

19

A COMPARATIVE ANALYSIS BETWEEN K-MEDOIDS AND
FUZZY C-MEANS CLUSTERING ALGORITHMS FOR

STATISTICALLY DISTRIBUTED DATA POINTS

1T.VELMURUGAN AND 2T.SANTHANAM
1Associate Professor, 2Associate Professor & Head,

PG and Research Department of Computer Science, D.G.Vaishnav College,
 Arumbakkam, Chennai-600106, India.

ABSTRACT

Data clustering is a process of putting similar data into groups. A clustering algorithm partitions a data set into
several groups such that the similarity within a group is larger than among groups. In the field of data mining,
various clustering algorithms are proved for their clustering quality. This research work deals with, two of the
most representative clustering algorithms namely centroid based K-Medoids and representative object based
Fuzzy C-Means are described and analyzed based on their basic approach using the distance between two data
points. For both the algorithms, a set of n data points are given in a two-dimensional space and an integer K
(the number of clusters) and the problem is to determine a set of n points in the given space called centers, so
as to minimize the mean squared distance from each data point to its nearest center. The performance of the
algorithms is investigated during different execution of the program for the given input data points. Based on
experimental results the algorithms are compared regarding their clustering quality and their performance,
which depends on the time complexity between the various numbers of clusters chosen by the end user. The
total elapsed time to cluster all the data points and Clustering time for each cluster are also calculated in
milliseconds and the results compared with one another.

Key Words: K-Medoids Algorithm, Fuzzy C-Means Algorithm, Cluster Analysis, Data Analysis.

1. INTRODUCTION

Clustering is an important area of application for

a variety of fields including data mining, knowledge
discovery, statistical data analysis, data compression
and vector quantization. Clustering has been
formulated in various ways in machine learning,
pattern recognition, optimization and statistics
literature. Clustering is the most common form of
unsupervised learning. According to the rule of the
unsupervised learning, clustering does not require
supervision. No supervision means that there is no
human expert who has assigned documents to
classes. In clustering, it is the distribution and
makeup of the data that will determine cluster
membership. The notion of what constitutes a good
cluster depends on the application and there are many
methods for finding clusters subject to various
criteria. These include approaches based on splitting
and merging such as ISODATA, randomized
approaches such as CLARA, CLARANS, and
methods based on neural nets, and methods designed
to scale to large databases, including DBSCAN,
BIRCH and ScaleKM [2][4][10]. Among clustering
formulations that are based on minimizing a formal

objective function, perhaps the most widely used and
studied is partition based algorithms like K-Means,
K-Medoids and Fuzzy C-Means clustering. In a
partitioned algorithm, given a set of n data points in
real d-dimensional space, and an integer k, the
problem is to determine a set of k points in Rd, called
centers, so as to minimize the mean squared distance
from each data point to its nearest center. This
measure is often called the squared-error distortion
and this type of clustering falls into the general
category of variance based clustering [5][8][9].

A simple example of cluster is given in Fig. 1. It

is visually clear that there are three distinct clusters of
50 data points. The key input to a clustering
algorithm is the distance measure.

Fig. 1: Cluster Example

20

In Fig. 1, the distance measure is distance in the
2D plane. The cluster center is displayed in green
color and the data points of each cluster are displayed
in different colors. This measure suggests three
different clusters in the figure. In most of the
clustering approaches, the distance measure used is
the Euclidean distance [6]. Different distance
measures give rise to different clustering. Thus, the
distance measure is an important means by which this
research can influence the outcome of clustering.

2. METHODOLOGY

An important step in most clustering is to select

a distance measure, which will determine how the
similarity of two elements is calculated. This will
influence the shape of the clusters, as some elements
may be close to one another according to one
distance and farther away according to another. For
example, in a 2-dimensional space, the distance
between the point (x = 1, y = 0) and the origin (x = 0,
y = 0) is always 1 according to the usual norms, but
the distance between the point (x = 1, y = 1) and the
origin can be 2, 2 or 1 if you take respectively the
1-norm, 2-norm or infinity-norm distance. The
variety of common distance functions are as follows:

 The Euclidean distance. This type of distance

is also called as the distance as the crow flies
or 2-norm distance).

 The Manhattan distance (aka taxicab norm or
1-norm)

 The maximum norm (aka infinity norm)
 The Mahalanobis distance corrects data for

different scales and correlations in the
variables.

 The angle between two vectors can be used as
a distance measure when clustering high
dimensional data.

 The Hamming distance measures the
minimum number of substitutions required to
change one member into another.

Another important distinction is whether the
clustering uses symmetric or asymmetric distances.
Many of the distance functions listed above have the
property that distances are symmetric (the distance
from object A to B is the same as the distance from B
to A). In other applications, this is not the case. (A
true metric gives symmetric measures of distance.)
The symmetric and 2-norm distance measure is used
in this research work. In the Euclidean space Rn, the
distance between two points is usually given by the
Euclidean distance (2-norm distance). The formula
for 2-norm distance is

2-norm distance

2/12

1










 



n

i
ii yx

The 2-norm distance is the Euclidean distance, a
generalization of the Pythagorean Theorem to more
than two coordinates. It is what would be obtained if
the distance between two points were measured with
a ruler: the "intuitive" idea of distance. Based on this
idea of finding the distance between data points, the
clustering qualities of the proposed algorithms are
analyzed in this work.

 Determining the quality of a clustering algorithm
involves evaluating and assessing the quality of the
clusters produced and is an important task in data
mining. There are three approaches to measuring
cluster quality, based on external, relative and
internal criteria. The term external validity criteria are
used when the results of the clustering algorithm can
be compared with some pre-specified clustering
structures (Halkidi et al., 2002). Relative validity
criteria measure the quality of clustering results by
comparing them with others generated by other
clustering algorithms, or by the same algorithm using
different parameters [6][17][18]. An internal validity
criterion involve the development of functions that
compute the distances between objects within each
cluster, or the distance between the clusters
themselves, and uses such distances to assess the
clustering quality. To achieve a good clustering, these
criteria are in the form of measures to assess the
quality of a clustering. This work uses only the
internal validity criteria in a random way. The
Euclidean distance is used to find the distance
between the input data points.

 To create input data points in the applet window,
the Box-Muller formula is used. For computer
simulations, it is often useful to generate values that
have a normal distribution. There are several methods
and the most basic is to invert the standard normal
cumulative distribution function. One of the efficient
methods is the Box–Muller transform. A simple
approximate approach that is easy to program is as
follows. Simply sum 12 uniform (0, 1) deviates and
subtract 6 (half of 12). This is quite usable in many
applications. The sum over these 12 values has an
Irwin–Hall distribution; 12 are chosen to give the
sum a variance of exactly one. The resulting random
deviates are limited to the range (−6, 6) and have a
density which is a 12-section eleventh-order
polynomial approximation to the normal distribution.
Box–Muller method is used for normal distribution
coding to calculate the data points X and Y. This
method says that, if two independent random

21

numbers U and V are uniformly distributed on (0, 1],
(e.g. the output from a random number generator),
then two independent standard normally distributed
random variables are X and Y, where

)2cos(ln2 VUX 

(1)

)2sin(ln2 VUY 

(2)

This formulation arises because the chi-square

distribution with two degrees of freedom is an easily-
generated exponential random variable (which
corresponds to the quantity of natural logarithm of U
in these equations). Thus an angle is chosen uniformly
around the circle via the random variable V, a radius
is chosen to be exponential and then transformed to
(normally distributed) x and y coordinates. The basic
form of the Box-Muller method is as follows. Suppose
U1 and U2 are independent random variables that are
uniformly distributed in the interval (0, 1]. Let

)2cos(ln2)cos(210 UURZ   (3)

)2sin(ln2)sin(211 UURZ  

(4)

 Then Z0 and Z1 are independent random variables
with a normal distribution of standard deviation 1.
The derivation is based on the fact that, in a two-
dimensional cartesian system where X and Y
coordinates are described by two independent and
normally distributed random variables, the random
variables for R2 and Θ in the corresponding polar
coordinates are also independent and can be expressed
as

 1
2 ln.2 UR  and 22 U  (5)

Because R2 is the square of the norm of the

standard bivariate normal variable (X, Y), it has the
chi-square distribution with two degrees of freedom.
In the special case of two degrees of freedom, the chi-
square distribution coincides with the exponential
distribution, and the equation for R2 above is a simple
way of generating the required exponential variate.
The next sections deal with the basic concepts of K-
Medoids and Fuzzy C-Means algorithm followed by
the experimental results.

3. K-MEDOIDS ALGORITHM

The very popular K-Means algorithm is sensitive

to outliers since an object with an extremely large

value may substantially distort the distribution of
data. How might the algorithm be modified to
diminish such sensitivity? Instead of taking the mean
value of the objects in a cluster as a reference point, a
Medoid can be used, which is the most centrally
located object in a cluster [14][15]. Thus the
partitioning method can still be performed based on
the principle of minimizing the sum of the
dissimilarities between each object and its
corresponding reference point. This forms the basis
of the K-Medoids method (Han and Kamber, 2006;
Jain, et al., 1999; Kaufman and Rousseeuw, 1990).
The basic strategy of K-Medoids clustering
algorithms is to find k clusters in n objects by first
arbitrarily finding a representative object (the
Medoids) for each cluster. Each remaining object is
clustered with the medoid to which it is the most
similar. K-Medoids method uses representative
objects as reference points instead of taking the mean
value of the objects in each cluster. The algorithm
takes the input parameter k, the number of clusters to
be partitioned among a set of n objects (Park, et al.,
2009; Dunham, 2003; Han and Kamber, 2006). A
typical K-Mediods algorithm for partitioning based
on Medoid or central objects is as follows:

Input: k: The number of clusters
 D: A data set containing n objects
Output: A set of k clusters that minimizes the

sum of the dissimilarities of all the
objects to their nearest medoid.

Method: Arbitrarily choose k objects in D as the
initial representative objects;

Repeat assign each remaining object to the
cluster with the nearest medoid;

 randomly select a non medoid object
Orandom;

 compute the total points S of swaping
object Oj with Oramdom;

 if S < 0 then swap Oj with Orandom to
form the new set of k medoid;

Until no change;

Similar to the above algorithm, a Partitioning
Around Medoids (PAM) was one of the first k-
Medoids algorithms introduced by researchers. It
attempts to determine k partitions for n objects. After
an initial random selection of k medoids, the
algorithm repeatedly tries to make a better choice of
medoids [16][21]. Therefore, the algorithm is often
called as representative object based algorithm.

22

4. FUZZY C-MEANS ALGORITHM

Traditional clustering approaches generate
partitions; in a partition, each pattern belongs to one
and only one cluster. Fuzzy clustering extends this
notion to associate each pattern with every cluster
using a membership function [1][7]. The output of
such algorithms is a clustering, but not a partition
some times. Fuzzy clustering is a widely applied
method for obtaining fuzzy models from data. It has
been applied successfully in various fields including
geographical surveying, finance or marketing. This
method is frequently used in pattern recognition. It
is based on minimization of the following objective
function:

2

1 1

N C
m

m ij i j
i j

J u x c
 

  , 1 ≤ m < ∞

where m is any real number greater than 1, uij is the
degree of membership of xi in the cluster j, xi is the
ith of d-dimensional measured data, cj is the d-
dimension center of the cluster, and ||*|| is any norm
expressing the similarity between any measured data
and the center (Al-Zoubi et al., 2007; Yong et al.,
2004). Fuzzy partitioning is carried out through an
iterative optimization of the objective function
shown above, with the update of membership uij and
the cluster centers cj by:























c

k

m

ki

ji

ij

cx

cx

u

1

1

2

1
,







 N

i

m
ij

N

i
i

m
ij

j

u

xu
c

1

1

.

 This iteration will stop when

  )()1(max k
ij

k
ijij uu , where is a

termination criterion between 0 and 1, whereas k are
the iteration steps. This procedure converges to a
local minimum or a saddle point of Jm. The
algorithm is composed of the following steps:

Step 1: Initialize U=[uij] matrix, U(0)
Step 2: At k-step: calculate the centers
 vectors C(k)=[cj] with U(k)
Step 3: Update U(k) , U(k+1)
Step 4: If || U(k+1) - U(k)||< then STOP;
 otherwise return to step 2.

In this algorithm, data are bound to each cluster
by means of a Membership Function, which
represents the fuzzy behavior of the algorithm. To

do that, the algorithm has to build an appropriate
matrix named U whose factors are numbers between
0 and 1, and represent the degree of membership
between data and centers of clusters (Moh’d Belal
Al- Zoubi, ed al., 2007). FCM clustering techniques
are based on fuzzy behavior and provide a natural
technique for producing a clustering where
membership weights have a natural (but not
probabilistic) interpretation. This algorithm is
similar in structure to the K-Means algorithm and
also behaves in a similar way [12][23[24]. For the
creation of input data points for both the algorithms,
the Box-Muller formula is used [3]. With this
discussion, the next part of this paper analyses the
experimental results and discussion about the
results.

5. EXPERIMENTAL RESULTS

Having introduced the two clustering

techniques and their basic mathematical
foundations, now turn to the discussion of these
techniques on the basis of a practical approach. This
approach involves the implementation of the two
techniques introduced previously, and performance
of the algorithms is tested on statistical distributions
of input data points via Normal and Uniform
distributions. Therefore, the implementation plan
consists of two parts; one for Normal distribution of
input data points and the other for Uniform
distribution. For both the types of distributions, the
data points are created using Box-Muller formula as
discussed [3]. The program is written in JAVA
language. After the creation of data points, the user
has to specify the number of clusters. In the output
window, the data points in each cluster are displayed
by different colors and the execution time is
calculated in milliseconds [19][20][21]. Now, the
discussion starts with the Normal distribution of
input data points first followed by Uniform
distribution. The resulting clusters of the Normal
distribution for K-Medoids algorithm is given in
Fig. 2. The number of data points and clusters given
by end user as input during the execution of the
program is 1000 and 5 (k = 5) respectively. The
algorithm is repeated 1000 times (one iteration for
each data point) to get efficient output. The cluster
centers (centroids) are calculated for each cluster by
its mean value and clusters are formed depending
upon the distance between data points.

 Different approaches of clustering yields

different types of outcomes. In this work, for
different input data points, the algorithm gives
different types of outputs. The input data points are

23

generated in red color and the output of the
algorithm is displayed in different colors as shown
in Fig. 2. The center point of each cluster is
displayed in white color. The total elapsed time and
the execution time for each cluster to each run are
calculated in milliseconds. The time taken for
execution of the algorithm varies from one run to
another run and also it differs from one computer to
another computer. The number of data points is the
size of the cluster. If the number of data points are
1000 then the algorithm is repeated the same one
thousand times. For each data point, the algorithm
executes once. The algorithm takes 4375
milliseconds for 1000 data points and 5 clusters.
The same algorithm is executed 5 times and results
are tabulated in table 1 (against the rows

‘Normal’). The total elapsed time for all clusters is
given at the end of the row ‘Size’. The sum of the
execution time for each cluster (individual
execution time for each cluster) is given at the end
of the row ICT (Individual Cluster Time). The
difference between these two is available in the last
column. For the same one thousand uniformly
distributed data points, the algorithm is executed 5
times and the results are listed in table 1 (against
the rows ‘Uniform’). Next, one of the outcomes for
1000 uniformly distributed data points and 10
clusters is shown in Fig. 3. In this case, the
algorithm takes 7344 milliseconds for 10 clusters.
But the sum of the individual clustering time is
7313 milliseconds. The difference time between
these two is 31 milliseconds.

Fig. 2: Normal Distribution Output- K-Medoids

24

Fig. 3: Uniform Distribution Output-K-Medoids

Next, the FCM algorithm is executed by

taking 1000 Normal distribution of data points as
input. The number of clusters chosen by the user is
5. The execution time taken by the system is 3953
milliseconds. Like, the algorithm is executed for
one thousand uniformly distributed data points.
Now the algorithm takes 3797 milliseconds for
execution. Five times the algorithm is executed and
the results are given in table 2 for both the types of
inputs. Here also the difference time between total
elapsed time and the sum of the execution time for
all clusters is given in the last row. Next, both the
algorithms are executed 5 times by considering the
number of clusters is 10 and the results are given in
the table 3. This table contains only the execution
time for each cluster and the total elapsed time. The
third column is the type of the distribution.
Clustering time for Normal distribution is listed
against the rows ‘N’ and for the Uniform
distribution is listed against the rows ‘U’. The
execution time for each cluster is given in the table
from the columns 1 to 10 for ten clusters. The sum
of each cluster individual time is available in the
column ICT (Individual Cluster Time). The total
elapsed time is indicated in the column TET (Total

Elapsed Time). The difference time (DT) between
ICT and TET is calculated and is given in the last
column. Fig. 4 is the output for 1000 normally
distributed data points with 15 clusters of FCM
algorithm. For the same algorithm, the number of
clusters chosen by the user is 20 and the result of
1000 uniformly distributed data points is shown in
Fig. 5. Table 4 shows that the performance results
comparison for all the types of data distributed for
the experiments for 5 and 10 clusters. Also the table
contains the best and worst execution times for all
the categories. From the table, it is clear that the best
times (BT) are derived from the result of uniform
distribution and the worst times (WT) are from
normal distribution. The average times of ICT and
TET are given in the same table for both the
algorithms for the normal and uniform distributions
of input data points. The difference time between
ICT and TET are calculated and is given in the
columns DT1 and DT2 for 5 and 10 clusters
respectively. Next, both the algorithms are executed
by choosing the number of clusters 15, 20 and the
average times are listed in the table 5. Here ICT and
TET times alone taken for discussion.

25

Table 1: Cluster Results for K-Medoids
Run Distribution Cluster 1 2 3 4 5 T.Time Diff.Time

1

Normal Size 132 287 240 133 208 4375 47
 ICT 687 1141 936 703 861 4328

Uniform Size 198 230 199 200 173 4062 24
 ICT 889 759 835 815 740 4038

2

Normal Size 237 217 163 204 179 4203 30
 ICT 902 870 750 865 786 4173

Uniform Size 162 158 254 189 237 3891 16
 ICT 687 656 866 737 929 3875

3

Normal Size 167 248 241 127 217 4090 42
 ICT 753 887 998 649 761 4048

Uniform Size 216 165 171 190 258 4172 15
 ICT 841 654 717 861 1084 4157

4

Normal Size 200 252 195 219 134 4059 44
 ICT 896 943 700 787 689 4015

Uniform Size 187 179 201 212 221 3994 24
 ICT 803 710 790 856 811 3970

5

Normal Size 133 202 194 217 254 4210 33
 ICT 720 856 798 813 990 4177

Uniform Size 172 174 239 215 200 3944 27
 ICT 785 781 811 790 750 3917

The programs of K-Medoids and FCM are

executed many times and the results are analyzed
based on the number of data points and the
number of clusters. The behavior of the
algorithms is analyzed by observations. The
performance of the algorithms have also been
analyzed for several executions by considering
different data points (for which the results are
not shown) as input (1500 data points, 2000 data
points etc.) and the number of clusters are from
15 and 20 (for which also the results are not
shown), the outcomes are found to be highly
satisfactory [20][21]. According to the results
obtained from the proposed two data clustering

algorithms, the results are compared based on
their performance and clustering quality. A table
of the achieved results by giving average times
for each of the two techniques is presented in
Table 5 and the graphical format is shown in Fig.
6. By comparing the average times of both the
algorithms, it can easily observe that the FCM
algorithm takes less time than the K-Medoids
algorithm. For example, the average time for 15
clusters for normal distribution of data points is
10415.6 milliseconds, but for the FCM algorithm
it is found to be 10305.6 milliseconds. This same
type of results repeats for uniform distribution
also.

Fig. 4: Normal Distribution Output- Fuzzy C-Means

26

Table 2: Cluster results for FCM

Run Distribution Cluster 1 2 3 4 5 T.Time Diff.Time

1

Normal Size 269 207 152 235 137 3953 16
 ICT 951 858 768 769 591 3937

Uniform Size 169 213 252 179 187 3797 16
 ICT 767 737 905 653 719 3781

2

Normal Size 160 162 201 211 266 4015 28
 ICT 723 705 781 845 933 3987

Uniform Size 218 189 199 192 202 3818 15
 ICT 840 689 810 702 762 3803

3

Normal Size 197 223 216 186 178 3943 31
 ICT 742 842 748 791 789 3912

Uniform Size 216 236 206 169 173 3931 18
 ICT 821 872 755 655 810 3913

4

Normal Size 214 237 162 176 211 4244 25
 ICT 838 970 813 704 894 4219

Uniform Size 228 193 178 172 229 4024 23
 ICT 852 775 750 740 884 4001

5

Normal Size 213 157 178 200 252 4125 26
 ICT 889 712 788 809 901 4099

Uniform Size 199 163 244 194 200 4022 24
 ICT 815 775 885 710 813 3998

Fig. 5: Uniform Distribution Output- Fuzzy C-Means

27

Table 3: Cluster Results for 10 Clusters

Algorith

m
R Dist\C

lr
1 2 3 4 5 6 7 8 9 10 ICT TE

T
D
T

K-
Medoids

1 N 73
5

86
5

65
5

63
6

670 64
0

53
1

892 952 891 746
7

750
1

34

U 64
0

71
6

95
5

49
8

851 90
7

67
0

545 795 736 731
3

734
4

31

2 N 69
3

62
5

87
6

65
5

889 84
3

70
3

645 655 691 727
5

732
1

46

U 93
0

71
8

78
8

81
5

656 76
8

68
2

548 795 565 726
5

728
9

24

3 N 69
9

95
5

59
8

68
7

749 60
2

71
8

891 689 755 734
3

737
8

35

U 84
4

58
9

67
6

56
2

100
4

57
9

95
4

613 698 626 714
5

717
7

32

4 N 81
7

65
6

74
8

73
1

861 73
4

73
5

889 656 563 739
0

742
2

32

U 69
1

86
2

70
4

78
2

578 68
4

89
9

733 592 569 709
4

713
2

38

5 N 72
3

62
4

71
7

85
5

718 80
7

57
9

619 627 107
1

734
0

736
8

28

U 67
4

70
5

83
2

85
7

685 66
8

93
5

723 532 676 728
7

731
3

26

FCM

1 N 71
8

57
6

58
0

80
2

466 76
6

95
0

750 100
0

846 745
4

750
0

46

U 90
6

54
5

65
6

67
2

924 84
4

57
7

685 656 722 718
7

720
8

21

2 N 75
4

72
1

54
5

80
8

566 77
8

73
2

767 656 860 718
7

720
2

15

U 59
5

79
7

84
2

67
4

907 56
5

56
1

700 595 858 709
4

712
5

31

3 N 67
1

65
2

71
4

56
5

794 97
5

86
7

722 621 661 724
2

726
5

23

U 78
7

64
3

77
8

76
1

689 68
8

64
3

783 747 562 708
1

710
1

20

4 N 64
0

80
5

51
3

63
0

857 54
8

64
4

103
0

653 893 721
3

724
3

30

U 78
9

59
6

71
4

70
5

760 67
6

61
1

673 699 887 711
0

713
5

25

5 N 64
8

70
0

70
4

73
3

608 62
6

68
8

876 657 816 705
6

707
7

21

U 51
4

76
4

70
6

63
9

828 67
2

62
3

610 724 982 706
2

708
5

23

28

Table 4: Results Comparison (5 and 10 Clusters)

Algorith
m

Distributio
n

5 Clusters 10 Clusters
BT WT ICT TET DT

1
BT WT ICT TET DT

2
K-

Medoids
Normal 405

9
437
5

4148.
2

4187.
4

39.2 714
5

750
1

7363 7398 35

Uniform 389
1

417
2

3991.
4

4012.
6

21.2 701
5

734
2

7220.
8

7251 30.2

FCM Normal 394
3

424
4

4030.
8

4056 25.2 719
5

750
0

7230.
4

7257.
4

27

Uniform 379
7

402
4

3899.
2

3918.
4

19.2 708
5

725
0

7106.
8

7130.
8

24

Table 5: Performance Results Comparison

Algorithm Dist. 5 Clusters 10 Clusters 15 Clusters 20 Clusters

ICT TET ICT TET ICT TET ICT TET
K-Medoids Normal 4148.2 4187.4 7363 7398 10385.6 10415.6 12770.4 12795.6

Uniform 3991.4 4012.6 7220.8 7251 10289.3 10314.2 12635.5 12656.6
FCM Normal 4030.8 4056 7230.4 7257.4 10276.2 10305.6 12625.2 12652.8

Uniform 3899.2 3918.4 7106.8 7130.8 10184.1 10208.2 12510 12538.8

From Fig. 6, it is easy to identify the difference
between the execution times for both the algorithms.
Here, the total execution time alone taken for
comparison. The individual clustering time is not
taken. Since the partitioning based clustering
algorithms behave in a similar way, the difference
between the execution time is less significant.

Fig. 6: Cluster Results

6. CONCLUSION

Cluster analysis is sensitive to both the distance

metric selected and the criterion for determining the

order of clustering. Different approaches may yield
different results. The choice of clustering algorithm
depends on both the type of data available and on the
particular purpose and application. It is very evident
from table 5 that the performance of the FCM
algorithm is relatively better than that of K-Medoids
algorithm. Thus, for the data points generated using
statistical distributions (via Normal and Uniform
distributions), the FCM algorithm seems to be
superior to K-Medoids. However, between the
distributions Uniform distribution yields the best
results. Generally, when the number of clusters
increases, in turn will increase the execution time for
both the algorithms. Hence, the time taken for
execution depends on the number of clusters and the
number of data points chosen by the user.

REFERENCES

[1] Al-Zoubi, M.B., A. Hudaib and B. Al-Shboul, A

fast fuzzy clustering algorithm. Proceedings of
the 6th WSEAS Int. Conf. on Artificial
Intelligence, Knowledge Engineering and Data
Bases, February 2007, pp. 28-32.

[2] Berkhin, P., 2002, Survey of Clustering Data
Mining Techniques; Accrue Software, Inc,
USA, 2002.
www.ee.ucr.edu/~barth/EE242/clustering_surve
y.pdf

29

[3] Box G. E. P. and Mervin E. Muller, A Note on
the Generation of Random Normal Deviates,
The Annals of Mathematical Statistics (1958),
Vol. 29, No. 2, pp. 610–611.

[4] Davies.D.L and D.W. Bouldin, A cluster
separation measure, IEEE Trans. Pattern Anal.
Machine Intell. Vol. 1, 2009, pp. 224-227,
ISSN: 0162-8828. DOI:
10.1109/TPAMI.1979.4766909

[5] Han J. and M. Kamber, Data Mining: Concepts
and Techniques, Morgan Kaufmann Publishers,
Second Edition, New Delhi, 2006. ISBN: 978-
81-312-0535-8

[6] Holmes Finch, Comparison of Distance
Measures in Cluster Analysis with
Dichotomous Data, Journal of Data Science
3(2005), pp. 85-100, ISSN:1680-743X, online:
ISSN 1683-8602. http://www.jds-
online.com/file_download/66/JDS-192.pdf

[7] Indrajit Saha, and Anirban Mukhopadhyay, An
Improved Crisp and Fuzzy based Clustering
Technique for Categorical Data, International
Journal of Computer Science and Engineering,
2008, pp 184-193.
http://www.waset.ac.nz/journals/ijcse/v2/v2-4-
33.pdf.

[8] Jain, A.K. and R.C. Dubes, Algorithms for
Clustering Data. Prentice Hall Inc., Englewood
Cliffs, New Jerssy, 1988, ISBN: 0-13-022278-
X

[9] Jain, A.K., M.N. Murty and P.J. Flynn, Data
Clustering: A Review, ACM Computing
Surveys, Vol. 31, No. 3, Sep. 1999, pp. 264-
323, DOI:10.1.1.18.2720&rep=rep1&type=pdf

[10] Kaufman, L. and P.J. Rousseeuw, Finding
Groups in Data: an Introduction to Cluster
Analysis, John Wiley and Sons, 1990.

[11] Maria Camila N. Barioni, Humberto L.
Razente, Agma J. M. Traina, Caetano Traina
Jr, An efficient approach to scale up k-medoid
based algorithms in large databases, 2006.
http://www.lbd.dcc.ufmg.br:8080/colecoes/sbb
d/2006/018.pdf

[12] Marta V. Modenesi, Myrian C. A. Costa,
Alexandre G. Evsukoff,,and Nelson F.
F.Ebecken, Parallel Fuzzy C-Means Cluster
Analysis, High Performance Computing for
Computational Science - VECPAR 2006,

Lecture Notes in Computer Science, 2007,
Volume 4395/2007, pp. 52-65, DOI:
10.1007/978-3-540-71351-7_5

[13] Olivier Ferret, Brigitte grau and Mich`ele
Jardino, A cross-comparison of two clustering
methods, 2001.
http://www.ldc.upenn.edu/acl/W/W01/W01-
0909.pdf.

[14] Park, H.S., J.S. Lee and C.H. Jun, A K-Means-
Like Algorithm for K-Medoids Clustering and
Its Performance, Department of Industrial and
Management Engineering, POSTECH, South
Korea, 2009.
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.90.7981&rep=rep1&type=pdf

[15] Raghu Krishnapuram, Anupam Joshi and Liyu
Yi, A Fuzzy Relative of the k-Medoids
Algorithm with Application to Web Document
and Snippet Clustering, The IEEE
International Fuzzy Systems Conference,
FUZZ-IEEE'99; Seoul; South Korea; 22 Aug.-
25 Aug. 1999, pp. III-1281-III-1286.

[16] Reynolds. A.P, G. Richards, and V. J.
Rayward-Smith, The Application of K-
medoids and PAM to the Clustering of Rules,
Lecture notes in computer science, 2004,
ISSN: 0302-9743.
http://www.macs.hw.ac.uk/~ar136/publication
s/clusteringConference.pdf

[17] Romesburg, H. Clarles, Cluster Analysis for
Researchers, 2004, pp. 340, ISBN 1-4116-
0617-
5.www.lulu.com/items/volume_1/46000/4647
9/.../CLUSPreview.pdf

[18] Tibshirani, R. Walther. G. Hastie.T, Estimating
the number of clusters in a data set via the gap
statistic, Journal of Royal Statistical SocICTy
Series B Statistical Methodalogy, 2001, Vol
63; Part 2, pp. 411-423, ISSN:1369-7412.

[19] Velmurugan. T and T.Santhanam, A Practical
Approach of K-Medoids Clustering Algorithm
for Artificial data points, Proceedings of the
Int. Conf. on Semantics, E-business and E-
Commerce, Trichirappalli, India, Nov. 2009,
pp. 45-50, ISBN: 978-81-907337-0-0.

30

[20] Velmurugan. T and T. Santhanam,
Computational complexity between K-means
and K-medoids clustering algorithms for
normal and uniform distributions of data
points. Journal of Computer Science, 6 (3):
2010, pp. 363-368, ISSN:1549-3636.

 [21] Velmurugan.T and T.Santhanam, A Survey of
Partition Based Clustering Algorithms in Data
Mining: An Experimental Approach,
Information Technology Journal, 10 (3): 2011,
pp. 478-484, ISSN: 1812-5638/DOI:
10.3923/itj-2011.478-484.

 [22] Weiguo Sheng and Xiaohui Liu, A genetic k-
medoids clustering algorithm, J Heuristics,
Vol. 12, No. 6, 2006, pp. 447–466, DOI:
10.1007/s10732-006-7284-z

[23] Yong, Y., Z. Chongxun and L. Pan, A novel
fuzzy c-means clustering algorithm for image
thresholding. Measurement Sci. Rev., Volume
4: 9(1), 2004.

[24] Yong, Y., Z. Chongxun and L. Pan, Fuzzy C-
means clustering algorithm with a novel
penalty term for image segmentation, Opto-
Electronics Review 13(4), 2005, pp. 309-315.

