) are, 
for any input vector x. 

1
(p)2 N 2 2( ) [1 / (2 ) ] exp{ || || /(2 )}g πσ σ= − −x x x (17) 

2
(q)2 N 2 2( ) [1 / (2 ) ] exp{ || || /(2 )}g πσ σ= − −y y y (18) 

The F values can be taken to be one-half the 
average distance between the feature vectors in the 
same group or at each exemplar it can be one-half 
the distance from the exemplar to its nearest other 
exemplar vector. The kth output node sums the 
values received from the hidden nodes in the kth 

group, called mixed Gaussians or Parzen windows. 
The sums are defined by 

1
(p)2 N 2 2f ( ) [1 / (2 ) ](1 / P) exp{ || || /(2 )}(p 1,P)πσ σ= ∑ − −=x x x

             (19) 
(q)2 N 2 2f ( ) [1 / (2 ) ](1 / Q) exp{ || || /(2 )}2 (q 1,Q)πσ σ= ∑ − −=y y y

                                         (20) 

where x  is any input feature vector, 1σ and 

2σ are the spread parameters (standard deviations) 
for Gaussians in Classes 1 and 2 , respectively, N is 
the dimension of the input vectors, P is the number 
of center vectors in Class 1 and R is the number of 
centers in Class 2, x(p)  and y (q)  are centers in the 

respective Classes 1 and 2, and (p)| ||−x x  is the 
Euclidean distance (square root of the sum of 
squared (p)differences) between x   and,x(p).  Any 
input vector x  is put through both sum functions 
f1(x) and f2(x)and the maximum value (maximum a 
posteriori, or MAP value) of f1(x) and f2(x)decides 
the class. For K > 2 classes the process is 
analogous. There is neither iteration nor 
computation of weights. For a large number of 
Gaussians in a sum, the error buildup can be 
significant. Thus the feature vectors in each class 
may be reduced by thinning those that are too close 
to another one and making σ larger. 

3.2 PNN Algorithm to handle Uncertain Data 

Step 1.  Read in the file of exemplar vectors and 
class numbers 
Step 2.  Sort these into the K sets where each set 
contains one class of vectors 
Step 3. Determine the number of kernels M and the 

initial parameter vector 
(0)θ  

Once the PNN is defined, then we can feed vectors 
into it and classify them as follows 
Step 4.  Read input vector and feed it to each 
Gaussian function in each class 
Step 5. For each group of hidden nodes, compute all 
Gaussian functional values at the hidden nodes 
Step 6. Set t: = 0 and compute the initial log-
likelihood L (0) 

Repeat 
(a) E-step: Compute ( ) ( | , )t nP j k x  for each 

1,...., , 1,.... kk C n N= = and 1,....,j M=  
(b) M-step: Compute the new parameter values 
( 1)t
jkπ + , ( 1)t

jµ
+ and 2 ( 1)( ) t

jσ +  using respectively. 
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(c) Set t: = t + 1 and compute the new log-

likelihood 
( )tL  

 until  
( ) ( 1)| |t tL L −− <  Ԗ where Ԗ determines the strictness 

of the convergence criterion. 

Step 7. Find maximum value of all summed 
functional values at the output nodes 

4. EXPERIMENTS 

4.1. Results 

We have implemented the this approach using 
Matlab 6.5, and test on 2 real data sets taken from 
the UCI Machine Learning Repository i.e. Glass 
data, Iris,. We compare the classification 
performance of this model on this UCI datasets 

Table 1. Statistics of the datasets are listed  

 Glass Iris 
Number of Data 214 150 
Number of features 10 4 

Number of Classes 6 3 
 
We Plot the model size and Error rate for the 
terminal nodes and Misclassification cost for Glass 
data set by using this model and inferred that the 
PNN exhibits good classification performance 

 
Figure 4: Model size and Error rate for Glass data set 
 
We plot the lift and gain for Virginica spices in Iris 
data set using this model and found that it performs 
well when compared with RBF network. This will 
give PRBF network trained using the EM algorithm 
provides superior performance in classification of 
the data. 

 
        Figure 5: Lift Virginica spices in Iris data set 

 

 
              Figure 6: Gain Virginica spices in Iris data set 

We started plotting the information for Pima 
Indian-Diabetes data set to predict the given sample 
is having Diabetes with the Threshold Probability 
for having Diabetes is 1 and trained with the model 
and deduced the results 

Figure 7: Threshold Chart for Pima-Indian-Diabetes Data  
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Figure 8: Balanced Chart for Pima-Indian-Diabetes Data  

 
Figure 9: Probability calibration Pima-Indian-

Diabetes Data  
 
Table 2. Generalization error for the clouds data set 

 Number of kernels 
Algorithm 6 8 12 

PNN 11.13 10.46 10.3 
RBF 25.46 23.5 22.94 

 
We have chosen one artificial dataset (Clouds), in 
order to obtain an estimate of the generalization 
error, we have employed the K-fold cross-
validation method with K = 5. Tables 2 provide the 
obtained results for the PRBF and RBF networks, 
for several values of the number of kernel functions 
M. These results indicate that the proposed PRBF 
network trained using the EM algorithm provides 
superior performance compared to the classical 
RBF network. Therefore, the classification and 
prediction process is more sophisticated and 
comprehensive and has the potential to achieve 
higher accuracy 

5. CONCLUSION  

In this paper, we propose a Probabilistic Neural 
Network model for classifying and predicting 
uncertain data. The new process is based on an 
approximation of the random function around the 
input mean. This process also highlights the 

correlation between all the parameters, indicating 
the nature of the likelihood function, and the 
potential problems for maximum likelihood 
optimization. Moreover, the structure of the 
network is modified to implement another principle 
of the small sample theory, in that it is able to add a 
percentage of regularization to the estimation of the 
probabilities. At the same time the method takes 
into account the limited availability of resources for 
the practical realization of a PNN device. We plan 
to explore more classification approaches for 
various uncertainty models and find more efficient 
training algorithms in the future 
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