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ABSTRACT 
 

Diabetes mellitus, simply referred to as diabetes, is a group of metabolic diseases. There exits 
more than one type of diabetes, with each type having its own risks. Among the different types, types 1 and 
2 are the most common ones. The cause of diabetes depends on the type. In each case, combinations of 
genetic and environmental influences are responsible for causing diabetes. Type 2 diabetes is primarily due 
to lifestyle factors and genetics. Microarray analysis is a method for analyzing expression levels of multiple 
genes at once. This method is especially suitable for identifying and classifying genes whose expression 
level differs in two samples. The present work focuses on identifying and classifying genes that cause type-
II diabetes with two different samples, one with parental history and other without parental history. 
Mahalanobis Distance, Minimum Co-variance Determinant are the statistical methods used for identifying 
multivariate and univariate outliers for the identified inflammatory genes, the functional classification is 
performed by using Gene Ontology and pathway analysis. It is observed that 38 differentially expressed 
genes were identified out of 39400 genes tested between diabetes with and without parental history. 

Keywords: Type-2 Diabetes mellitus, Mahalanobis Distance, Gene Ontology, pathway analysis, 
Microarray analysis. 

 
1. INTRODUCTION  

 
Diabetes is a chronic disease that is associated 

with considerable morbidity and mortality. Recent 
studies revealed that the incidence of diabetes 
mellitus is assuming epidemic proportions both in 
the developing and developed world. This has been 
attributed largely to westernized life style pattern. 
In view of this increasing incidence of diabetes, it is 
imperative that more sophisticated, fast, reliable 
and robust methods to need to be devised to 
develop the best use of information science and 
technology in relation to diabetes, decision support 
and clinical management. Molecular Biology 
research involves in this area through the 
development of the technologies used for carrying 
them out. DNA Microarray is one such technology 
which enables the researchers to investigate and 
address issues which were once thought to be non 
traceable. One can analyze the expression of many 
genes in a single reaction quickly and in an efficient 

manner [1]. DNA Microarray technology has 
empowered the scientific community to understand 
the fundamental aspects underlining the growth and 
development of life as well as to explore the genetic 
causes of anomalies occurring in the functioning of 
the human body [2]. 

A typical microarray experiment involves the 
hybridization of an mRNA molecule to the DNA 
template from which it is originated. Many DNA 
samples are used to construct an array. The amount 
of mRNA bound to each on the array indicates the 
expression level of the various genes.  
1.1. Microarray Technology 

The scientific principle underlying microarray 
technology is complementary hybridization 
between nucleic acids [3,4]. All gene expression 
DNA microarrays can be understood as high-
throughput 'dot-blot' systems, where pieces of 
known DNA are anchored to a solid support, while 
targets are fluorescently labeled, free-floating 
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amplified RNA or complementary DNA (cDNA) 
species originating from the samples [5]. When the 
labeled sample is hybridized to the DNA 
microarray, each probe binds its complementary 
target. Analyzing the microarray with high-
resolution fluorescent scanners allows assessment 
of the fluorescent signal strength that originates 
from the probe-bound target. This signal is 
presumed to be directly proportional to the 
abundance of the RNA species present in the 
investigated samples. 

Most commonly, one sample is hybridized to 
one array, and the results are standardized and 
mathematically compared across microarrays, 
uncovering fluorescent intensity differences 
between microarrays. These intensity differences 
correspond to transcript abundance differences 
between samples. Current microarrays contain 
probes corresponding to many thousands of 
annotated genes in the human genome, allowing 
'transcriptome profiling' from each of the samples. 
A variety of microarray platforms are available [6]. 
The choice of platform depends on factors like the 
number of genes represented on the array, cost and 
availability. 

However, microarrays are more than a simple 
collection of independently performed dot blots for 
thousands of genes. Many expression changes are 
correlated in ways that suggest a causal dependence 
[7], and changes in relative abundances within 
individual samples provide valuable information 
about the complex pathways and cellular processes 
that are altered in a particular disease or condition. 
Furthermore, defined disease-specific expression 
patterns can be correlated with relevant pre-mortem 
information [8]. 
1.1.1. Types of Microarrays: 

Depending upon the kind of immobilized 
sample used construct arrays and the information 
fetched, the Microarray experiments can be 
categorized in three ways: 

Microarray expression analysis: In this 
experimental setup, the cDNA derived from the 
mRNA of known genes is immobilized. The sample 
has genes from both the normal as well as the 
diseased tissues. Spots with more intensity are 
obtained for diseased tissue gene if the gene is over 
expressed in the diseased condition. This 
expression pattern is then compared to the 
expression pattern of a gene responsible for a 
disease. 
Microarray for mutation analysis: For this analysis, 
the researchers use gDNA. The genes might differ 
from each other by as less as a single nucleotide 
base. A single base difference between two 

sequences is known as Single Nucleotide 
Polymorphism (SNP) and detecting them is known 
as SNP detection  

Comparative Genomic Hybridization: It is 
used for the identification in the increase or 
decrease of the important chromosomal fragments 
harbouring genes involved in a disease. 

In this paper we used Microarray expression 
analysis for identifying and classifying genes 
causing Type 2 Diabetes Mellitus (T2DM). The 
prevalence of T2DM is rising worldwide. While 
environmental factors, such obesity and lack of 
physical activity, play an important role to the rapid 
increase in the prevalence of T2DM, genetic factors 
are also important for the increased risk of T2DM. 
Studies have estimated that risk for diagnosed 
T2DM increases approximately two- to fourfold 
when one or both parents are affected.  

A lot of studies have showed an excess paternal 
transmission of T2DM in different populations. 
Genetic factors, such as mitochondrial DNA 
mutations, and environmental mechanisms, such as 
intrauterine environment, have been proposed for 
the explanation of the excess paternal transmission 
of T2DM.  In the present study, we performed gene 
expression profile in subjects with type 2 diabetes 
mellitus with parental history Versus Healthy using 
micro array data. 

Searching for all of the available information 
about each gene of interest is very time consuming. 
This is hampered further by the wide variations in 
terminology. Gene Ontology (GO) is a collection of 
controlled vocabularies describing the biology of a 
gene product in any organism 
1.2. Normalizing DNA Microarray Data 

Normalization is a broad term for methods that 
are used for removing systematic variation from 
DNA microarray data. In other words, 
normalization makes the measurements from 
different arrays inter-comparable. The methods are 
largely dissimilar for different DNA microarray 
technologies. For example, robust multiparty 
average (RMA) is a commonly used method for 
preprocessing and normalizing Affymetrix data, but 
it can’t be applied to any other data types. 
However, one part of the RMA method is quantile 
normalization that is applicable to all data types. 

Typically log2-transformed data is used for 
further analysis. Most of the normalization 
functions produce data in this format by default. If 
this is not the case, it is indicated below after the 
normalization. After normalization and possible 
log-transformation, the data is saved in a tabular 
format for further analysis. 
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In carrying out comparisons of expression data 
using measurements from a single array or multiple 
arrays, the question of normalizing data arises. In 
this study we will consider Lowess Normalization 
method for normalization. 

The global locally weighted scattered plot 
smoothing (LOWESS) normalization is a good 
choice because it provides a good balance on the 
following three factors: ideally the center of the 
distribution of log-ratios should be zero, the log-
ratios should be independent of spot intensity, and 
the fitted line should be parallel to intensity axis. It 
has been reported that the log2(ratio) values can 
have a systematic dependence on intensity, which 
most commonly appears as a deviation from zero 
for low-intensity spots. Locally weighted linear 
regression (LOWESS) analysis has been proposed 
as a normalization method that can remove such 
intensity-dependent effects in the log2(ratio) values 
(see M/A plots below). The easiest way to visualize 
intensity-dependent effects is to plot the measured 
log2(red/green) ratio or (M) for each element on the 
array as a function of the log2(red*green) product 
intensities or (A). LOWESS method detects 
systematic deviation in the “ratio-intensity” plot 
and corrects them by carrying out a local weighted 
linear regression as a function of the log2(intensity) 
and subtracting the calculated best-fit average 
log2(ratio) from the experimentally observed ratio 
for each data-point.  
1.3. Data Analysis Challenges 

There are three main phases to microarray data 
analysis: pre-processing, inferential statistics and 
descriptive statistics. These phases of analysis are 
used to answer some of the key questions typically 
posed by biologists using microarrays.  

Gene expression variations between samples 
are attributable to a combination of biological 
differences and experimental artefacts. The latter 
include variations associated with the sample 
(differences in the way RNA samples are isolated 
and processed, or different labeling efficiencies of 
fluorescently tagged nucleotides), the array (uneven 
spotting of DNA elements) or the hardware 
(variable performance of fluorescence scanners). 
Non-biological variations in gene expression can be 
reduced through proper experimental design (for 
example, by processing experimental and control 
samples in parallel, using microarrays from the 
same lot or by using dye swap experiments). Data 
normalization can also be applied to remove 
systematic biases in the data [9]: global 
normalization allows the comparison of data from 
two microarrays, and local normalization accounts 
for artifactual variations that are not constant across 

a range of signal intensities or across the surface of 
a microarray [10]. 

A fundamental challenge for researchers using 
microarrays is that there is currently no consensus 
for the appropriate data normalization procedures. 
We believe that the distribution of data should be 
normalized around zero, and local normalization 
procedures should be applied to datasets to account 
for gene expression values that change as a function 
of signal intensity. However, such corrections are 
not consistently applied. If three normalization 
procedures are applied to the same raw data set, it is 
likely that entirely distinct descriptions of regulated 
genes will be generated.  

The goal of the second phase, inferential 
statistics, is to evaluate hypotheses about gene 
expression changes in terms of significance and 
confidence. We may state the null hypothesis that a 
given gene is not differentially regulated in five 
brain samples from individuals with schizophrenia 
relative to a similar number from matched controls, 
and then test whether we can reject it with a 
probability P < 0.05. However, there is little 
consensus on how the significance of gene 
expression changes should be applied. 

 
2. RELATED WORK 

 
Microarray experiments are now being used to 

profile expression levels of genes under changing 
experimental conditions. To analyze these profiles 
in an attempt to answer diverse biological 
questions, various techniques and ideas have been 
proposed. Of particular interest to many scientists is 
the identification of genes whose expression 
profiles are similar, since genes with similar 
cellular functions have been theorized to respond 
similarly to changing conditions [11]. As a result, 
an efficient similarity measure for microarray 
analysis is fundamental for understanding the 
cellular processes [12] and annotating unknown 
genes. 
There has been a growing interest in linking genes 
whose expression profiles are similar to construct 
co-expression networks. These networks and their 
highly modular sub networks are invaluable sources 
of information for system-level gene processes 
[13,14]. Similarity of two genes can be deduced 
from expression levels of these genes across all 
samples [15, 13, 16]. However, the noise inherent 
in microarray datasets limits the sensitivity of such 
analysis. Since any microarray measurement is 
likely to fluctuate due to many possible sources of 
error, a similarity based solely on expression 
measurements of two genes is more error-prone 
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than a similarity based on expression measurements 
of many genes. In addition, inferring the similarity 
of two genes based on their relations with a set of 
other genes will be in accordance with the 
biological hypothesis about gene products acting as 
complexes to accomplish certain cellular level tasks 
[17]. Thus, here we investigate use of extrinsic 
similarity measures to analyze microarray studies. 

M. Kathleen Kerr et.al demonstrated [18] that 
ANOVA methods can be used to normalize 
microarray data and provide estimates of changes in 
gene expression that are corrected for potential 
confounding effects.  This approach establishes a 
frame work for the general analysis and 
interpretation of micro array data.  

The probability that a false identification is 
committed can increase sharply when the number 
of tested genes gets large.  Correlation between the 
test statistics attributed to gene co-regulation and 
dependency in the measurement errors of the gene 
expression levels further complicates this problem. 
Anat Reiner et.al addressed [19] this problem by 
adapting the False Discovery Rate (FDR) 
controlling approach.  Comparative analysis shows 
that all the four FDR controlling procedures control 
the FDR at the desired level. 

D. L. Wilson et.al presented [20] two methods 
for the normalization of the micro array data to 
remove biases towards one or the other fluorescent 
dyes used to label each mRNA sample allowing for 
proper evaluation of differential gene expression.  
One method deals with smooth spatial trends in 
intensity across micro arrays.  Second method deals 
with normalization of a new type of cDNA micro 
array experiment where large proportion of the 
genes on the microarrays is expected to be highly 
differentially expressed. 

Hong-Ya Zhao et.al applied [21] a multivariate 
mixture model to model the expression level of 
replicated arrays, considering the differentially 
expressed genes as the outliers of the expression 
data.  In order to detect the outliers of the 
multivariate mixture model, a statistical method 
based on the analysis of Kurtosis Coefficient (KC) 
is applied to the micro array data.  They used the 
RT-PCR method and two statistical methods, 
Minimum Covariance Determinant (MCD) and 
Minimum Volume Ellipsoid (MVE) to verify the 
expression levels of outlier genes identified by KC 
algorithm. 

Dan Nettleton et.al developed [22] a non 
parametric multivariate method for identifying gene 
categories whose multivariate expression 
distribution differs across two or more conditions.  
By comparing the performance to several existing 

procedures via the analysis of a real data set and 
showed that this method has good power for 
differentiating between differentially expressed and 
non- differentially expressed gene categories. 

Huaizhen Qin et.al proposed [23] a 
computationally simple method for finding 
differentially expressed genes in small micro array 
experiments.  This method incorporates a novel 
stratification based tight clustering algorithm, 
principal component analysis and information 
pooling.  They applied this method to three real 
micro array data sets.  Comprehensive simulation 
shows that this method is substantially powerful 
than the popular SAM and eBayes approaches.  

Bogdan Done et al proposed [24] a technique 
that improves previous method for predicting novel 
GO annotations by extracting implicit semantic 
relationships between genes and functions. In this 
work, they use a vector space model and a number 
of weighting schemes. The technique described is 
able to take into consideration the hierarchical 
structure of the Gene Ontology (GO) and can 
weight differently GO terms situated at different 
depths.  

Purvesh Khatri et al proposed [25] an impact 
analysis approach that considers crucial biological 
factors to analyze regulatory pathways at systems 
biology level. This approach calculates 
perturbations induced by each gene in a pathway, 
and propagates them through the entire pathway to 
compute an impact factor for the given pathway. 
They proposed an alternative approach that uses a 
linear system to compute the impact factor. Their 
proposed approach eliminates the possible stability 
problems when the perturbations are propagated 
through a pathway that contains positive feedback 
loops. Additionally, the proposed approach is able 
to consider the type of genes when calculating the 
impact factors. 

 
3. ANALYSIS PERFORMED 

 
Data from three samples were hybridized on 

Human 40 K OchiChip Array. Gene expression 
values were obtained after quantification of TIFF 
images. Data has 40,320 X 3 data-points (or 
probes). Empty spots and control probes were 
removed before proceeding with data analysis. 
Analysis process involved: 

1. Differential expression analysis. 
2. Functional classification of 

differentially expressed genes. 
3.1. Differential Expression Analysis 

In any micro array study the primary objective 
is to assess mRNA transcript levels of samples 
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under different experimental conditions. Which of 
the thousands of genes show significant difference 
in expression levels in the samples is the question 
of importance. Appropriate statistical techniques 
are required to furnish the accurate information on 
differentially expressed genes if there are no or 
limited replicates due to practical constraints in 
majority of the experiments. 

For experiments with single sample in different 
conditions, we assume that the log intensity values 
of gene expression for the two samples are linearly 
related, following bivariate normal distribution, 
contaminated with outliers. In a contaminated 
bivariate distribution, the main body of the data is 
characterized by bivariate normal distribution and 
constitutes regular observations. The non-regular 
observations, described as outliers, represent 
systematic deviations. These outliers are often 
suspected as possible candidates for differential 
expression genes. 

Here we use an exploratory approach consisting 
of two-stages to detect outliers from bivariate 
population and determining differentially expressed 
candidates from these outliers. The approach 
provides the fold-change value considering the 
scatter of observations and thereby provides up and 
down regulated genes across the samples. 
3.2. Functional Classification 

To determine biological significance of 
differentially expressed genes, functional 
classification was performed. 
3.2.1. Gene Ontology 

GO provides a dynamic controlled vocabulary 
and hierarchy that unifies descriptions of biological, 
cellular and molecular functions across genomes. 
3.2.2. Pathway Analysis 

To determine pathways associated with 
differentially expressed genes, pathway analysis 
was performed 
3.2.1.1. Gene Ontology Analysis 
Molecular Function: Genes involved in NADH 
dehydrogenase (ubiquinone) activity, glutamate 
dehydrogenase [NAD(P)+] activity, CDP-
diacylglycerol-glycerol-3-phosphate-3-
phosphtidyltransferase activity are upregulated in 
D&PH with respect to H. Gene involved in protein 
kinase B binding, enzyme inhibitor activity, acyl-
CoA oxidase activity, phosphatidylinositol 
transporter activity, acyltransferase activity are 
downregulated in D&PH with respect to H. 
Biological Process: Genes involved in synaptic 
vesicle membrane organization and biogenesis, 
polysaccharide metabolic process, regulation of 
growth rate, nucleosome assembly are upregulated 
in D&PH with respect to H. Genes involved in 

immune response, regulation of glycolysis are 
downregulated in D&PH with respect to H. 
Cellular Component: Genes localized in cohesin 
core heterodimer, oligosaccharyl transferase 
complex, nucleosome, respiratory chain complex II 
are upregulated in D&PH with respect to H. Genes 
localized in isoamylase complex, protein kinase 
CK2 complex, proteasome activator complex, 6-
phosphofructokinase complex are downregulated in 
D&PH with respect to H. 
3.2.2.1. Pathway Analysis 

Genes involved in Inositol phosphate 
metabolism, Starch and sucrose metabolism, 
Nitrogen metabolism, Oxidative phosphorylation, 
Androgen and estrogen metabolism, Glycan 
biosynthesis and metabolism pathways, Metabolism 
of cofactors and vitamins pathways, MAPK 
signalling pathway, ECM-receptor interaction, 
Neuroactive ligand-receptor  interaction, 
Regulation of actin cytoskeleton, Cell 
communication pathways, Nervous system 
pathways, Neurodegenerative disorders pathways 
are upregulated in D&PH Vs H. Genes involved in 
Glycolysis / Gluconeogenesis, Propanoate 
metabolism, Carbon fixation, Biosynthesis of 
steroids, Fatty acid metabolism, Histidine 
metabolism, Phenylalanine metabolism, Tyrosine 
metabolism, Urea cycle and metabolism of amino 
groups, Cell cycle, Insulin signalling pathway, 
PPAR signaling pathway, Antigen processing and 
presentation are downregulated in D&PH Vs H. 

 
4. SHARING AND COMPARING DATASETS 

 
On the technical end, data sharing of 

transcriptome datasets is becoming relatively easy. 
Microarray data repositories (such as Gene 
Expression Omnibus [26] at the National Centre for 
Biotechnology Information, and Array Express 
[27,28] at the European Bioinformatics Institute) 
can accommodate even the largest datasets, and the 
deposited data are readily accessible by the whole 
scientific community. In an effort to standardize 
microarray data reporting, Brazma et al.[29] 
proposed a set of guidelines, Minimum Information 
About a Microarray Experiment (MIAME), to 
define parameters that uniformly describe each 
dataset, such as experimental design, sample 
preparation, hybridization procedures and use of 
controls[30]. Some journals, including Nature 
Neuroscience, now require public disclosure of the 
data in this format at the time of publication. 
Sharing of microarray data is also required from all 
researchers using the three NINDS/NIMH 
established microarray core facilities 
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(http://arrayconsortium.cnmcresearch.org). Data 
generated by the consortium becomes publicly 
available 6 months after completion of the project. 

Comparing microarray datasets is much more 
challenging [31]. First, we can compare outcomes 
of experiments. Was the expression pattern present 
in both experimental series? In this comparison, we 
rely on processed and analyzed data from different 
sources, accepting the data analysis that was done 
by the researchers who generated the datasets. This 
'meta-analysis' is very useful, as replication of 
findings across different cohorts remains one of the 
critical aspects of post-mortem brain research. 
However, negative outcomes of such comparisons 
are difficult to interpret: methodological differences 
can substantially influence the results. 

Second, we can compare RNA level changes 
based on the analysis of raw data generated by 
different laboratories. The availability of raw data 
permits researchers to systematically explore the 
changes in RNA levels using any preferred pre-
processing or other data-analysis technique. 
Such post-hoc comparisons require that there be no 
major technical confounds between the datasets to 
compare, although this is almost never the case. 
Even if the same microarray platform and 
processing procedures are used, the operators, 
batches of reagents and microarray processing 
equipment differ. Furthermore, the samples are not 
processed in parallel. All this may introduce 
variability in the data and could confound the 
outcome of the post-hoc comparisons. Therefore, 
raw data comparison remains an important 
challenge. 

 
5. MATERIALS AND METHODS 

 
5.1. Stage- I: Multivariate Outlier Detection:  

Outlier detection is one of the important tasks in 
any data analysis, which describe abnormalities in 
the data. Many methods have been proposed in the 
literature for detecting univariate outliers based on 
robust estimation of location and scale parameters.  
The standard method for multivariate outlier 
detection involves robust estimation of parameters 
in the Mahalanobis Distance (MD) measure and 
then comparing MD with the critical value of c2 
distribution. The values larger than the critical 
value are treated as outliers of the distribution. 
5.2. Mehalanobis Distance: 

The covariance matrix is used for the 
quantification of the size and shape of the 
multivariate data, which is taken into account in the 
Mehalanobis distance. For a multivariate sample 
Xij, where i = 1,2,3,...n (number of genes) and j = 

1,2,3...p (number of samples), the Mahalanobis 
distance is defined as, 
MDi =(( Xij– m)T C-1(Xij - m))0.5 
Where m is estimated multivariate location 
parameter and C is the estimated covariance matrix. 
The location and the covariance parameters are 
determined using Minimum Covariance 
Determinant estimation method.  The MCD 
estimator is determined by that subset of 
observations of size h, which minimizes the 
determinant of the covariance matrix computed 
only from the h observations. The location 
estimator is the average of these h observations, 
whereas the scatter estimate is proportional to the 
variance covariance matrix. 
5.3. Stage-II: Univariate Outlier detection: 
Let S denote the original set of observations. 
Let Sout and Sin be the subsets of S containing 
outlier and inlier observations respectively. Thus, 
Sout  Sin = S and  Sout  Sin = {Ø}, i.e. the two 
subsets are mutually exclusive. 
We denote 
Sout = {(log 2(Xi1), log 2(Xi2)) / MDi > c for 
i=1,2,3...n} and 
Sin = {(log 2(Xi1), log 2(Xi2)) / MDi <  c for 
i=1,2,3...n}  
where 'c' is the cut-off for a given quantile and n is 
the total number of genes. 
We define a statistic, Z = log2 X2 / X1) = log2(X2) – 
log2(X1) 
Which is the log of the ratio of intensity values for 
different genes for the two samples. 
Here X1 is treated as reference, while X2 is treated 
as test sample. The statistic provides a measure of 
differential expression (DE) of genes across the 
samples. The genes showing at least k-fold change 
(usually k=2, i.e. Z=1) across the samples are 
considered to be DE genes. The appropriate choice 
of k is important since it influences the number of 
DE genes. Here we propose a rationale for selecting 
k for a given percentage of bivariate outliers.  
We generate values for the statistic for the entire set 
as, 

Z = { zi, i = 1,2,3,….n } 
= { log2(Xi2 / Xi1);   i = 1,2,3,….n} 

The statistic is used to obtain Mahalanobis distance 
measure as, 

 
The transformed distance measure is supposed 

to follow chi-square distribution with one degree of 
freedom. The empirical distribution function of 
MD* could be obtained and compared with that of 
the cumulative distribution of chi-square with one 
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degree of freedom. A cut-off could be selected for 
MD* such that the observations greater than the 
cut-off could be declared as outliers. We search for 
an optimal cut-off, so that the univariate subset of 
outliers does not include any of the bivariate inliers. 
In other words, if Rout is a subset of univariate 
outliers and Sin the subset of bivariate inliers of S, 
then the optimal cut-off could be obtained as,  

C*
opt = inf [ Ci

* /Rout  Sin = {}] 
The optimal cut-off could be obtained 

programmatically thereby yielding a set of 
univariate outliers that overlap with a subset of 
multivariate outliers. 

The cut-off value could be used in 
Mehalanobis distance measure to obtain the z-value 
as, 

Z = (Se) √C*
opt + m 

This z-value determines the log fold change 
resulting into bivariate outliers that could be the 
potential candidates for differential expression. 

 
6. INDENTIFIYING THE GENES 

 
In the present context, there are two individuals, 

one from each of the categories namely diabetes 
with parental history (D&PH) and healthy (H). The 
expression levels of 39400 genes for each 
individual were obtained and compared pair wise. 
Prior to analysis, the data for each combination was 
normalized using Lowess normalization.This 
analysis was carried out for each of these 
combinations independently based on above said 
procedure. Prior to analysis, the data for each 
combination was normalized using Loess 
normalization. Below we present the analysis for 
each combination along with the interpretations. 
Diabetic with no parental history 1  vs Diabetic 
with parental history [ D&NPH1 vs D&PH] 

 
Figure 1: MA-plots showing scatter of expression 

values before and after loess normalization for 
diabetic with parental no history (1) vs. diabetic 

with parental history comparison. 

 
Figure 2: Scatter plot of log intensities for diabetic 

with parental no history (1) vs.diabetic with 
parental history comparison after loess 

normalization. 

 
Figure 3: Bivariate outliers based on Mahalanobis 

distance measure for p=0.10 for diabetic with 
parental no history (1) vs. diabetic with parental 

history comparison. 
The distribution of log fold change values was 

obtained and the outliers were detected for the 
optimum cut-off value (c*). Figure 4 shows the 
thresholds for 2-fold change, thereby providing the 
up and down regulated genes. Out of 3940 outlier 
genes, 686 were detected as up-regulated, while 
682 were detected as down-regulated genes with 
respect to the individual with diabetic and no 
parental history (1). Thus, for diabetic with no 
parental history (1) vs. Diabetic with parental 
history comparison, 1368 were found to be 
differentially expressed out of 39400, which 
amounts to 3.4% of the total genes under study. 
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Figure 4: The thresholds for 2-fold change values.  

 
The green spots are the differentially expressed 

outlier genes for diabetic with parental no history 
(1) vs. diabetic with parental history comparison. 

Here the modified threshold was same as 
conventional 2-fold change. 

Diabetic with no parental history 2  vs Diabetic 
with parental history  [ D&NPH2 vs D&PH] 

 
Figure 5: MA-plots showing scatter of expression 

values before and after loess normalization for 
diabetic with parental no history (2) vs. diabetic 

with parental history comparison. 

 
Figure 6: Scatter plot of log intensities for diabetic 

with parental no history (2) vs. diabetic with 
parental history comparison after loess 

normalization. 

 
Figure 7: Bivariate outliers based on Mahalanobis 
distance measure for p=0.10 for diabetic with no 
parental history (2) vs. diabetic with parental 
history comparison. The distribution of log fold 
change values was obtained and the outliers were 
detected for the optimum cut-off value (c*). Figure 
8 shows the thresholds for 2-fold change, thereby 
providing the up and down regulated genes. Out of 
3940 outlier genes, 676 were detected as up-
regulated, while 979 were detected as down-
regulated genes with respect to the individual with 
diabetic and no parental history (2). Thus, for 
diabetic with no parental history (2) vs. Diabetic 
with parental history comparison, 1655 were found 
to be differentially expressed out of 39400, which 
amounts to 4.2% of the total genes under study. 

 
Figure 8: The thresholds for 2-fold change values. 
The green spots are the differentially expressed 
outlier genes for diabetic with parental no history 
(2) vs. diabetic with parental history comparison. 
Here the modified threshold was same as 
conventional 2-fold change. 
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7. FUNCTIONAL CLASSIFICATION OF 
DIFFERENTIALLY EXPRESSED GENES 
To determine biological significance of 

differentially expressed genes, functional 
classification was performed using Gene 
Ontology.  Z-scores give statistical significance, 
indicating relative representation up-
regulated/down-regulated genes in each function. 

To determine pathways associated with 
differentially expressed genes, pathway analysis 
was performed. Pathway reports are provided in 
supplementary material. Numbers in parentheses 
indicate number of up-regulated / down regulated 
genes and total number of genes (in uploaded data), 
present in that particular pathway respectively. 
7.1. GENE ONTOLOGY ANALYSIS 
7.1.1. DIABETES WITH HISTORY VS 

DIABETES WITHOUT HISTORY 
 D&PH Vs D&NPH1. 

1. Molecular Function: Genes involved in MHC 
class II receptor activity, gamma-aminobutyric 
acid:hydrogen symporter activity, chemokine 
receptor activity, interleukin-4 receptor activity, 
interleukin-7 receptor activity, arachidonate 5-
lipoxygenase activity, complement receptor activity 
are upregulated in D&PH Vs D&NPH1. 

Genes involved in ammonia ligase activity, 
transaldolase activity, 4- alpha-glucanotransferase 
activity, choline:sodium symporter activity, 
interleukin-8 receptor activity are downregulated in 
D&PH Vs D&NPH1. 
2. Biological Process: Genes involved in cell 
activation, macromolecule biosynthetic process, 
hydrogen peroxide biosynthetic process, immune 
response, regulation of glycolysis are upregulated 
in D&PH Vs D&NPH1.  

Genes involved in blastocyst growth, aromatic 
compound biosynthetic process, nitric oxide 
biosynthetic process, regulation of glycolysis are 
downregulated in D&PH Vs D&NPH1. 
3. Cellular Component: Genes localized in 
ribonucleosidediphosphate reductase complex, 
interleukin-18 receptor complex, interleukin-1 
receptor complex, mitochondrion interleukin-5 
receptor complex are upregulated in D&PH Vs 
D&NPH1. 
Genes localized in proteasome activator complex, 
isoamylase complex, CAAX-protein 
geranylgeranyltransferase complex, protein kinase 
CK2 complex, oxoglutarate dehydrogenase 
complex, MHC class I peptide loading complex are 
downregulated in D&PH Vs D&NPH1. 
7.1.2. D&PH Vs D&NPH2 
1. Molecular Function: Genes involved in 
structural constituent of ribosome, MHC class II 

receptor activity, ferroxidase activity, NAD(P)H 
oxidase activity are upregulated in D&PH Vs 
D&NPH2.  
Genes involved in 4-alpha-glucanotransferase 
activity, phosphomannomutase activity, receptor 
signaling protein tyrosine kinase activity are 
downregulated in D&PH Vs D&NPH2. 
2. Biological Process: Genes involved in 
intracellular sequestering of iron ion, ribosome 
biogenesis and assembly, hydrogen peroxide 
biosynthetic process are upregulated in D&PH Vs 
D&NPH2. 
Genes involved in hemostasis, developmental 
growth, lipid glycosylation, regulation of glycolysis 
are downregulated in D&PH Vs D&NPH2. 
3. Cellular Component: Genes localized in 
ribosome, ferritin complex are upregulated in 
D&PH Vs D&NPH2. 
Genes localized in CAAX-protein 
geranylgeranyltransferase complex, isoamylase 
complex, apolipoprotein B mRNA editing enzyme 
complex, lipopolysaccharide receptor complex, 
proteasome activator complex are downregulated in 
D&PH Vs D&NPH2. 
7.2. PATHWAY ANALYSIS 
7.2.1. DIABETES WITH HISTORY VS 

DIABETES WITHOUT HISTORY1 
[D&PH Vs D&NPH1]. 

 Genes involved in signal transduction, 
Regulation of actin cytoskeleton, Antigen 
processing and presentation, Complement and 
coagulation cascades, Axon guidance, 
Neurodegenerative disorders pathways are up 
regulated in D&PH Vs D&NPH1. 

Genes involved in carbohydrate pathways are 
down regulated in D&PH Vs D&NPH1. 
7.2.2. DIABETES WITH HISTORY VS 

DIABETES WITHOUT HISTORY2 
[D&PH Vs D&NPH2]. 

Genes involved in Oxidative phosphorylation, 
Metabolism of cofactors and vitamins pathways, 
Immune system pathways, Nervous system 
pathways, metabolic disorders pathways are up 
regulated in D&PH Vs D&NPH2. 

Genes involved in Lipid metabolism pathways, 
Amino acid metabolism pathways, Glycan 
biosynthesis and metabolism pathways, Ubiquitin 
mediated proteolysis, Signal transduction pathways, 
Signalling molecules and interaction pathways, 
Insulin signalling pathway, PPAR signalling 
pathway are down regulated n D&PH Vs 
D&NPH2. 
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8. GENES INVOLVED IN INFLAMMATORY 
RESPONSE 

 
Diabetes 

with family history 
vs 

Diabetes 
without family 
history 1 

(D&PH 
VS D&NPH1) 

ALK, CCL13, 
CCR8, CDKN1A, EDN1, 
FGF1, 

IFIT1, IL12RB1, 
IL20, IL22, IL2RG, 
IL8RA, 

ITGB2, MMP20, 
SLK, TNFRSF12A, UBC, 

XCR1 
Diabetes 

with family history 
vs 

Diabetes 
without family 
history 2 

(D&PH 
VS D&NPH2) 

ALK, BLR1,C5, 
CCL15, CCL16, 

CCR7,CCR8,CX
CL11, CXCL12, FN1, 
FTH1, 

GBP1, HLA-A, 
IFIT1, IL12A, ITGB2, 
KIT, 

LTB MMP20, 
PPARD, RHOA, RPS27A, 

TAC1, TLR4, 
TNFAIP6, TNFRSF11A, 

TNFRSF12A 

9. CONCLUSION 

Gene Expression Analysis is performed between 
samples of diabetes with Parental History and 
without parental history using micro array analysis. 
The microarray data is normalized using Lowess 
Normalization method. The analysis is repeated for 
two different sets of samples. Gene Ontology and 
pathway analysis are performed to find out the 
pathways associated with these differentially 
expressed genes. It is observed that 38 
inflammatory genes were identified out of 39400 
genes.  A study on the different factors influencing 
the identified differentially expressed genes is 
under progress. 

REFRENCES: 
 
[1] John Ten Bosch, Chris Seidel, Sajeev Batra, 

Hugh Lam, Nico Tuason, Sepp Saljoughi, and 
Robert Saul, “Validation of Sequence-
Optimized 70 Base Oligonucleotides for Use 
on DNA Microarrays”, OPERON a QIAGEN 
COMPANY,2000. 

[2] Kane MD, Jatkoe TA, Stumpf CR, Lu J, 
Thomas JD, Madore SJ., "Assessment of the 
sensitivity and specificity of oligonucleotide 
(50mer) microarrays", Department of 
Molecular Biology and Genomics and 
Department of Infectious Diseases, Pfizer 

Global Research and Development, Ann Arbor, 
MI 48105, 2000, USA. 

[3] Schena, M., Shalon, D., Davis, R.W. & Brown, 
P.O. Quantitative monitoring of gene 
expression patterns with a complementary 
DNA microarray. Science270, 1995, 467–470.  

[4] Lockhart, D.J. et al. Expression monitoring by 
hybridization to high-density oligonucleotide 
arrays. Nat. Biotechnol. 14, 1996,pp.1675–
1680.. 

[5] Cheung, V.G. et al. Making and reading 
microarrays. Nat. Genet. 21, 1999, pp.15–19.  

[6] Hoffman, E. et al. Guidelines: Expression 
profiling - best practices for data generation 
and interpretation in clinical trials. Nat. Rev. 
Genet. 5, 2004,pp.229–237.  

[7] Stuart, J.M., Segal, E., Koller, D. & Kim, 
S.K. A gene-coexpression network for global 
discovery of conserved genetic 
modules. Science 302, 2003,pp.249–255.  

[8] Blalock, E.M. et al. Incipient Alzheimer's 
disease: Microarray correlation analyses reveal 
major transcriptional and tumor suppressor 
responses.Proc. Natl. Acad. Sci. USA 101, 
2004,pp.2173–2178. 

[9] Quackenbush, J. Microarray data normalization 
and transformation. Nat. Genet. 32 (Suppl.), 
2002, pp.496–501. 

[10] Smyth, G. & Speed, T. Normalization of 
cDNA microarray data. Methods 31,2003,  
pp.265–273.  

[11]   Eisen, M., Spellman, P., Brown, P., Botstein, 
D.: Cluster analysis and display of genome-
wide expression patterns. Proc. Natl. Acad. Sci. 
95(25),1998,pp.14863–14868. 

[12] Stuart, J., Segal, E., Koller, D., Kim, S.: A 
gene coexpression network for global 
discovery of conserved genetic modules. 
Science 302(5643), 2003,pp.249–255. 

[13] Zhang, B., Horvath, S.: A general framework 
for weighted gene co-expression network 
analysis. Statistical Applications in Genetics 
and Molecular Biology 4,2005. 

[14] Carter, S., Brechbhler, C., Griffin, M., Bond, 
A.T.: Gene co-expression network topology 
provides a framework for molecular 
characterization of cellular state. 
Bioinformatics, 20004,pp.2242–2250. 

[15]  Lee, H., Hsu, A., Sajdak, J., Qin, J., Pavlidis, 
P.: Coexpression analysis of human genes 
across many microarray data sets. Genome 
Research 14, 2004,pp.1085–1094. 

[16] Datta, S., Datta, S.: Methods for evaluating 
clustering algorithms for gene expression data 



 

 
53 

 

using a reference set of functional classes. 
BMC Bioinformatics , 2006. 

[17]  Spirin, V., Mirny, L.A.: Protein complexes 
and functional modules in molecular networks. 
PNAS, 2003. 

[18] M. Kathleen Kerr, Mitchell Martin, and Gary 
A Churchill, “ Analysis of Variance for Gene 
Expression Microarray Data”, Journal of 
Computational Biology, Vol.7, 
No.6,2000,pp.819-837. 

[19] Anat Reiner, et.al. “Identifying differentially 
expressed genes using false discovery rate 
controlling procedures”, Bioinformatics-
Oxford University press, vol.19, 
No.3,2003,pp.368-375. 

[20] D.L. Wilson, et.al. “New Normalization 
methods for cDNA microarray data”, 
Bioinformatics-Oxford University press, 
vol.19, No.11, 2003, pp.1325-1332. 

[21] Hong-Ya Zaho, et.al,(2004) “Identification of 
Differentially Expressed Genes with 
Multivariate Outlier Analysis”, Journal of 
Biopharmaceutical Statistics, vol. 14, Issue 3, 
pp.629-646. 

[22] Dan Nettleton, Justin Recknor and James M. 
Reecy, “ Identification of differentially 
expressed gene categories in microarray studies 
using nonparametric multivariate analysis”,  
vol. 24, No. 2, 2008,pp.192-201. 

[23] Huaizhen Qin, Tao Feng, et.al,“An efficient 
method to identify differentially expressed 
genes in microarray experiements, ” Oxford 
University press, vol. 24  no. 14 , 2008,pp.723-
729. 

[24] Bogdan Done  , Purvesh Khatri , Arina Done, 
Sorin Draghici,”Detriotpredicting Novel 
Human Gene Ontology Annotations Using 
Semantic Analysis” IEEE/ACM Transactions 
On Computational Biology And 
Bioinformatics ,2010. 

[25] Purvesh Khatri,Sorin Draghici,Adi L. 
Tarca,Sonia S. Hassan,Roberto Romero,”A 
system biology approach for the steady-state 
analysis of gene signaling networks”, 
CIARP'07 Proceedings of the Congress on 
pattern recognition 12th Iberoamerican 
conference on Progress in pattern recognition, 
image analysis and applications,2007. 

[26] Edgar, R., Domrachev, M. & Lash, A.E. Gene 
Expression Omnibus: NCBI gene expression 
and hybridization array data 

repository. Nucleic Acids Res. 30, 
2002,pp.207–210. 

[27]  Brooksbank, C. et al. The European 
Bioinformatics Institute's data 
resources. Nucleic Acids Res. 31,2003,pp.43–
50.  

[28] Brazma, A. et al. ArrayExpress—a public 
repository for microarray gene expression data 
at the EBI. Nucleic Acids Res. 31,2003, pp.68–
71.  

[29] Brazma, A. et al. Minimum information about 
a microarray experiment (MIAME)-toward 
standards for microarray data. Nat. Genet. 29, 
2001, pp. 365–371.  

[30] Causton, H.C. & Game, L. MGED comes of 
age. Genome Biol. 4, 2003.  

[31] Mirnics, K. Microarrays in brain research: the 
good, the bad and the ugly.Nat. Rev. 
Neurosci. 2, 2001,pp.444–447.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


