

47

PERFORMANCE EVALUATION OF PAGE REMOVAL
POLICIES

DR. K A PARTHASARATHY

PROFESSOR & HOD - DEPT OF INFORMATION TECHNOLOGY
APOLLO ENGINEERING COLLEGE, CHENNAI

ABSTRACT

Web caching is an important technique to scale the Internet. One important performance factor of Web
caches is the page replacement policies. Due to specific characteristics of the World Wide Web, there exist
a huge number of proposals for cache replacement. Furthermore, the article discusses the importance of
cache replacement strategies in modern proxy caches and outlines potential future research topics. In this
paper we analyze effectiveness of LFU-K replacement policy for the purposes of caching on proxy servers
and give the results of traces analysis taken from real proxy servers to reveal a set of properties of network
traffic. On the basis of the analysis we have drawn a conclusion about expediency of usage of LFU-K
policy which uses information about dynamic change of document popularity, for Web caching. The
scheme of LFU-K policy is given as well as results of experiments aimed to compare its effectiveness with
the most popular replacement algorithms.

Keywords : Web Caching, Proxy, Client, Server, Replacement Policy, LRU, LFU and GDS

1 INTRODUCTION

The recent increase in popularity of the World
Wide Web has led to a considerable increase in
the amount of traffic over the Internet. As a
result, the Web has now become one of the
primary bottlenecks to network performance.
When objects are requested by a user who is
connected to a server on a slow network link,
there is generally considerable latency noticeable
at the client end. Further, transferring the object
over the network leads to an increase in the level
of traffic. This has the effect of reducing the
bandwidth available for competing requests, and
thus increasing latencies for other users. In order
to reduce access latencies, it is desirable to store
copies of popular objects closer to the user.

Consequently, Web caching has become an
increasingly important topic [1]. Caching can be
implemented at various points in the network. On
one end of the spectrum, there is typically a
cache in the Web server itself. Further, it is
increasingly common for a university or
corporation to implement specialized servers in
the network called caching proxies. Such proxies
act as agents on behalf of the client in order to

locate a cached copy of a object if possible. More
information on caching proxies may be found in
[17]. Usually caching proxies and Web servers
behave as secondary or higher level caches,
because they are concerned only with misses left
over from client caches. Such client caches are
built into the Web browsers themselves. They
may store only those accesses from the current
invocation.

In this paper, we shall discuss general main
memory cache replacement policies designed
specifically for use by Web caches. The results
are applicable to Web server, proxy and client
caches. One of the key complications in
implementing cache replacement policies for
Web objects is that the objects to be cached are
not necessarily of homogeneous size. For
example, if two objects are accessed with equal
frequency, the hit ratio is maximized when the
replacement policy is biased towards the smaller
object. This is because it is possible to store a
larger number of objects of smaller size. In the
standard least recently used (LRU) caching
algorithm for equal sized objects we maintain a
list of the objects in the cache which is ordered
based on the time of last access. In particular, the

48

most recently accessed object is at the top of the
list, while the least recently accessed object is at
the bottom. When a new object comes in and the
cache is full, one object in the cache must be
pruned in order to make room for the newly
accessed object. The object chosen is the one
which was least recently used. Clearly the LRU
policy needs to be extended to handle objects of
varying sizes.

A key component of a cache is its replacement
policy, which is a decision rule for evicting a
page currently in the cache to make room for a
new page. The rule that replaces the least
recently used (LRU) page from the cache, is the
most popular replacement policy. This is due to a
number of reasons: LRU is an optimal online
algorithm in the competitve ratio sense 1, it only
requires a linked list to be efficiently
implemented as opposed to more complicated
data structures required for other schemes, and
takes advantage of temporal locality in the
request sequence. Suppose that we associate with
any replacement scheme a utility function, which
sorts pages according to their suitability for
eviction. For example, the utility function for
LRU assigns to each page a value which is the
time since the page’s last use. The replacement
scheme would then replace that page which is
most suitable for eviction.

2. NEED FOR WEB CACHING

Web caching is the temporary storage of Web
objects (such as HTML documents) for later
retrieval. There are three significant advantages
to Web caching: reduced bandwidth
consumption (fewer requests and responses that
need to go over the network), reduced server
load (fewer requests for a server to handle), and
reduced latency (since responses for cached
requests are available immediately, and closer to
the client being served). Together, they make the
Web less expensive and better performing.
Caching can be performed by the client
application, and is built in to most Web
browsers. There are a number of products that
extend or replace the built-in caches with
systems that contain larger storage, more
features, or better performance. In any case,
these systems cache net objects from many
servers but all for a single user.
Caching can also be utilized in the middle,
between the client and the server as part of a
proxy. Proxy caches are often located near

network gateways to reduce the bandwidth
required over expensive dedicated Internet
connections. These systems serve many users
(clients) with cached objects from many servers.
In fact, much of the usefulness is in caching
objects requested by one client for later retrieval
by another client. For even greater performance,
many proxy caches are part of cache hierarchies,
in which a cache can inquire of neighboring
caches for a requested document to reduce the
need to fetch the object directly.

Finally, caches can be placed directly in front of
a particular server, to reduce the number of
requests that the server must handle. Most proxy
caches can be used in this fashion, but this form
has a different name (reverse cache, inverse
cache, or sometimes httpd accelerator) to reflect
the fact that it caches objects for many clients but
from only one server.

Several metrics are commonly used when
evaluating replacement policies. These include
the following:

a) Hit rate The hit rate is generally a percentage
ratio of documents obtained through using the
caching mechanism versus the total documents
requested. In addition, if measurement focuses
on byte transfer efficiency, weighted hit rate is a
better performance measurement.
b) Bandwidth Utilization An efficiency metric. A
reduction in the amount of bandwidth consumed
shows the cache is better.
c) Response time/access time The response time
is the time it takes for a user to get a document.

3 . CLASSIFICATION OF REPLACEMENT

STRATEGIES

To present the different proposals in a structured
way, we want to give a Classification of
replacement strategies. Such classifications were
also used by other authors. Before we describe
the used classification, we summarize the
important factors (characteristics) of Web objects
that can influence the replacement process (most
of these factors are described in Krishnamurthy
and Rexford [2001]):

—recency: time of (since) the last reference to
the object;
—frequency: number of requests to an object;
—size: size of the Web object;

49

—cost of fetching the object: cost to fetch an
object from its origin server;
—modification time: time of (since) last
modification;
—(heuristic) expiration time: time when an
object gets stale and can be replaced
immediately.

These factors can be incorporated into the
replacement decision. Most of the proposals in
the literature use the first four factors. A first
classification of replacement strategies was given
in Aggarwal et al. [1999]. They proposed three
categories:

—Direct extensions of traditional strategies.
This category subsumes traditional strategies
known from other areas (data base buffer
management, paging) and extensions thereof.
—Key-based replacement strategies.
Replacement strategies in this category sort
objects upon a primary key (factor). Ties are
broken based on secondary key, tertiary key, etc.
—Function-based replacement strategies. The
idea in function-based replacement is to use a
potentially general function derived from the
different factors described above. A similar
classification was given in Krishnamurthy and
Rexford [2001]: one level strategies that use one
factor, two level strategies that use a primary and
secondary factor, and combination strategies that
use a weighted approach for the combination of
factors.

There are two major problems with these
proposals. First, the first two classes could be
merged as every traditional algorithm can be
regarded as a key-based strategy using one key
(factor). A number of strategies apply various
additional techniques (more lists, etc.), that is,
they are not only key-based. Second, randomized
strategies cannot be classified according to the
above described classification. The pure random
strategy cannot be classified into any of these
categories. It uses no key and no function. Some
sophisticated random strategies can be combined
with key-based decisions or function-based
decisions. Therefore, they can be classified into
more than one category.

A number of document replacement polices have
been proposed in the literature or deployed in
implemented proxy caches.These include: Least
Recently Used (LRU), First In First Out (FIFO),
Least Frequently Used (LFU), Least Frequently

Used with Document Aging (LFU-Aging), the
largest of log (base 2) of the document size
rounded down to the nearest whole number with
LRU. Figure 1 represents HR (HitRate) and
BHR (ByteHitRate) and corresponding policy
removal algorithms.

Figure.1

4. PAGE REMOVAL POLICIES

The document replacement algorithms used in
this study are FIFO, LRU, LRU-MIN, LFU,
LFU-Aging, Size, Log2(Size) and LRU*,
random and infinite. The details of implementing
these algorithms in the simulator are described
below. Each algorithm is based on sorting the
documents stored in the cache into an abstract
list of documents.

FIFO: The FIFO algorithm maintains a sorted
list of cached documents based on document
entry times. When there is insufficient space in
the cache, the document(s) located at the tail of
the sorted list is replaced. More than one
document will be removed if the new document
is larger than the document at the tail of the list.

LRU: The LRU algorithm sorts cached
documents by the latest access time. When a
cache hit occurs the access time of the requested
document is updated and it is moved to the head

50

of the list. The least recently used document
(located at the tail of the list) is the next to be
replaced.

LRU-MIN: The LRU-MIN algorithm is similar
to LRU. Like LRU, LRU-MIN maintains a
sorted list of cached documents based on the
time the document was last used. The difference
between LRU and LRUMIN is the method of
selecting the candidate for replacement. When
the cache needs to replace a document it searches
from the tail of the sorted list. The first document
whose size is larger than or equal to the size of
the new document is removed. If all cached
documents are smaller than the new document,
the search is repeated looking for the first two
documents greater than half the size of the new
document. This process (of halving the size and
doubling the number of documents to be
removed) is repeated if large enough documents
can still not be found for replacement.

LFU: This algorithm maintains a reference count
for each cached document. All cached
documents are sorted by reference count.
Documents with the same reference count are
sorted by recency. When a cache hit occurs, the
reference count of the hit document is
incremented by one and the documents are sorted
using theupdated reference count. When
document replacement is needed, the document
located at the tail of thesorted list (i.e. the
document that has the smallest reference count
and least recency) is removed.

LFU-Aging: The LFU-Aging algorithm sorts
cached documents in the same way as LFU. The
difference is that LFU-Aging additionally
monitors the average of the reference counts of
all cached documents. When the average is given
over a given maximum number, the cache starts
again. In our simulations, the maximum is set to
10 as suggested in [4].

Size: The SIZE algorithm sorts cached
documents by size. Documents with the same
size are sorted by recency. When there is
insufficient space for caching the most recently
requested document, the least recently used of
the document with the largest size is replaced.
More than one document will be replaced if
necessary.

LRU*: Our algorithm, LRU*, is a mixture of
LRU and LFU. In LRU*, cached documents are

maintained in a sorted list based on document
recency. When a cached document is hit, it is
moved to the start of the list and its hit count is
incremented by one.

When there is insufficient space for the most
recently requested document, the hit count of the
least recently used document is checked. If the
value of hit count is zero, the document is
discarded. Otherwise, the hit count is decreased
by one, and the checked document is moved to
the start of the sorted list. In other words, in
LRU*, the least recently used document is not
removed from the cache unless its hit count is
zero. The cache will keep checking the hit count
of the document(s) at the tail of the sorted list
and removing the one(s) with hit count equal to
zero until there is sufficient space for the most
recently requested document.
In order to prevent a document accumulating too
large a hit count, the maximum hit count of
cached documents is limited. In this simulation,
the maximum hit count is 5 because with a hit
count of 5, a cached document can be placed at
the start of the sorted list 5 times and this is
considered large enough for a cached document.
LRU* is intended to keep the hit document(s) in
the cache longer (like LFU) and also to age
cached documents more dynamically than LFU-
Aging.

Infinite: Typical WWW cache hit rates are quite
low, less than 50% in most cases, which is much
lower than hit rates for most other type of caches
found in computer systems. However even this
low hit rate results in significant savings because
there are large costs involved. We establish an
upper bound on the performance of a proxy
cache by simulating an infinite sized cache.

Random: Similarly, a working lower bound is
determined by simulating a cache with a random
document replacement algorithm. The
boundaries give performance envelope within
which the performance of a document
replacement algorithm can be judged.

5. PROXY TRACES ANALYSIS

We have thoroughly analysed traces and found
out a set of regularities. Most of the requested
objects are of a small size up to 5 kilobytes (see
Figure 1). This property of traces serves a basis
of most of the up-to-date re-placement policies
for the proxy server (GD-Size [3], GDSF [4],

51

LRV, SIZE and others). In these policies the
most significant parameter to calculate the rating
of objects is the document size that is the smaller
is the size of a document the longer it is stored in
the cache and vice versa, the bigger is its size,
the sooner it is removed. But such an approach
has its disadvantages. Firstly, the Figure 2 shows
that percentage of requests for the most popular
documents depending on their size practically
does not change in comparison with all the
documents. That is a conclusion can be drawn
that documents of different sizes can be popular
with the same probability. This conclusion
corresponds with research showing the lack of
correlation between the size of a document and
its popularity [2].

Secondly, another disadvantage is that traffic
generated by small-size documents (up to 5 Kb)
is small in comparison with one generated by
big-size documents (more than 5 Kb). Such a
correlation concerns both the whole trace and the
most popular objects. Thus, small-size objects
caching leads to high effectiveness in Hit Rate
metric and not high one in Byte Hit Rate. But as
it has been pointed out high indices in Byte Hit
Rate exactly imply policy effectiveness from the
point of view of decrease in network traffic
volume. Figure 2 represents Hit Ratio and cache
capacity required. From this figure 2 LRUMIN
algorithm performs better than LRU and Size
based policy removal algorithms6

6. CONCLUSIONS

This article has given an exhaustive survey of
cache replacement strategies proposed for Web
caches. We concentrated on proposals for proxy
caches that manage the cache replacement
process at one specific proxy. A simple
classification scheme for these replacement
strategies was given and used for the description
and general critique of the described replacement
strategies. Although cache replacement is
considered as a solved problem, we showed that
there are still numerous areas for interesting
research. In this paper we have researched into
effectiveness of LFU-K policy for the purposes
of caching on a proxy server. The analysis of the
traces demonstrates disadvantages of basic
replacement policies in real systems. In
comparison with popular replacement policies
LFU-1 algorithm shows higher efficiency. The
results of the experiments allow to make a
conclusion about expediency of LFU-K

algorithm on proxy servers in the Web.
Evaluation of LFU-2 algorithm effectiveness
represents a special interest in future. We plan to
try to raise effectiveness of caching mechanism
by means of combined replacement policies.

Figure 2

REFRENCES:

 [1] Abrams, M., Standridge, C. R., Abdulla, G.,

Williams, S., And Fox, E. 1995. Caching
proxies: Limitations and potentials. In
Proceedings of the 4th International World
Wide Web Conference.

[2] Arlitt M.,Cherkasova L., Dilley J., Friedrich

R., Jin T. Evaluating Content Management
Techniques for Web Proxy Caches //
SIGMETRICS '99, Inter-national
Conference on Measurement and Model-
ing of Computer Systems, May 1-4, 1999,
Atlanta, Georgia, USA, Proceedings.
Performance Evalua-tion Review 27(1),
June 1999. P. 3-11.

[3] A. Silberschatz and P. Galvin, Operating

System Concepts, Fifth Edition, Addison
Wesley Longman, 1997.

[4] A McGregor, The NLANR AMP active

measurement program,
http://amp.nlanr.net/active

[5] Balafoutis, E., Panagakis, A., Laoutaris, N.,

And Stavakakis, I. 2002. The impact of

52

replacement granularity on video caching.
In IFIP Networking 2002. Lecture Notes in
Computer Science, vol. 2345. Springer-
Verlag, Berlin, Germany, 214–225.

[6] Breslau L., Cao P., Fan L., Philips G.,

Shenker S.Web caching and Zipf-like
distribution: evidence and implications //
IEEE Infocom XX (V). 1999. P 1-9.

[7] Cao P., Irani S. Cost-aware www proxy

caching algorithms // In Proceeding of the
1997 USENIX Symposium of Internet
Technology and Systems. 1997. P 193-206.

[8]Cherkasova L. Improving WWW Proxies

Perform-ance with Greedy-Dual-Size-
Frequency

Caching Policy // Technical Report HPL-98-
69R1, Hewlett-Packard Laboratories, Nov.
1998.

[9] Chris R (1998) Designing for delay in

interactive information retrieval.
Interacting with Computers, 10:87-104.

[10] C.R. Cunba, A. Bestavros, M.E. Crovella,

“Characteristics of WWW Client-based
Traces”, BU-CS-96-010, Boston
University.

[11] C. Aggarwal, J. Wolf, P. Yu, “Caching on

the World Wide Web”, IEEE Transactions
on Knowledge and Data Engineering,
11(1), 1999, pp. 94-107.

[12] Davison, B. D. 2001. A Web caching

primer. IEEE Internet Comput. 5, 4 (July),
38–45.

[13] Fonseca, R., Almeida, V., Crovella, M.,

And Abrahao, B. 2003. On the intrinsic
locality properties of Web reference
streams. In Proceedings of the IEEE
INFOCOM. IEEE Computer Society,
Piscataway, NJ.

[14] James TB (1986) A theory of productivity in

the creative process. IEEE Computer
Graphics and Applications, 6(5):25-34,
May 1986.

[15] M. Abrams, C.R. Standbridge, G. Abdulla,
S. Williams and E.A. Fox, “Caching
Proxies: Limitations and Potentials”,
WWW-4, Boston, December, 1995.

[16] M. Busari, C. Williamson, “ProWGen: A

Synthetic Workload Generation Tool for
the Simulation Evaluation of Web Proxy
Caches”, Computer Networks, 38(6), Jun.
2002, pp. 779-794.

[17] P. Cao and S. Irani, “Cost-Aware WWW

Proxy Caching Algorithms”, Proceedings
of the 1st USENIX Symposium on Internet
Technologies and Systems, Monterey,
California, USA, Dec. 1997, pp. 193–206.

[18] R. Durrett, Probability: Theory and

Examples, Duxbury Press, 2nd edition,
1996.

[19] S. Jin and A. Bestavros, “GreedyDual* Web

Caching Algorithm: Exploiting the Two
Sources of Temporal Locality in Web
Request Streams”, In Proceedings of the
5th International Web Caching and Content
Delivery Workshop, Lisbon, Portugal, May
2000.

[20] Walter JD, Ahrvind JT (1982) The

economic value of rapid response
time.Technical Report GE20-0752-0, IBM,
White Plains, NY, November 1982.

