Journal of Theoretical and Applied Information Technology

<u>30th April 2011. Vol. 26 No.2</u> © 2005 - 2011 JATIT & LLS. All rights reserved⁻

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

UNIPLANAR QUASI YAGI ANTENNA FOR CHANNEL MEASUREMENTS AT X BAND

K.PRABHU KUMAR, DR.P.S.BRAHMANANDAM, B.T.P.MADHAV, K CH SRI KAVYA, V.SHIVA KUMAR, T.RAGHAVENDRAVISHNU, D.RAKESH

Department of ECE, K L University, Guntur DT, AP, India

ABSTRACT

Uniplanar quasi yagi antenna has gained considerable attention recently as a method of producing a broad bandwidth antenna array with a well defined end-fire radiation pattern. An important advantage of the novel quasi-yagi antenna designed in x-band is its ability to be scaled linearly to any frequency band. This paper presents simulation results of scaled quasi-yagi antenna designed to operate around 10GHz using Agilent High frequency Structure Simulator (HFSS) software. Return loss, input impedance smith chart, radiation patterns, E-field, H-field and current distributions are simulated and presented.

Keywords: Uniplanar, Quasi, X Band, HFSS, E-field, H-field

1. INTRODUCTION

Microstrip patch antennas are increasing their demand due to its compactness. Currently used planar antennas such as microstsrip patch antenna are low cost and easy to fabricate but are inherently narrowband. Although there are many techniques that can be used to enhance the broadband design this comes at the expense of other antenna parameters. Such techniques can be obtained using multi-layer stacked configuration with aperture coupling patches or by introducing parasitic slots inside the patch. However, employing these techniques will increase the cost and add complexity to the system [1-3].

Although end-fire antenna arrays Vivaldi and other types of linearly tapered slot antenna can offer wider bandwidths than traditional microstrip antennas they have larger electrical size and are difficult to match over the en tire band using traditional feeds. This adds complexity, which causes the frequency response to be reduced.

The uniplanar quasi yagi antenna has been developed to give low cost, low weight and

easy fabrication with broadband performance. The proposed antenna has low mutual coupling making it a popular candidate for phase arrays [4-6]. The planar antenna is a single layer printed dipole antenna fabricated on a low dielectric constant and is fed through a microstrip-tocoplanar strip transition and uses a truncated microstrip ground plane as a reflector. Important features of this antenna are its simple structure and capability of being linearly scaled to any frequency band.

The principle of operation of the uniplanar quasi-yagi antenna is reported in figure [1]. It utilizes a similar principle like a traditional yagi-uda dipole array [7-8]. In this design the ground plane is used as a reflector element he quasi yagi antenna with a director and driven element is printed on low permittivity substrate giving an end-fire radiation pattern. The truncated ground plane on the bottom of the substrate is act as a reflector element [9-12]. The antenna is small size and compact compared with Vivaldi and tapered slot line, end is fed by a standard microstrip line, which makes it easy for integration with other micro wave devices [13-15].

Journal of Theoretical and Applied Information Technology

<u>30th April 2011. Vol. 26 No.2</u> © 2005 - 2011 JATIT & LLS. All rights reserved⁻

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195
-----------------	---------------	-------------------

This paper reports on the scaling of the X-band quasi antenna to produce a broad bandwidth antenna operating near 10GHz [16]. Agilent HFSS simulation is used to calculate the return loss, input impedance and the radiation patterns.

2. SINGLE ELEMENT ANTENNA STRUCTURE

Figure (1) shows the schematic diagram of the uniplanar quasi-yagi antenna. It consists of a printed dipole directed and a driver dipole fed by a broadband microstrip-to- coplanar strip transition. The overall dimension of this antenna is less than half wave length in size. The design parameters of the 10GHz X-band antenna given was scaled by a factor of 5 to realize the 10GHz band antenna assuming a single layer substrate. The characteristic impedance and the effective permittivity of the micro strip line were also to be the same and equal to 50Ω and 2.2, respectively. The antenna is fed from a conventional 50Ω . Coaxial connector through broadband microstsripto-coplanar strip transition. The dimensions of the proposed antenna are follows (unit in mm): $W_1 = W_3 = W_4 = W_5 = W_{dri} = W_{dir} = 3$, $W_6 = S5$ $=S_6=1.5$, $L1=L_5=l=7.5$, $L_3=24$, $L_4=9$, $S_{ref}=19.5$, $S_{dir}=15$, $S_{sub}=7.5$, $L_{dri}=43.5$ and $L_{dir}=16.5$.

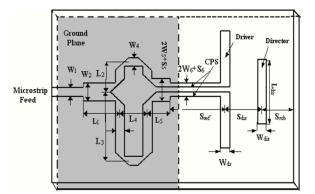


Figure (1) schematic diagram of uniplanar quasi yagi antenna

3. SIMULATION RESULTS AND DISCUSSION

The analysis and procedure is based on the full-wave electromagnetic solver based on

The calculated Agilent HFSS simulator. (simulated) results for input return loss (amplitude and phase) against frequency area shown in figure (3). From the figure we notice the antenna provides a broad bandwidth of about 50 % for VSWR<2. The antenna as well matched and has a gain of about 5dB over more than 50 % bandwidth. Figure (5) shows the calculated input impedance of this broadband antenna. Figure (6) shows the far field radiation pattern in the E and H plane including the co-polarization and crosspolarization at 10GHz. The radiation pattern indicates a well-defined end fire with front to back ratio of more than 19dB and cross polarization level of better than 15dB. The simulated results of antenna radiation pattern show that radiation pattern is well stable over the operating band.



Figure (2) Ansoft model of quasi yagi antenna

Results and Discussion

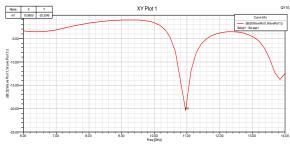


Figure (3) Return loss curve

The return loss value obtained for substrate material RT-duriod with dielectric constant 2.2 is -20.32dB. The value of return loss is in the acceptable range of <-10dB.

Journal of Theoretical and Applied Information Technology 30th April 2011. Vol. 26 No.2

© 2005 - 2011 JATIT & LLS. All rights reserved

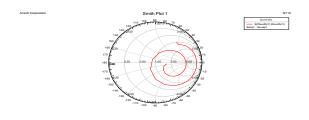
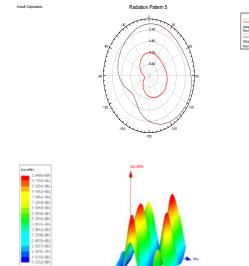



Figure (4) VSWR Vs Frequency


The VSWR<2 is obtained at the resonant frequency and the VSWR value obtained is 1.21.

radiation intensity, field strength, directivity phase or polarization. In practice, the three dimensional pattern is measured and recorded in a series of two dimensional patterns. However for most practical applications, a few plots of the pattern as a function of θ for some particular values of φ , plus a few plots as a function of φ for some particular values of θ , give most of the useful and needed information.

E-ISSN: 1817-3195

The radiation of the antenna is expressed in terms of the field strength E(in V/m), and then the graphical representation is called field strength pattern or field radiation pattern. Similarly if the radiation of the antenna is expressed in terms of the power per unit solid angle, then the graphical representation is called power radiation pattern or power pattern.

rms 0.677 Gain margin 17.36

2	Gain margin	17.36
3	Phase margin	227.90
4	Gain crossover	6
5	Phase crossover	10.88
6	Upper cutoff	6
7	Band width	6

Parameters simulated from Input impedance

shown in the table (1).

chart 1

Table (1) Input impedance smith chart parameters

The antenna radiation pattern or antenna pattern is defined as a mathematical function or graphical representation of the radiation properties of the antenna as a function of space coordinates. Radiation properties include power flux density,

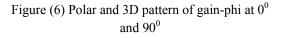


Figure (5) Input impedance smith chart The parameters that are noted from the input impedance smith chart curve is tabulated and

Journal of Theoretical and Applied Information Technology

<u>30th April 2011. Vol. 26 No.2</u> © 2005 - 2011 JATIT & LLS. All rights reserved⁻

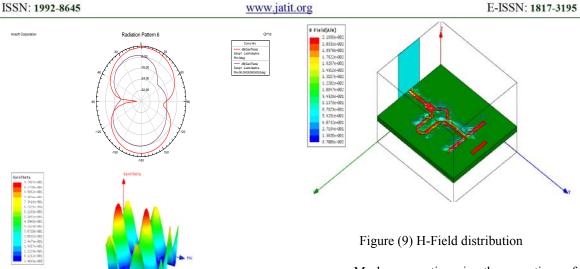


Figure (7) Polar and 3D patterns of gain-theta at 0^0 and 90^0

4. FIELD DISTRIBUTION

For horizontal antenna the Φ component of electric field as a function of Φ is measured in x-y plane (θ =90⁰). The field component can be represented as E_{ϕ} (θ =90⁰, Φ) and it is called Eplane pattern. The Φ component of electric field as a function of Φ is measured in x-z plane (θ =0⁰). The field component can be represented as E_{ϕ} (θ , Φ =90⁰) and it is called H-plane pattern.

The 3D field distribution plots give the relationship between the co-polarization (desired) and cross-polarization (undesired) components. Moreover it gives a clear picture as to the nature of polarization of the fields propagating through the patch antenna. Figure (8) and (9) clearly shows the patch antenna E-field and H-field distribution.

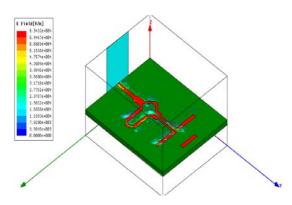
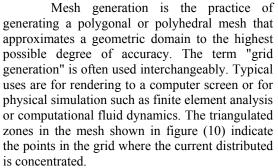
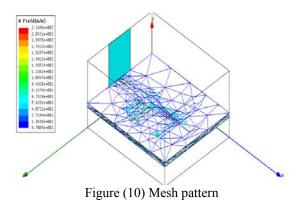




Figure (8) E-Field distribution

From the antenna parameters values of Peak Directivity, Peak Gain, Peak Realized Gain, Radiated power, Accepted power, Incident power, Radiation Efficiency, Front to back ratio, power and Radiation Efficiency, Decay factor, Max U values are obtained. From maximum field data table the values of rE field are obtained at angles Phi and Theta.

Journal of Theoretical and Applied Information Technology

<u>30th April 2011. Vol. 26 No.2</u> © 2005 - 2011 JATIT & LLS. All rights reserved⁻

ISSN:	N: 1992-8645 <u>www.ja</u>		atit.org
	Antenna paramet	ers	de
1	Max U	185.1 w/sr	su
2	Peak Directivity	51.796	cc pl
3	Peak gain	51.17	. pi
4	Peak realized gain	23.26	5.
5	Radiated power	44.90 w	
6	Accepted power	45.45 w	m
7	Incident power	100 w	D
8	Radiation efficiency	0.988	Ei th
9	Front to back ratio	1.4.4	un un

Table (2) Antenna Parameters

Maximum field data values					
S.N	rE field	Value	At Phi	At	
0		(v)	(degrees	Theta	
)	(degrees	
)	
1	Total	373.5	45	135	
		8			
2	Х	284	45	140	
3	Y	102.3	40	140	
4	Z	232.7	45	135	
		4			
5	Phi	228.3	230	-45	
		2			
6	Theta	329.1	45	-135	
		5			
7	LHCP	214.1	45	40	
		9			
8	RHCP	315.5	45	135	
		7			
9	Ludwig3/	326.9	45	40	
	X	2			
	dominant				
10	Ludwig	350.9	230	-135	
	3/Y	4			
	dominant		n field data		

Table (3) Maximum field data

5. CONCLUSION

A uniplanar quasi-yagi wideband antenna operating near 10GHz realized on thick substrate with low dielectric constant is successfully demonstrated using Agilent HFSS simulation. The antenna has a simple structure, compact and easy to fabricate. It provides a welldefined end-fire antenna, which makes it well suited for use in base stations of wireless communication systems, electronically steering phased arrays and power combining application.

E-ISSN: 1817-3195

5. ACKNOWLEDGMENTS

The authors express their thanks to the management of K L University and the Department of Electronics and Communication Engineering for their continuous support during this work.

REFERENCES:

- [1]. kaneda. N.,qian.Y.,and Itoh. T., "A novel Yagi –uda dipole array fed by a microstripto CPS transition," Asia pacific Microwave conf.dig., December 1998,pp.1413-1416.
- [2].Yongxi Qian W. R. Deal, koriaki keneda and Tatsuo Itoh, "A Uniplanar Quasi-yagi antenna with wide bandwidth and low mutual coupling characteristics", IEEE 1999 AP-S int.symp.dig., july 1999, pp.924-927.
- [3]. Y. Qian W. R. Deal, N. Kaneda and T. Itoh "A broadband uniplanar microstrip-to-CPS transition", 1997 Asia pacific Microwave conf.dig., Dec. 1997, pp.609-612.
- [4]. Y. Qian, W.R. Deal, N. Kaneda and Itoh "Microstrip-fed quasi-Yagi antenna with broadband characteristics", Electronic letters, vol 34, No 23, November 1998, pp.2194-2196
- [5].S. Salous, P. Fillipidis, and I. Hawkins, "Multiple antenna channel sounder using parallel receiver architecture", SCI2002, Orlando Florida, July 2002.
- [6]. Kaneda, N., Y. Qian, and T. Itoh, "A novel Yagi-Uda dipole array fed by a microstripto-CPS transition," Asia Pacific Microwave.
- [7]. Deal, W. R., J. Sor, Y. Qian, and T. Itoh, "A broadband uniplanar quasi-Yagi active array for power combining," 1999 IEEE Radio and Wireless Conference, 231–234, Denver, CO, August 1999.
- [8]. Sor, J., Y. Qian, and T. Itoh, "A coplanar waveguide fed quasi-Yagi antenna,"

Journal of Theoretical and Applied Information Technology

<u>30th April 2011. Vol. 26 No.2</u> © 2005 - 2011 JATIT & LLS. All rights reserved⁻

E-ISSN: 1817-3195

ISSN: 1992-8645 www.jatit.org

Electronics Letters, Vol. 36, No. 1, 1–2, January 2000.

- [9]. W. R. Deal, N. Kaneda, J. Sor, Y. Qian, T. Itoh, "A New Quasi-Yagi Antenna for Planar Active Antenna Arrays ",IEEE Transactions on Microwave Theory and Techniques, vol.48, pp. 910-918, 2000.
- [10]. K. M. K. H. Leong, J. Sor, W. R. Deal, Y. qian, and T. Itoh "A Broadband 64-Element 2-D quasi-Yagi Antenna Array", RAWCOM 2000, pp.67-70, 2000.
- [11]. Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, "A Uniplanar Quasi-Yagi Anrenna with Wide Bandwidth and Low Mutual Coupling Characteristics", IEEE AP-S, pp.924-927, 1999.1999 IEEE Radio and Wireless Conference, 231–234, Denver, CO, August 1999.
- [12]. M. Sironen, Y. Qian, T. Itoh, "Broadband Quasi-yagi Antennas for V-Band Applications ", ISAP 2000, Aug. 21-25, 2000.
- [13]. Honma, N., T. Seki, K. Nishikawa, K. Tsunekawa, and K. Sawaya, Compact sixsector antenna employing three intersecting dual-beam microstrip Yagi-Uda arrays with common director," *IEEE* Progress In Electromagnetics Research, PIER 100, 2010.
- [14]. Honma, N., T. Seki, and K. Nishikawa, \Compact planar four- sector antenna comprising microstrip Yagi-Uda arrays in a square con guration," *IEEE Antennas Wireless Propag. Lett.*, Vol. 7,596{598, 2008.
- [15]. Rattan, M., M. S. Patterh, and B. S. Sohi, \Optimization of Yagi-Uda antenna using simulated annealing," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2, 291-299, 2008.
- [16]. Lim, S. and H. Ling, \Design of electrically small, pattern recon gurable Yagi antenna," *Electron. Lett.*, Vol. 43, No. 24, 1326{1327, Nov. 2007.