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ABSTRACT 
 

Soft computing methods and various sentiment indicators are employed to conduct out-of-sample 
predictions of the future sign of the stock market returns. In particular, we assess the performance of the 
probabilistic neural network (PNN) against the back-propagation neural network (BPNN) in predicting 
technology stocks and NYSE up and down moves. Genetic algorithms (GA) are employed to optimize the 
topologies of the BPNN. Our results from Granger causality tests show strong evidence that all stock 
returns are strongly related to at least one of the sentiment variables. In addition, the results from 
simulations show that the GA-BPNN is more capable of distinguishing between market ups and downs than 
the PNN. Finally, the simulations show that trading given decision rules (for example; buy stock if 
predicted return is higher than a given threshold) yields to higher accuracy than predicting the stock market 
ups and downs. 
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1. INTRODUCTION  

Large profits can be earned by trading in 
stock markets. Therefore, investors are highly 
interested in forecasting the future trend of stock 
market indices and stock prices. The purpose of 
prediction is to reduce uncertainty associated to 
investment decision making. However, forecasting 
stock markets is a challenging task since the 
dynamics of the market are very complex and non-
linear. For instance, many factors affect the stock 
market such as business and economic conditions, 
political events and investor’s expectations. There 
is an abundant theoretical and empirical literature 
exploring the economics and the behaviour of stock 
markets. For instance, empirical finance has 
documented that traditional asset-pricing which are 
based on statistical methods such as the capital 
asset pricing model [1][2], the asset pricing model 
[3], and inter-temporal capital asset pricing model 
[4] all fail to explain and predict future stock 
returns. On the other hand, behavioural finance 
provides an alternative theory regarding financial 
markets. Based on experimental psychology 
literature, behavioural finance considers that 
cognitive biases could affect asset prices. Indeed, 
investor sentiment and limited arbitrage are the 
main arguments on which the theory of behavioural 
finance relies.  In particular, the theory of investor’s 
sentiment states that investors make investment 
decisions according to their sentiments (emotions) 

instead of following a fully rational process. Then, 
stock prices could be affected by sentiment 
(irrational behaviour).  Many papers in the field of 
behavioural finance document the effect of 
sentiment on stock markets [5-8]. Other studies 
investigate the role of sentiment variables in the 
prediction of stock returns and financial futures. 
For example, [9-11] find that sentiment measures 
help predict returns on futures. On the other hand, 
[10] concludes that investor sentiment may have 
significant effects on the cross-section of stock 
prices. In addition, Baker and Wang [11] show that 
the forecasting power of sentiment measures is 
extremely limited once past returns are included as 
predictors. Based on the investor psychology, the 
behavioural finance literature has proposed many 
proxies of investors’ sentiment, including investors 
surveys [12-14], investor mood [15][16], mutual 
fund flows [16][17], trading volume [17][19], retail 
investor trades [20][21], and closed-end fund 
discount [22-24] among others. In the previous 
works [5-24] linear statistical regressions were used 
to model and predict stock market returns with 
investor sentiment using in-sample data. In this 
study we consider the problem of stock market 
trend prediction. Indeed, predicting stock market 
trends is a classification problem that categorizes 
markets returns as up and down moves, which is 
easier than the price variation prediction as in [5-
24].  
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There have already been studies looking at the 
direction or trend of movements of stock markets 
using BPNN [25-27] and PNN [28-33]. However, 
none of these studies provide a comparative 
evaluation of different intelligent classification 
techniques regarding the ability to predict the sign 
of stocks and index returns using sentiment 
measures as inputs. Our contribution is to use 
sentiment measures in the prediction of daily trend 
of individual stocks in out-of-sample data from the 
US technology sector and stock market index using 
neural networks with sentiment indicators. We rely 
on the technology sector because investors are 
strongly interested in investing in high-technology 
companies in the US and Europe since the late 
1999s and the literature does not contain work that 
explores these companies with soft computing 
techniques and using indicators related to investor 
psychology. The well known back-propagation 
neural network (BPNN) is genetically optimized to 
predict the up and down moves of stocks, and it 
performance is compared to those of the 
probabilistic neural network (PNN).   

The BPNN is a feed-forward network 
introduced by Rumelhart [33]. Given input–output 
pairs, the system is trained using back propagation 
gradient descent with momentum, and consequently 
adjusted to approximate any non-linear function, 
which make the system powerful in classification 
problems. On the other hand, the PNN was 
proposed by Specht [34]. It is built based upon the 
Bayesian method of classification. Indeed, the PNN 
employs Bayesian decision-making theory based on 
an estimate of the probability density of the data. 
The main advantage of the Bayesian method is to 
be able to classify a new sample with the maximum 
probability of success given a large training set 
using prior knowledge [35]. The PNN combines the 
simplicity, speed and transparency of traditional 
statistical classification models and the 
computational power and flexibility of back-
propagated neural networks [36]. According to Kim 
and Chun [37], PNN outperforms back-propagation 
in discovering local patterns in time series, 
particularly in the absence of noise.  

The rest of the paper is organized as 
follows. Section 2 describes the methodology. 
Section 3 outlines the simulation results. Section 4 
concludes the paper.  
 
2. METHODOLOGY 

In this study we utilize US daily time 
series for the returns of three companies (Apple, 
Cisco, and General Electric) from the technology 
sector and one equity index (NYSE) from January 

3rd 2000 to December 31st 2008. The first 80% 
observations of the data are used for training and 
the remaining 20% is used for testing.  For each 
company and the equity index i, the return time 
series are computed according to: 

)1,log(),log(,  tiptiptiR  

where p is the closing price and t is time script. 
Figure 1 shows the return series.   
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Figure 1: Return series 

 
In this study, four measures of investor 

sentiment are used to predict future stock market 
returns. The first measure is the Volatility Index 
(VIX) of the Chicago Board Options Exchange [38] 
which is an estimate of the implied volatility of 
S&P 500 index options. The VIX is viewed as a 
fear index; that is high (low) levels indicate bearish 
(bullish) sentiment [10]. The second measure is the 
State Street's Investor Confidence Index (ICI) [39] 
that measures the attitude of investors to risk. 
Figure 2 exhibits the VIX and the ICI time series.  
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Figure 2: ICI, and VIX series 
 



 

 
3 
 

According to Hirshleifer [40], a lack of accurate 
information and greater uncertainty about stocks 
leads to psychological biases. Moreover, Greater 
information uncertainty is highly related to future 
stock returns [41]. Harris [42] and Godek [43] 
suggest that the uncertainty about the stock price 
should be estimated using stock returns volatility 
and trading activity. Indeed, sentiment is related to 
high volatility [8].  Consequently, the log of 
volume series (Figure 3) and measures of the 
volatility of return series are considered in our 
study as the third and the fourth sentiment 
indicators respectively. In the next step, returns 
series are modeled by ARMA processes and 
APARCH models to estimate and extract volatility 
series.  
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Figure 3: Log-volume series 

 

2.1 Volatility modeling and extraction 

To estimate the volatility of stocks and market 
returns, the following methodology is employed. 
Assuming that Ri,t follows an ARMA(p,q) process, 
the conditional variance is modelled using the 
asymmetric power GARCH model APARCH (m,n) 
introduced by Granger and Engle [44]. First, the 
mean equation is estimated: 








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t

q

t titititiRtistiR
1 1 ,1,1,1,1,,   

 2
,,0~, titi   

To identify1 the degrees p and q, we make use of 
the Akaike information criterion (AIC) and 
Schwarz criterion (SC) computed as follows [45]:  

                                                 
1 The parameters (p,q,,,) are not reported, but are available 
upon request.  

TkTAIC 22    

TTkTSC )log(2    

  )ˆˆlog()2log(12 TssT    

where k and T are respectively the number of 
coefficients and sample size used for estimation and 
 is the error term from the mean equation. The 
APARCH (m,n) model is given by the following 
variance equation: 

  
 

 
m

j

n

i
itsisitsisjtsjssts

1 1
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   

where  is the power parameter of the standard 
deviation  and  is a parameter that captures 
asymmetry effect up to a given order. In this study, 
 is set to 1. The model APARCH is estimated with 
errors  following a generalized exponential 
distribution (GED) which is introduced by Subbotin 
[46]. For instance, [47][48] found that the out-of-
sample performance for the GARCH family models 
is worse with normal distribution. The orders m and 
n were arbitrarily set to 1 and the obtained 
parameters (,,,) are all statistically and highly 
significant2. The APARCH (m,n) model provides 
three interesting advantages. The power parameter 
 of the standard deviation can be estimated within 
the variance equation rather than imposed. Squared 
power transformation may lead to a sub-optimal 
model when the data is non-normally distributed 
[49]. Moreover, the power term is suitable to model 
volatility clustering -low volatility periods followed 
by high volatility periods- by changing the 
importance of the outliers [50]. Finally, the 
volatility series used are those extracted from the 
APARCH (m,n) equation. They are shown in 
Figure 4.  
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Figure 4: Volatility series 

 
                                                 
2 They are not reported, but are available upon request.  
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The five inputs (sentiment indicators) are 
first selected after running Granger causality tests 
[51]. The Granger causality test allows considering 
only inputs which have a highly statistical causal 
effect on future stock returns. The test is based on 
bivariate regressions of the form: 

tktkytyktkxtxxt
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where  and  represent Gaussian disturbances. 
Then, F-statistics are computed as the Wald 
statistics for the joint hypothesis: 

0...21  k  

The F-statistics allows testing whether the 
coefficients on the lagged x’s are statistically 
significant in explaining the dependant y. In this 
study, the number of lags, k, was arbitrarily set to 5. 
Table 1 provides the obtained results for the 
Granger causality test for each stock. Only 
statistically significant inputs are reported.  
 
 
Table 1 
Summary of pairwise Granger causality tests 
Null Hypothesis F-Stat Probability 
Apple   
Volatility does not Granger Cause 
returns 

3.98117 0.00134 

VIX does not Granger Cause 
returns 

2.07191 0.05609 

Cisco   

Volume does not Granger Cause 
returns 

3.4265 0.00435 

VIX does not Granger Cause 
returns 

3.29944 0.00568 

General Electric   

  VIX does not Granger Cause 
returns 

6.65516 3.70E-06 

NYSE   

ICI does not Granger Cause returns 2.42607 0.03337 
Volatility does not Granger Cause 
returns 

9.18499 1.20E-08 

VIX does not Granger Cause 
returns 

5.01435 0.00014 

 

 

2.2 The BPNN 

The BPNN introduced by [33] has feed forward 
connections and uses the back-propagation 
algorithm optimized based on the gradients method. 
The topology of the network consists of three 
layers: an input layer, a hidden layer, and an output 
layer. All nodes of a layer are connected to all the 
nodes in the next higher layer. On the other hand, 
there are no connections among neurons in the 

same layer. Activation functions are used in the 
hidden layers to introduce non-linearity into the 
network to approximate non-linear functions. 
Indeed, it is the non-linearity that makes the BPNN 
powerful. The sigmoid functions such as the 
logistic and hyperbolic tangent functions, and the 
Gaussian function are the standard choices. The 
training of a BPNN involves three stages: the feed-
forward of the input training pattern, the calculation 
and back-propagation of the error, and the 
adjustment of the weights. In particular, the 
adaptation of the weights is derived based on the 
gradient descent method and error back-
propagation to minimize the error function E given 
by: 





jk

j jyjdE
1

2)(5.0  

Here, yj and dj are respectively the actual and the 
desired output in each node j and k is the number of 
output neurons. The error is then back-propagated 
by the gradient descent through the network by 
adjusting the new weights according to this 
equation: 

  )1()(  tWWEtW   

Where W is the weight change at time t and the 
parameters  and  are respectively the learning 
rate and the momentum coefficient. This latter, 
makes the convergence faster and the training more 
stable.  
 

2.3 The PNN 

Unlike the back-propagation neural networks, 
the probabilistic neural network [34] requires only a 
single presentation of each pattern. The PNN 
employs an exponential activation function rather 
than the sigmoid function that is commonly used in 
the MLP. Then, a PNN can identify nonlinear 
decision boundaries that approach the Bayes 
optimal [52]. The basic network topology consists 
of four layers. The first layer is the inputs layer. In 
the second layer, the probability density function 
(PDF) of each group of patterns is directly 
estimated from the set of training samples using 
[53] window approximation method. The third 
layer performs the summation of all PDFs. Finally, 
the Bayesian decision is made in the fourth layer. In 
sum, the network structure of PNN is similar to 
back-propagation neural network; but the main 
difference is that the transfer function is replaced by 
exponential function and all training samples are 
stored as weight vectors. For instance, the PDF is 
assumed to follows a Gaussian distribution. Then, 
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the PDF for a feature vector X to be of a certain 
category A is given by: 

        
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 

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
 

m

i
AiAi

pp
A XXXXmXf

1

215.0 2exp21   

Where, p is the number of patterns in X, m is the 
number of the training patterns of category A, i is 
the pattern number, and σ is the smoothing factor of 
the Gaussian curves used to construct the PDF. The 
value of σ is optimized during training based on the 
clearest separation of classes with the highest 
classification rate [54-58]. 
 

2.4 Genetic algorithms 

A genetic algorithm [59-62] was used to 
automatically optimize the architectures of the 
networks. GA was used for three reasons. First, the 
architectural design is crucial to the success of a 
network’s information processing capabilities [62]. 
Second, genetic search provides an advantage over 
expert experience in building neural networks and 
also over constructive and destructive algorithms 
[63-64]. Finally, genetic algorithms allow the 
convergence speed of artificial neural networks to 
be faster because of the search multiple initial states 
and the effect of mutation operations [64]. The 
process of a genetic algorithm is iterative and 
consists of the following steps3: 
1. Create an initial population of “genotypes”, it 

is a genetic representation of neural networks, 
and network architectures are randomly 
selected.  

2. Train and test the neural networks to 
determine how fit they are by calculating the 
fitness measure of each trained network i. The 
fitness function is calculated as: 

iMSEif 1 , where MSE is the mean 

squared error.  
3. Compare the fitness of the networks and keep 

the best top 10 for future use.  
4. Select better networks from each completed 

population by applying the selection operator. 
5. Refill the population back to the defined size. 
6. Mate the genotypes by exchanging genes 

(features) of the networks.  
7. Randomly mutate the genotypes according to 

a given probability. 
8. Return back to step 2 and continue this 

process until stopping criteria (RMSE<) is 
reached.  

The initial parameters of the BPNN to be optimized 
are described in Table 2.  

                                                 
3 Detailed comprehension of genetic algorithms is given in [62]. 

 
Table 2 
Initial parameter space of the genetic algorithm  
Hidden layers  
Neurons by each hidden layer Maximum 8 
Activation functions Linear, sigmoid, hypertang 
Size of initial population 30 
Selection 0.50% 
Refill Cloning 
Mating Tail swap 
Mutations Random exchange at 0.25% 
Number of passes 20  
Learning rate parameter range 0.4  
Momentum rate parameter range 
Stopping criterion 

0.3  
10 generations 

Notes: sigmoid function is defined as    tetsigmoid  11 , 

hypertang function is defined as      tttt eeeet  tanh  

 
In order to predict the future trends of stocks and 
the NYSE, the following model is approximated 
using neural networks: 

)1,,2,,1,(,  tiStiRtiRftiy  

where R4 is returns, S is a matrix of sentiment 
indicators selected following the Granger causality 
test,  is an unknown function to be approximated, 
y is the future trend, t is time script and i is the 
series to be modeled. All inputs (R and S) are 
standardized to help the intelligent systems to 
converge efficiently according to the following the 
transformation given by: 

          xMinxMaxxMinxMaxxx  2  

The output is defined as follows: 

 0,1;0,0,  tiRiftiRiftiy  

The previous definition means that the trading 
strategy is buying stock if its predicted future return 
is positive (future stock price is expected to 
increase) and selling stock if its predicted future 
return is negative (future stock price is expected to 
fall). The out-of-sample daily predictions were 
conducted and the prediction accuracy was 
measured. The accuracy is calculated based on the 
number of correct classifications (Hit Ratio).  The 
highest neural output of the network indicates the 
category or class the data record falls into.  For 
example, 100% accuracy is where all records are 
properly classified and 0% accuracy is where none 
are properly classified. 
 

                                                 
4 Future trends are predicted with past return at t-1 and t-2 since 
all return series follows an ARMA(2,2) process. Indeed, all 
autoregressive coefficients up to order two were found to be 
statistically significant.  
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3. RESULTS AND DISCUSSION 

First of all, the Granger causality tests 
shows strong evidence that sentiment variables 
statistically cause shifts in stock returns. This is 
consistent with [12][13] findings. Table 3 presents 
the correct classification rates from the two 
systems.  In terms of prediction accuracy, the GA-
BPNN has the highest hit ratio (55.75%) in 
predicting the sign of future return, while the best 
hit ratio obtained by PNN is 52.83%. On the other 
hand, the lowest hit ratios were 48.14% and 53.32% 
obtained by PNN and GA-BPNN respectively. As a 
result, the GA-BPNN outperforms the PNN in all 
stocks including the NYSE. Although the 
prediction accuracy is low, the overall results are 
interesting since some previous studies reported 
that stock prices are approximately close to the 
random walk process and; consequently; an 
accuracy of 56% in the predictions is a satisfying 
result for stock forecasting [65-68].  
 
 
Table 3:  
 Out-of-sample classification accuracy in % 
 PNN GA-BPNN 
Apple 51.95 55.75 
Cisco 48.14 54.34 
GE 52.30 54.69 
NYSE 49.96 53.32 
 
According to empirical behavioural finance, high 
impulsivity investors and investors with high 
confidence in the future are more likely to take 
financial risks [69][70]. Among many possible 
reasons for future risk taking is fully substitutable 
stocks to purchase. Indeed, in many situations 
investors act as if they extrapolate a positive price 
trend by overbuying winners [71]. In addition, 
investors who extrapolate trends in stock prices are 
likely to follow a momentum investment strategy 
and buy winners [72][73]. In particular, if 
momentum investment strategy is adopted then 
investors are more likely to buy shares that have a 
higher value [74]. Then, in order to improve the 
prediction of the future trend in technology stocks 
and the NYSE, a trading rule is defined to buy 
stocks. For instance, the output is defined according 
to three strategies as follows: 
Strategy.1: 

 %1,1;%1,0,  tiRiftiRiftiy  

Strategy.2:  

 %5.1,1;%5.1,0,  tiRiftiRiftiy  

 

Strategy.3: 

 %2,1;%2,0,  tiRiftiRiftiy  

The previous output definitions allow investigating 
the relationship between trading rules (buying the 
stock if the expected trend is up more than s %) and 
the performance of the neural network systems. The 
forecasting performance of each trained system was 
compared and analyzed depending on the trading 
strategy. The results obtained from simulations are 
given in Table 4.  
 
Table 4 
Classification accuracy (in %) given trading rules  
Systems GB GB GB PNN PNN PNN
Rules  1% 1.50% 2% 1% 1.50% 2% 
Apple 82.65 86.36 94.60 80.97 86.27 94.51
Cisco 84.60 91.33 95.31 83.36 90.09 94.16
GE 92.39 96.55 98.67 91.59 96.02 98.41
NYSE 97.79 98.67 99.47 97.52 98.58 99.38
GB is GABPNN.  

 
The simulations show that the 

performance of the systems improves when the 
trading rules are considered. The lowest and the 
highest hit ratios for the PNN are 82.65% and 
99.47%. On the other hand, lowest and the highest 
hit ratios for the GA-BPNN are 80.97% and 
99.38%. The lowest hit ratios are obtained with 
Apple given 1% decision rule and the highest hit 
ratio is obtained with NYSE given 2% decision 
rule. Recall that the lowest and highest accuracy 
rates obtained when the trading rule is 0% are 
respectively 48.14% for the PNN and 53.32% for 
the GA-BPNN. Then, a predictive system based on 
defined decision rules (buy stock if predicted up is 
more than s %) performs much better than a 
predictive system that predicts both future 
directions: up and down. Moreover, the 
performance of the systems increases with the 
trading rules: an increase in the decision rule leads 
to an improvement in the performance of the 
systems. Finally, the simulations confirm that the 
GA-BPNN is suitable for stock market trend 
prediction than the PNN since it achieves higher 
accuracy in all stocks and all strategies.  

Previous studies have shown that PNN 
provide good classification rates than traditional 
BPNN in many different applications [75][76]. 
However, our findings show the superiority of GA-
BPNN over PNN. Indeed, the PNN has a fixed 
topology and; on the other hand; the topology of the 
BPNN is optimized using genetic algorithms in this 
study. This could explain why BPNN outperforms 
the PNN. Thus, the role of genetic algorithm is 
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important in optimizing the BPNN architecture and 
achieving higher performance. This is consistent 
with [62]. Also, the reason that GA-BPNN 
outperforms the PNN in this study is that PNN is 
sensitive to noisy data such as financial time series. 
Finally, it is important to mention that faster than 
GA-BPNN with similar classification accuracy for 
up trend detection, the PNN would be more 
appropriate in real time applications when trading 
strategies are considered.     
 

4. CONCLUSION 

Predicting stock market trends is a 
classification problem that categorizes markets 
returns as up and down moves, which is easier than 
price prediction. There are several neural network 
architectures and statistical methods to perform 
classification tasks. In this paper, two different 
neural network architectures are used to predict 
future trends of the NYSE and three stocks from the 
technology sector. The neural networks are the 
Back-Propagation neural networks (BPNN) and the 
Probabilistic Neural Network (PNN). Genetic 
algorithms (GA) are used to optimize the topology 
of the BPNN. Investor sentiment measures are used 
as inputs to the neural networks. First, Granger 
causality tests are applied to identify which 
measures are statistically related to each company 
and equity market index. Similar to prior studies, 
our findings show that individual stock returns are 
highly related to the sentiment of the investor 
according to Granger causality tests. Second, soft 
computing techniques – artificial neural networks - 
are employed to model and predict the future sign 
of stock returns and the market. The simulations 
show that the GA-BPNN is suitable for stock 
market trend prediction than the PNN since it 
achieves higher accuracy in all stocks and in all 
strategies.  

According to financial theory, investors 
seek to maximize their final wealth. And, according 
to empirical behavioural finance; when a 
momentum investment strategy is adopted investors 
are more likely to buy shares that have a higher 
value.  Therefore, it is interesting to design 
intelligent systems to predict future up trends based 
on suitable trading rules. The results show that 
trading given decision rules (buy a stock if 
predicted return is higher than a given threshold) 
yields to higher accuracy than trading on the basis 
of predicted trend up or less than 0%. 

For future research it is suggested to compare 
the prediction accuracy of neural networks systems 
and support vector machines (SVM). More 

importantly, it is suggested to design and 
implement an ensemble system. In addition, it 
would be interesting to take into account both 
economic variables and technical indicators along 
with sentiment measures to predict stock market 
future trends.  
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