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ABSTRACT 
 

Data clustering is a process of putting similar data into groups. A clustering algorithm partitions a data set into 
several groups such that the similarity within a group is larger than among groups. In the field of data mining, 
various clustering algorithms are proved for their clustering quality. This research work deals with, two of the 
most representative clustering algorithms namely centroid based K-Medoids and representative object based 
Fuzzy C-Means are described and analyzed based on their basic approach using the distance between two data 
points. For both the algorithms, a set of n data points are given in a two-dimensional space and an integer K 
(the number of clusters) and the problem is to determine a set of n points in the given space called centers, so 
as to minimize the mean squared distance from each data point to its nearest center. The performance of the 
algorithms is investigated during different execution of the program for the given input data points. Based on 
experimental results the algorithms are compared regarding their clustering quality and their performance, 
which depends on the time complexity between the various numbers of clusters chosen by the end user. The 
total elapsed time to cluster all the data points and Clustering time for each cluster are also calculated in 
milliseconds and the results compared with one another. 
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1.  INTRODUCTION 

 
Clustering is an important area of application for 

a variety of fields including data mining, knowledge 
discovery, statistical data analysis, data compression 
and vector quantization. Clustering has been 
formulated in various ways in machine learning, 
pattern recognition, optimization and statistics 
literature. Clustering is the most common form of 
unsupervised learning. According to the rule of the 
unsupervised learning, clustering does not require 
supervision. No supervision means that there is no 
human expert who has assigned documents to 
classes. In clustering, it is the distribution and 
makeup of the data that will determine cluster 
membership. The notion of what constitutes a good 
cluster depends on the application and there are many 
methods for finding clusters subject to various 
criteria. These include approaches based on splitting 
and merging such as ISODATA, randomized 
approaches such as CLARA, CLARANS, and 
methods based on neural nets, and methods designed 
to scale to large databases, including DBSCAN, 
BIRCH and ScaleKM [2][4][10]. Among clustering 
formulations that are based on minimizing a formal 

objective function, perhaps the most widely used and 
studied is partition based algorithms like K-Means, 
K-Medoids and Fuzzy C-Means clustering. In a 
partitioned algorithm, given a set of n data points in 
real d-dimensional space, and an integer k, the 
problem is to determine a set of k points in Rd, called 
centers, so as to minimize the mean squared distance 
from each data point to its nearest center. This 
measure is often called the squared-error distortion 
and this type of clustering falls into the general 
category of variance based clustering [5][8][9].   

 
A simple example of cluster is given in Fig. 1. It 

is visually clear that there are three distinct clusters of 
50 data points. The key input to a clustering 
algorithm is the distance measure.  

 
Fig. 1: Cluster Example 
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In Fig. 1, the distance measure is distance in the 
2D plane. The cluster center is displayed in green 
color and the data points of each cluster are displayed 
in different colors. This measure suggests three 
different clusters in the figure. In most of the 
clustering approaches, the distance measure used is 
the Euclidean distance [6]. Different distance 
measures give rise to different clustering. Thus, the 
distance measure is an important means by which this 
research can influence the outcome of clustering. 

 
2.  METHODOLOGY 

 
An important step in most clustering is to select 

a distance measure, which will determine how the 
similarity of two elements is calculated. This will 
influence the shape of the clusters, as some elements 
may be close to one another according to one 
distance and farther away according to another. For 
example, in a 2-dimensional space, the distance 
between the point (x = 1, y = 0) and the origin (x = 0, 
y = 0) is always 1 according to the usual norms, but 
the distance between the point (x = 1, y = 1) and the 
origin can be 2, 2  or 1 if you take respectively the 
1-norm, 2-norm or infinity-norm distance. The 
variety of common distance functions are as follows: 

 
 The Euclidean distance. This type of distance 

is also called as the distance as the crow flies 
or 2-norm distance).  

 The Manhattan distance (aka taxicab norm or 
1-norm)  

 The maximum norm (aka infinity norm)  
 The Mahalanobis distance corrects data for 

different scales and correlations in the 
variables. 

 The angle between two vectors can be used as 
a distance measure when clustering high 
dimensional data.  

 The Hamming distance measures the 
minimum number of substitutions required to 
change one member into another.  
 

Another important distinction is whether the 
clustering uses symmetric or asymmetric distances. 
Many of the distance functions listed above have the 
property that distances are symmetric (the distance 
from object A to B is the same as the distance from B 
to A). In other applications, this is not the case. (A 
true metric gives symmetric measures of distance.) 
The symmetric and 2-norm distance measure is used 
in this research work. In the Euclidean space Rn, the 
distance between two points is usually given by the 
Euclidean distance (2-norm distance). The formula 
for 2-norm distance is  

2-norm distance 
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The 2-norm distance is the Euclidean distance, a 
generalization of the Pythagorean Theorem to more 
than two coordinates. It is what would be obtained if 
the distance between two points were measured with 
a ruler: the "intuitive" idea of distance. Based on this 
idea of finding the distance between data points, the 
clustering qualities of the proposed algorithms are 
analyzed in this work. 

 
 Determining the quality of a clustering algorithm 
involves evaluating and assessing the quality of the 
clusters produced and is an important task in data 
mining. There are three approaches to measuring 
cluster quality, based on external, relative and 
internal criteria. The term external validity criteria are 
used when the results of the clustering algorithm can 
be compared with some pre-specified clustering 
structures (Halkidi et al., 2002). Relative validity 
criteria measure the quality of clustering results by 
comparing them with others generated by other 
clustering algorithms, or by the same algorithm using 
different parameters [6][17][18]. An internal validity 
criterion involve the development of functions that 
compute the distances between objects within each 
cluster, or the distance between the clusters 
themselves, and uses such distances to assess the 
clustering quality. To achieve a good clustering, these 
criteria are in the form of measures to assess the 
quality of a clustering. This work uses only the 
internal validity criteria in a random way. The 
Euclidean distance is used to find the distance 
between the input data points. 
 
  To create input data points in the applet window, 
the Box-Muller formula is used. For computer 
simulations, it is often useful to generate values that 
have a normal distribution. There are several methods 
and the most basic is to invert the standard normal 
cumulative distribution function. One of the efficient 
methods is the Box–Muller transform. A simple 
approximate approach that is easy to program is as 
follows. Simply sum 12 uniform (0, 1) deviates and 
subtract 6 (half of 12). This is quite usable in many 
applications. The sum over these 12 values has an 
Irwin–Hall distribution; 12 are chosen to give the 
sum a variance of exactly one. The resulting random 
deviates are limited to the range (−6, 6) and have a 
density which is a 12-section eleventh-order 
polynomial approximation to the normal distribution. 
Box–Muller method is used for normal distribution 
coding to calculate the data points X and Y. This 
method says that, if two independent random 
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numbers U and V are uniformly distributed on (0, 1], 
(e.g. the output from a random number generator), 
then two independent standard normally distributed 
random variables are X and Y, where 

 

)2cos(ln2 VUX          

(1) 

)2sin(ln2 VUY          

(2) 
 
This formulation arises because the chi-square 

distribution with two degrees of freedom is an easily-
generated exponential random variable (which 
corresponds to the quantity of natural logarithm of U 
in these equations). Thus an angle is chosen uniformly 
around the circle via the random variable V, a radius 
is chosen to be exponential and then transformed to 
(normally distributed) x and y coordinates. The basic 
form of the Box-Muller method is as follows. Suppose 
U1 and U2 are independent random variables that are 
uniformly distributed in the interval (0, 1]. Let 

  )2cos(ln2)cos( 210 UURZ        (3) 

)2sin(ln2)sin( 211 UURZ          

(4) 
 

     Then Z0 and Z1 are independent random variables 
with a normal distribution of standard deviation 1. 
The derivation is based on the fact that, in a two-
dimensional cartesian system where X and Y 
coordinates are described by two independent and 
normally distributed random variables, the random 
variables for R2 and Θ in the corresponding polar 
coordinates are also independent and can be expressed 
as  

 

 1
2 ln.2 UR   and 22 U                         (5) 

 
Because R2 is the square of the norm of the 

standard bivariate normal variable (X, Y), it has the 
chi-square distribution with two degrees of freedom. 
In the special case of two degrees of freedom, the chi-
square distribution coincides with the exponential 
distribution, and the equation for R2 above is a simple 
way of generating the required exponential variate. 
The next sections deal with the basic concepts of K-
Medoids and Fuzzy C-Means algorithm followed by 
the experimental results. 

 
3.  K-MEDOIDS ALGORITHM 

 
The very popular K-Means algorithm is sensitive 

to outliers since an object with an extremely large 

value may substantially distort the distribution of 
data. How might the algorithm be modified to 
diminish such sensitivity? Instead of taking the mean 
value of the objects in a cluster as a reference point, a 
Medoid can be used, which is the most centrally 
located object in a cluster [14][15]. Thus the 
partitioning method can still be performed based on 
the principle of minimizing the sum of the 
dissimilarities between each object and its 
corresponding reference point. This forms the basis 
of the K-Medoids method (Han and Kamber, 2006; 
Jain, et al., 1999; Kaufman and Rousseeuw, 1990). 
The basic strategy of K-Medoids clustering 
algorithms is to find k clusters in n objects by first 
arbitrarily finding a representative object (the 
Medoids) for each cluster. Each remaining object is 
clustered with the medoid to which it is the most 
similar. K-Medoids method uses representative 
objects as reference points instead of taking the mean 
value of the objects in each cluster. The algorithm 
takes the input parameter k, the number of clusters to 
be partitioned among a set of n objects (Park, et al., 
2009; Dunham, 2003; Han and Kamber, 2006). A 
typical K-Mediods algorithm for partitioning based 
on Medoid or central objects is as follows: 

 
Input:  k: The number of clusters 
 D: A data set containing n objects 
Output: A set of k clusters that minimizes the 

sum of the dissimilarities of all the 
objects to their nearest medoid. 

Method: Arbitrarily choose k objects in D as the 
initial representative objects; 

Repeat  assign each remaining object to the    
cluster with the nearest medoid; 

        randomly select a non medoid object 
Orandom; 

        compute the total points S of swaping 
object Oj with Oramdom;  

     if S < 0 then swap Oj with Orandom to 
form the new set of k medoid; 

Until no change; 
 

Similar to the above algorithm, a Partitioning 
Around Medoids (PAM) was one of the first k-
Medoids algorithms introduced by researchers. It 
attempts to determine k partitions for n objects. After 
an initial random selection of k medoids, the 
algorithm repeatedly tries to make a better choice of 
medoids [16][21]. Therefore, the algorithm is often 
called as representative object based algorithm. 
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4.  FUZZY C-MEANS ALGORITHM 
 

Traditional clustering approaches generate 
partitions; in a partition, each pattern belongs to one 
and only one cluster. Fuzzy clustering extends this 
notion to associate each pattern with every cluster 
using a membership function [1][7]. The output of 
such algorithms is a clustering, but not a partition 
some times. Fuzzy clustering is a widely applied 
method for obtaining fuzzy models from data. It has 
been applied successfully in various fields including 
geographical surveying, finance or marketing. This 
method is frequently used in pattern recognition. It 
is based on minimization of the following objective 
function: 

2

1 1
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where m is any real number greater than 1, uij is the 
degree of membership of xi in the cluster j, xi is the 
ith of d-dimensional measured data, cj is the d-
dimension center of the cluster, and ||*|| is any norm 
expressing the similarity between any measured data 
and the center (Al-Zoubi et al., 2007; Yong et al., 
2004). Fuzzy partitioning is carried out through an 
iterative optimization of the objective function 
shown above, with the update of membership uij and 
the cluster centers cj by: 
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 This iteration will stop when 

   )()1(max k
ij

k
ijij uu , where  is a 

termination criterion between 0 and 1, whereas k are 
the iteration steps. This procedure converges to a 
local minimum or a saddle point of Jm. The 
algorithm is composed of the following steps: 

 
Step 1: Initialize U=[uij] matrix, U(0)   
Step 2: At k-step: calculate the centers  
             vectors  C(k)=[cj] with U(k) 
Step 3: Update U(k) , U(k+1)    
Step 4: If || U(k+1) - U(k)||<  then STOP; 
            otherwise return to step 2. 
 

In this algorithm, data are bound to each cluster 
by means of a Membership Function, which 
represents the fuzzy behavior of the algorithm. To 

do that, the algorithm has to build an appropriate 
matrix named U whose factors are numbers between 
0 and 1, and represent the degree of membership 
between data and centers of clusters (Moh’d Belal 
Al- Zoubi, ed al., 2007). FCM clustering techniques 
are based on fuzzy behavior and provide a natural 
technique for producing a clustering where 
membership weights have a natural (but not 
probabilistic) interpretation. This algorithm is 
similar in structure to the K-Means algorithm and 
also behaves in a similar way [12][23[24]. For the 
creation of input data points for both the algorithms, 
the Box-Muller formula is used [3]. With this 
discussion, the next part of this paper analyses the 
experimental results and discussion about the 
results. 

 
5.  EXPERIMENTAL RESULTS  

 
Having introduced the two clustering 

techniques and their basic mathematical 
foundations, now turn to the discussion of these 
techniques on the basis of a practical approach. This 
approach involves the implementation of the two 
techniques introduced previously, and performance 
of the algorithms is tested on statistical distributions 
of input data points via Normal and Uniform 
distributions. Therefore, the implementation plan 
consists of two parts; one for Normal distribution of 
input data points and the other for Uniform 
distribution. For both the types of distributions, the 
data points are created using Box-Muller formula as 
discussed [3]. The program is written in JAVA 
language. After the creation of data points, the user 
has to specify the number of clusters. In the output 
window, the data points in each cluster are displayed 
by different colors and the execution time is 
calculated in milliseconds [19][20][21]. Now, the 
discussion starts with the Normal distribution of 
input data points first followed by Uniform 
distribution. The resulting clusters of the Normal 
distribution for K-Medoids algorithm is given in 
Fig. 2. The number of data points and clusters given 
by end user as input   during the execution of the 
program is 1000 and 5 (k = 5) respectively. The 
algorithm is repeated 1000 times (one iteration for 
each data point) to get efficient output. The cluster 
centers (centroids) are calculated for each cluster by 
its mean value and clusters are formed depending 
upon the distance between data points.  

 
 Different approaches of clustering yields 

different types of outcomes. In this work, for 
different input data points, the algorithm gives 
different types of outputs. The input data points are 
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generated in red color and the output of the 
algorithm is displayed in different colors as shown 
in Fig. 2. The center point of each cluster is 
displayed in white color. The total elapsed time and 
the execution time for each cluster to each run are 
calculated in milliseconds. The time taken for 
execution of the algorithm varies from one run to 
another run and also it differs from one computer to 
another computer. The number of data points is the 
size of the cluster. If the number of data points are 
1000 then the algorithm is repeated the same one 
thousand times. For each data point, the algorithm 
executes once. The algorithm takes 4375 
milliseconds for 1000 data points and 5 clusters. 
The same algorithm is executed 5 times and results 
are tabulated in table 1 (against the rows 

‘Normal’). The total elapsed time for all clusters is 
given at the end of the row ‘Size’. The sum of the 
execution time for each cluster (individual 
execution time for each cluster) is given at the end 
of the row ICT (Individual Cluster Time). The 
difference between these two is available in the last 
column. For the same one thousand uniformly 
distributed data points, the algorithm is executed 5 
times and the results are listed in table 1 (against 
the rows ‘Uniform’). Next, one of the outcomes for 
1000 uniformly distributed data points and 10 
clusters is shown in Fig. 3. In this case, the 
algorithm takes 7344 milliseconds for 10 clusters. 
But the sum of the individual clustering time is 
7313 milliseconds. The difference time between 
these two is 31 milliseconds. 

 
 
 

 
 

Fig. 2: Normal Distribution Output- K-Medoids 
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Fig. 3: Uniform Distribution Output-K-Medoids 
 
Next, the FCM algorithm is executed by 

taking 1000 Normal distribution of data points as 
input. The number of clusters chosen by the user is 
5. The execution time taken by the system is 3953 
milliseconds. Like, the algorithm is executed for 
one thousand uniformly distributed data points. 
Now the algorithm takes 3797 milliseconds for 
execution. Five times the algorithm is executed and 
the results are given in table 2 for both the types of 
inputs. Here also the difference time between total 
elapsed time and the sum of the execution time for 
all clusters is given in the last row. Next, both the 
algorithms are executed 5 times by considering the 
number of clusters is 10 and the results are given in 
the table 3. This table contains only the execution 
time for each cluster and the total elapsed time. The 
third column is the type of the distribution. 
Clustering time for Normal distribution is listed 
against the rows ‘N’ and for the Uniform 
distribution is listed against the rows ‘U’. The 
execution time for each cluster is given in the table 
from the columns 1 to 10 for ten clusters. The sum 
of each cluster individual time is available in the 
column ICT (Individual Cluster Time). The total 
elapsed time is indicated in the column TET (Total 

Elapsed Time). The difference time (DT) between 
ICT and TET is calculated and is given in the last 
column. Fig. 4 is the output for 1000 normally 
distributed data points with 15 clusters of FCM 
algorithm. For the same algorithm, the number of 
clusters chosen by the user is 20 and the result of 
1000 uniformly distributed data points is shown in 
Fig. 5. Table 4 shows that the performance results 
comparison for all the types of data distributed for 
the experiments for 5 and 10 clusters. Also the table 
contains the best and worst execution times for all 
the categories. From the table, it is clear that the best 
times (BT) are derived from the result of uniform 
distribution and the worst times (WT) are from 
normal distribution. The average times of ICT and 
TET are given in the same table for both the 
algorithms for the normal and uniform distributions 
of input data points. The difference time between 
ICT and TET are calculated and is given in the 
columns DT1 and DT2 for 5 and 10 clusters 
respectively. Next, both the algorithms are executed 
by choosing the number of clusters 15, 20 and the 
average times are listed in the table 5. Here ICT and 
TET times alone taken for discussion. 
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Table 1: Cluster Results for K-Medoids 
Run Distribution Cluster 1 2 3 4 5 T.Time Diff.Time 

 
1 

Normal Size 132 287 240 133 208 4375 47 
 ICT 687 1141 936 703 861 4328 

Uniform Size 198 230 199 200 173 4062 24 
 ICT 889 759 835 815 740 4038 

 
2 

Normal Size 237 217 163 204 179 4203 30 
 ICT 902 870 750 865 786 4173 

Uniform Size 162 158 254 189 237 3891 16 
 ICT 687 656 866 737 929 3875 

 
3 

Normal Size 167 248 241 127 217 4090 42 
 ICT 753 887 998 649 761 4048 

Uniform Size 216 165 171 190 258 4172 15 
 ICT 841 654 717 861 1084 4157 

 
4 

Normal Size 200 252 195 219 134 4059 44 
 ICT 896 943 700 787 689 4015 

Uniform Size 187 179 201 212 221 3994 24 
 ICT 803 710 790 856 811 3970 

 
5 

Normal Size 133 202 194 217 254 4210 33 
 ICT 720 856 798 813 990 4177 

Uniform Size 172 174 239 215 200 3944 27 
 ICT 785 781 811 790 750 3917 

 
The programs of K-Medoids and FCM are 

executed many times and the results are analyzed 
based on the number of data points and the 
number of clusters. The behavior of the 
algorithms is analyzed by observations. The 
performance of the algorithms have also been 
analyzed for several executions by considering 
different data points (for which the results are 
not shown) as input (1500 data points, 2000 data 
points etc.) and the number of clusters are from 
15 and 20 (for which also the results are not 
shown), the outcomes are found to be highly 
satisfactory [20][21]. According to the results 
obtained from the proposed two data clustering 

algorithms, the results are compared based on 
their performance and clustering quality. A table 
of the achieved results by giving average times 
for each of the two techniques is presented in 
Table 5 and the graphical format is shown in Fig. 
6. By comparing the average times of both the 
algorithms, it can easily observe that the FCM 
algorithm takes less time than the K-Medoids 
algorithm. For example, the average time for 15 
clusters for normal distribution of data points is 
10415.6 milliseconds, but for the FCM algorithm 
it is found to be 10305.6 milliseconds. This same 
type of results repeats for uniform distribution 
also. 

 
Fig. 4: Normal Distribution Output- Fuzzy C-Means 
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Table 2: Cluster results for FCM 

 
Run Distribution Cluster 1 2 3 4 5 T.Time Diff.Time 

 
 

1 

Normal Size 269 207 152 235 137 3953 16 
  ICT 951 858 768 769 591 3937 

Uniform Size 169 213 252 179 187 3797 16 
  ICT 767 737 905 653 719 3781 

 
 

2 

Normal Size 160 162 201 211 266 4015 28 
  ICT 723 705 781 845 933 3987 

Uniform Size 218 189 199 192 202 3818 15 
  ICT 840 689 810 702 762 3803 

 
 

3 

Normal Size 197 223 216 186 178 3943 31 
  ICT 742 842 748 791 789 3912 

Uniform Size 216 236 206 169 173 3931 18 
  ICT 821 872 755 655 810 3913 

 
 

4 

Normal Size 214 237 162 176 211 4244 25 
  ICT 838 970 813 704 894 4219 

Uniform Size 228 193 178 172 229 4024 23 
  ICT 852 775 750 740 884 4001 

 
 

5 

Normal Size 213 157 178 200 252 4125 26 
  ICT 889 712 788 809 901 4099 

Uniform Size 199 163 244 194 200 4022 24 
  ICT 815 775 885 710 813 3998 

 
 
 

 
 

Fig. 5: Uniform Distribution Output- Fuzzy C-Means 
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Table 3: Cluster Results for 10 Clusters 
 
Algorith

m 
R Dist\C

lr 
1 2 3 4 5 6 7 8 9 10 ICT TE

T 
D
T 

 
 
 
 
 

K-
Medoids 

1 N 73
5 

86
5 

65
5 

63
6 

670 64
0 

53
1 

892 952 891 746
7 

750
1 

34 

U 64
0 

71
6 

95
5 

49
8 

851 90
7 

67
0 

545 795 736 731
3 

734
4 

31 

2 N 69
3 

62
5 

87
6 

65
5 

889 84
3 

70
3 

645 655 691 727
5 

732
1 

46 

U 93
0 

71
8 

78
8 

81
5 

656 76
8 

68
2 

548 795 565 726
5 

728
9 

24 

3 N 69
9 

95
5 

59
8 

68
7 

749 60
2 

71
8 

891 689 755 734
3 

737
8 

35 

U 84
4 

58
9 

67
6 

56
2 

100
4 

57
9 

95
4 

613 698 626 714
5 

717
7 

32 

4 N 81
7 

65
6 

74
8 

73
1 

861 73
4 

73
5 

889 656 563 739
0 

742
2 

32 

U 69
1 

86
2 

70
4 

78
2 

578 68
4 

89
9 

733 592 569 709
4 

713
2 

38 

5 N 72
3 

62
4 

71
7 

85
5 

718 80
7 

57
9 

619 627 107
1 

734
0 

736
8 

28 

U 67
4 

70
5 

83
2 

85
7 

685 66
8 

93
5 

723 532 676 728
7 

731
3 

26 

 
 
 
 

FCM 

1 N 71
8 

57
6 

58
0 

80
2 

466 76
6 

95
0 

750 100
0 

846 745
4 

750
0 

46 

U 90
6 

54
5 

65
6 

67
2 

924 84
4 

57
7 

685 656 722 718
7 

720
8 

21 

2 N 75
4 

72
1 

54
5 

80
8 

566 77
8 

73
2 

767 656 860 718
7 

720
2 

15 

U 59
5 

79
7 

84
2 

67
4 

907 56
5 

56
1 

700 595 858 709
4 

712
5 

31 

3 N 67
1 

65
2 

71
4 

56
5 

794 97
5 

86
7 

722 621 661 724
2 

726
5 

23 

U 78
7 

64
3 

77
8 

76
1 

689 68
8 

64
3 

783 747 562 708
1 

710
1 

20 

4 N 64
0 

80
5 

51
3 

63
0 

857 54
8 

64
4 

103
0 

653 893 721
3 

724
3 

30 

U 78
9 

59
6 

71
4 

70
5 

760 67
6 

61
1 

673 699 887 711
0 

713
5 

25 

5 N 64
8 

70
0 

70
4 

73
3 

608 62
6 

68
8 

876 657 816 705
6 

707
7 

21 

U 51
4 

76
4 

70
6 

63
9 

828 67
2 

62
3 

610 724 982 706
2 

708
5 

23 
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Table 4: Results Comparison (5 and 10 Clusters) 
 

Algorith
m 

Distributio
n 

5 Clusters 10 Clusters 
BT WT ICT TET DT

1 
BT WT ICT TET DT

2 
K-

Medoids 
Normal 405

9 
437
5 

4148.
2 

4187.
4 

39.2 714
5 

750
1 

7363 7398 35 

Uniform 389
1 

417
2 

3991.
4 

4012.
6 

21.2 701
5 

734
2 

7220.
8 

7251 30.2 

FCM Normal 394
3 

424
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Table 5: Performance Results Comparison 

 
Algorithm Dist. 5 Clusters 10 Clusters 15 Clusters 20 Clusters 

ICT TET ICT TET ICT TET ICT TET 
K-Medoids Normal 4148.2 4187.4 7363 7398 10385.6 10415.6 12770.4 12795.6 

Uniform 3991.4 4012.6 7220.8 7251 10289.3 10314.2 12635.5 12656.6 
FCM Normal 4030.8 4056 7230.4 7257.4 10276.2 10305.6 12625.2 12652.8 

Uniform 3899.2 3918.4 7106.8 7130.8 10184.1 10208.2 12510 12538.8 
 

From Fig. 6, it is easy to identify the difference 
between the execution times for both the algorithms. 
Here, the total execution time alone taken for 
comparison. The individual clustering time is not 
taken. Since the partitioning based clustering 
algorithms behave in a similar way, the difference 
between the execution time is less significant.  

 

  
Fig. 6: Cluster Results 

 
6. CONCLUSION 

 
Cluster analysis is sensitive to both the distance 

metric selected and the criterion for determining the 

order of clustering. Different approaches may yield 
different results. The choice of clustering algorithm 
depends on both the type of data available and on the 
particular purpose and application.  It is very evident 
from table 5 that the performance of the FCM 
algorithm is relatively better than that of K-Medoids 
algorithm. Thus, for the data points generated using 
statistical distributions (via Normal and Uniform 
distributions), the FCM algorithm seems to be 
superior to K-Medoids. However, between the 
distributions Uniform distribution yields the best 
results. Generally, when the number of clusters 
increases, in turn will increase the execution time for 
both the algorithms. Hence, the time taken for 
execution depends on the number of clusters and the 
number of data points chosen by the user.  
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