

16

SEIFEDINE KADRY
American university of the Middle East, Kuwait

ABSTRACT

Web applications built using .NET technologies usually access relational databases via ODBC API. This
requires a database system specific ODBC driver to be installed on the application side. On the other hand,
a paradigm shift is taking place in web application architectures. Future web applications will be built
around Service-Oriented Architectures (SOA) where applications will be assembled using remote “web
services” components. These newly assembled applications will provide functionalities using remote web
services components over Internet via XML messages. Same paradigm shift will eventually apply to the
data communication between applications and databases. Future applications will utilize standard “database
web services” for data storage and querying requirements. Here we propose a new architectural model and
present a prototype “database web service” for relational database systems. In our model, web applications
do not need to deal with database drivers but leave the driver-oriented communication to a database web
service. Our database web service eliminates the need for installation, maintenance, and other issues
involved in maintaining ODBC drivers in distributed web application development.

Index Terms—Web Services, SOAP, ODBC, Distributed Databases.

I. INTRODUCTION

Extensible Markup Language (XML) is emerging
as the new standard for data and message exchange
over Internet [4]. New distributed application
integration frameworks such as “Web Services” are
based on XML standards [5]. Web Services
framework allows applications to exchange data
and provide remote services using XML formatted
data and messages.
Web services framework consists of the following
standards: (1) Extensible Markup Language (XML)
for formatting data and messages, (2) Simple
Object Access Protocol (SOAP) for exchanging
messages, (3) Web Services Description Language
(WDSL) for describing services, and (4) Universal
Description, Discovery, Integration (UDDI) for
providing service directories. All of these standards
are based on XML [5].

Current web services framework only provides an
infrastructure for building distributed applications
utilizing web services infrastructure. Many real-
world business requirements such as
integrity, automation, transactional support, and
security issues are not completely dealt with yet in
the current framework. Ongoing work is trying to
address these issues [6].

Most of data in the web is currently held in
relational database systems today. Web applications
simply provide an interface to query and present
that data in HTML format to the end user; web
browsers interpret and display the HTML tagged
data in an intended format. Therefore, the data
presented in HTML format is not usable by other
applications; it is more intended for directing the
browser to present data for human reading. On the
other hand, providing direct access to databases is
not feasible due to security, performance,
scalability, and reliability issues. There is a

AN IMPLEMENTATION OF ODBC WEB SERVICE

17

need for a standard mechanism to allow
applications to access databases just like users
access data on databases via web browsers.
Earlier, ODBC provided a standard application
programming interface (API) for applications to
access relational database systems in a uniform way
[1]. An application can access a remote or local
relational database using these APIs as long as
there is a vendor-specific driver provided for the
intended database system. Currently, almost all
database systems have ODBC compliant drivers
developed. Problem with this approach is that a
client application that wants to access a ODBC-
accessible database needs to get a hold of the
relevant driver for the database system and install
on the client side. It is clear that this is not feasible
for large-scale distribution of applications. If
drivers get updated, this even complicates the issue
with many problems: driver updates, maintenance
of multiple versions, backward compatibility to
name a few. Problem is exactly the same as in the
case of early client-server based applications. Web
provided a solution to this by a multi-tier
application architecture where client is scaled down
to a thin-client model with only presentation layer
of the application on the client side, and the
database access is only done in an application
server on the server side.
Today’s computing devices are getting smaller
continuously. Wireless-connected personal digital
assistants (PDAs) and cell phones are ubiquitous.
These devices with their limited resources are not
capable of handling complex database drivers.
Applications developed for small devices like these
need other mechanisms to access data seamlessly.
Database web service provides an option; an
application developed for these devices can access
remote databases via web services, and this
approach requires only a small XML messaging
client.
In this paper we address the need for universal
access to data resources without complicated
installation and maintenance issues. Specifically,
we utilize the newly arrived Web Services
approach for application integration and
interoperability for data access. To this end, we
developed a standard database web service. This
web service is deployed on a server where the
database is installed. And, querying and updates on
the database are enabled via the database web
service. Client on the other hand only needs a web
services client application that will only send and
receive messages in XML format (SOAP
messages).

Section 2 discusses the architecture of this new
model where access to relational database is
provided via database (ODBC) web service.
Section 3 presents the current implementation, an
ODBC Web Service, and its advantages are
discussed. We discuss implementation and
evaluation of ODBC-WS in section 4. Section 5
presents the related work and we conclude in
section 5.

II. ACCESSING RELATIONAL DATABASE VIA
WEB SERVICES

Relational databases can be accessed by general-
purpose using standard ODBC API [1]. This
requires applications to use a ODBC driver
specifically developed for ODBC access to the
database system that needs to be accessed.
Therefore, wide-distribution of such an application
requires the driver to be also shipped to the client.
Future changes to the driver require driver updates
for every client.
Problem is even more complicated if the
application needs to access many different
relational database systems. Basically, this requires
distribution and maintenance of many drivers in
client-side. Here we propose a new approach for
applications to access database systems. It is based
on Web Services framework. In this approach,
client is reduced to a thin client, just like web
applications took the client-side computations to
server side. In this case, database drivers are the
problem, so they are placed on a server and moved
away from the client. And, applications are
provided a new interface to access database
systems in a uniform way, similar to ODBC API
provided a uniform access mechanism
for all relational database systems. Figure 1 depicts
the proposed architecture. In this architecture,
client accesses a “database web
service” using the standard web services access
mechanism, which is sending and receiving XML
SOAP messages over standard Internet protocols to
request database (web) services.

Fig. 1: web service-based access relational database

18

III. ODBC WEB SERVICE
We implemented a database web service called
ODBC Web Service (ODBC-WS). ODBC-WS will
provide a standard ODBC-like interface that can be
used by any Web Services client. ODBC-WS is
accessed via a URL that is the connection string
needed in ODBC. ODBC-WS clients do not need a
database driver unlike usual ODBC clients. In the
case of ODBC-WS, specific database and driver are
completely transparent to the client. As long as the
same web service interface (methods, parameters)
are provided, database system and driver can be
changed completely.
In the standard ODBC-based clients, a username
and password needs to be provided for the database
connection. Here, ODBC-WS can either
authenticate the user once (or keep a session for
consecutive operations) or every operation can be
authorized via username/password passed along
SOAP messages. ODBC-WS accepts standard SQL
queries embedded within SOAP messages.
Following are some examples:
Scenario 1: To query the names of authors from the
author table in a database, XML message to be sent
to ODBC-WS is:
<query>
SELECT name FROM author
</query>

And, response expected will be:

<result>
<row>
<name>J. Gosling</name>
</row>
<row>
<name>J. Ullman</name>
</row>
<row>
<name>D. Knuth</name>
</row>
…
<reccount>…</reccount>
</result>

Scenario 2: To insert a new author name to the
author table in a database, XML message is:

<query>
INSERT INTO author (name)
VALUES (“J. Gray”)
</query>

And, if the record is inserted to the table
successfully, the response expected will be:

<result>true</result>

Using a standard XML-interface to access
relational and tabular databases, client applications
access a number of different database systems
using similar ODBC-WS interfaces and do not
assume anything about specifics of the data source.
Data sources are interchangeable and replaceable as
long as the same interface is provided. This
approach provides a complete distributed database
framework for the client applications. Figure 2
provides a general overview of the distributed
databases framework ODBC-WS provides over
multiple kinds of data sources. ODBC-WS provides
a number of advantages over standard ODBC
access solutions:

1. Multiple client programs can use a single

instance of the web service to access data.
There is no need to write database related code
in each individual application.

2. No driver installation or distribution in client-
side.

3. Users need to install ODBC drivers and
configure ODBC data sources only on the
server machine that hosts the web service.
Client programs can be running on other
machines over the network.

4. Client programs are not limited to .NET or
Windows platform. All they have to do to
access database is call a web service.

5. Client is resilient to driver changes, updates.
6. Database connections can be shared among

different client programs.
7. Client is resilient to database system changes.

ODBC-WS hides all database system and
corresponding driver installations from client.

8. Access to databases can be controlled and
monitored from a central location (the web
service).

9. If an “ODBC connection pooling” solution is
provided in the server side, this is again
completely hidden from client side and server
side changes can be done anytime to increase
the system performance as needed.

This web services approach can in effect be made
transparent to the end user who can develop their
applications using ODBC. They only need to make
a few minor changes like the packages they include
and the connection string. This can be achieved by

19

providing client classes that override the existing
ODBC classes. For example executing a query in
the ODBC application would actually create an
XML SOAP request message with the SQL query
embedded in the message and that would be sent
via HTTP to the remote server where it will be
executed. The main advantage of this is that
application programmers can use legacy ODBC-
based applications with the new ODBC-WS
implementation without making many changes.
The disadvantage of this approach could be that
client and server side needs to process XML
messages via standard XML parsing techniques. On
the other hand, client side driver initiation,
connection establishment is eliminated altogether.
Therefore, performance evaluation of this approach
needs to done against standard ODBC-based
access.

Fig. 2: distributed databases via ODBC-WS

IV. IMPLEMENTATION

The web service keeps a pool of database
connections in its memory. When the client
program calls GetXMLStringEx, ExecuteEx, and
CreateObject, the server will use an existing
connection (with the same connection string) if it is
available and lock it for the client, otherwise it will
create a new one.
At the end of the GetXMLStringEx and ExecuteEx
methods or when ReleaseObject is called, the
locked database connection will be returned to the
connection pool for future use.
Whenever a database failure occurs, the connection
will be closed by the server automatically, the
server will also try to reconnect to the database
whenever needed. It is not necessary to close a
database connection explicitly. The web service
will write errors and diagnostic information to log

files in a system Log folder. A log file will be
generated each day. By modifying the web.config
file, you can control how logging
is done. The following is part of the web.config file.
TraceLevel determines how much information will
be logged, the possible values are 0, 10, 20, 30, and
40, where 0 means no
logging and 40 means the most detailed logging.
TraceCleanup is the number of days to keep the log
files, old files will be deleted automatically.

<appSettings>
<add key="TraceLevel" value="40" />
<add key="TraceCleanup" value="7" />
</appSettings>

A prototype ODBC-WS package has been
developed [9] using Java and Java Web Services
Developer Pack from Sun Microsystems [3].
Package utilizes the external configuration files to
set up the system for any data resource such as
relational databases, spreadsheets, or flat files,
without recompilation. In the configuration file,
system admin specifies the data source driver, its
location, connection parameters, connection
pooling configuration, and other ODBC-WS setup
parameters. Current implementation’s architecture
is depicted in Figure 3. Current implementation
follows the ODBC API specification [1]. It
implements the DriverManager, Connection,
ResultSet, and Statement interfaces. These
interfaces basically provide a gateway for accessing
Current implementation is using Oracle 10g
database as the data source and the Oracle provided
ODBC drivers are used in the testbed. ODBC-WS
API we developed is used by the testbed to access
the ODBC data sources to query the database.

Fig. 3: SOAP-ODBC design

20

System is currently being tested and evaluated
against a standard ODBC implementation. A wide-
variety of scenarios are going to be evaluated for
both cases, such as queries with short results vs.
long results, select queries vs. update queries,
standalone vs. concurrent access, etc. System will
be also be evaluated to report performance over
different data resources.

V. CONCLUSION

Web services framework has a promising future in
distributed computing area due to the ubiquity of
Internet and overwhelming industry support for
web services. Web services will bring the true
interoperability and application integration in a
language and platform agnostic manner. Databases
have provided excellent data storage and querying
mechanisms. A natural approach is to provide
database access over web services.
We have developed a new database access
framework in that database servers are hidden
behind a new database web service. Database web
service provides a uniform SQL based querying
interface and query results are returned to the client
in XML format. We have developed a prototype
version of database web service called ODBC-WC.
ODBCWC, when installed for a database server,
provides a database and driver transparent interface
to the database for any client application that can
implement SOAP messaging.
Currently, the system is being evaluated and tested.
The work presented in this paper is part of a larger
framework we are working on, where ODBC-WC
will be used as a standard interface for any data
source with SQL querying capabilities. In the
extended framework we will address the following
issues among others: transaction processing (web
services composition), concurrency control,
distributed query evaluation and optimization,
database replication, distributed integrity constraint
and constraint enforcement.

APPENDIX
Appendixes, if needed, appear before the

acknowledgment.

REFERENCES

[1] G. O. Young, “Synthetic structure of industrial

plastics (Book style with paper title and

editor),” in Plastics, 2nd ed. vol. 3, J. Peters,
Ed. New York: McGraw-Hill, 1964, pp. 15–
64.

[2] W.-K. Chen, Linear Networks and Systems
(Book style). Belmont, CA: Wadsworth, 1993,
pp. 123–135.

[3] H. Poor, An Introduction to Signal Detection
and Estimation. New York: Springer-Verlag,
1985, ch. 4.

[4] B. Smith, “An approach to graphs of linear
forms (Unpublished work style),” unpublished.

[5] E. H. Miller, “A note on reflector arrays
(Periodical style—Accepted for publication),”
IEEE Trans. Antennas Propagat., to be
published.

[6] J. Wang, “Fundamentals of erbium-doped fiber
amplifiers arrays (Periodical style—Submitted
for publication),” IEEE J. Quantum Electron.,
submitted for publication.

[7] C. J. Kaufman, Rocky Mountain Research
Lab., Boulder, CO, private communication,
May 1995.

[8] Y. Yorozu, M. Hirano, K. Oka, and Y.
Tagawa, “Electron spectroscopy studies on
magneto-optical media and plastic substrate
interfaces(Translation Journals style),” IEEE
Transl. J. Magn.Jpn., vol. 2, Aug. 1987, pp.
740–741 [Dig. 9th Annu. Conf. Magnetics
Japan, 1982, p. 301].

[9] M. Young, The Techincal Writers Handbook.
Mill Valley, CA: University Science, 1989.

[10] J. U. Duncombe, “Infrared navigation—Part I:
An assessment of feasibility (Periodical style),”
IEEE Trans. Electron Devices, vol. ED-11, pp.
34–39, Jan. 1959.

[11] S. Chen, B. Mulgrew, and P. M. Grant, “A
clustering technique for digital
communications channel equalization using
radial basis function networks,” IEEE Trans.
Neural Networks, vol. 4, pp. 570–578, July
1993.

[12] R. W. Lucky, “Automatic equalization for
digital communication,” Bell Syst. Tech. J.,
vol. 44, no. 4, pp. 547–588, Apr. 1965.

[13] S. P. Bingulac, “On the compatibility of
adaptive controllers (Published Conference
Proceedings style),” in Proc. 4th Annu.
Allerton Conf. Circuits and Systems Theory,
New York, 1994, pp. 8–16.

[14] G. R. Faulhaber, “Design of service systems
with priority reservation,” in Conf. Rec. 1995
IEEE Int. Conf. Communications, pp. 3–8.

21

[15] W. D. Doyle, “Magnetization reversal in films
with biaxial anisotropy,” in 1987 Proc.
INTERMAG Conf., pp. 2.2-1–2.2-6.

[16] G. W. Juette and L. E. Zeffanella, “Radio noise
currents n short sections on bundle conductors
(Presented Conference Paper style),” presented
at the IEEE Summer power Meeting, Dallas,
TX, June 22–27, 1990, Paper 90 SM 690-0
PWRS.

[17] J. G. Kreifeldt, “An analysis of surface-
detected EMG as an amplitude-modulated
noise,” presented at the 1989 Int. Conf.
Medicine and Biological Engineering,
Chicago, IL.

[18] J. Williams, “Narrow-band analyzer (Thesis or
Dissertation style),” Ph.D. dissertation, Dept.
Elect. Eng., Harvard Univ., Cambridge, MA,
1993.

[19] N. Kawasaki, “Parametric study of thermal and
chemical nonequilibrium nozzle flow,” M.S.
thesis, Dept. Electron. Eng., Osaka Univ.,
Osaka, Japan, 1993.

[20] J. P. Wilkinson, “Nonlinear resonant circuit
devices (Patent style),” U.S. Patent 3 624 12,
July 16, 1990.

[21] IEEE Criteria for Class IE Electric Systems
(Standards style), IEEE Standard 308, 1969.

[22] Letter Symbols for Quantities, ANSI Standard
Y10.5-1968.

[23] R. E. Haskell and C. T. Case, “Transient signal
propagation in lossless isotropic plasmas
(Report style),” USAF Cambridge Res. Lab.,
Cambridge, MA Rep. ARCRL-66-234 (II),
1994, vol. 2.

[24] E. E. Reber, R. L. Michell, and C. J. Carter,
“Oxygen absorption in the Earth’s
atmosphere,” Aerospace Corp., Los Angeles,
CA, Tech. Rep. TR-0200 (420-46)-3, Nov.
1988.

[25] (Handbook style) Transmission Systems for
Communications, 3rd ed., Western Electric
Co., Winston-Salem, NC, 1985, pp. 44–60.

[26] Motorola Semiconductor Data Manual,
Motorola Semiconductor Products Inc.,
Phoenix, AZ, 1989.

[27] (Basic Book/Monograph Online Sources) J. K.
Author. (year, month, day). Title (edition)
[Type of medium]. Volume(issue). Available:
http://www.(URL)

[28] J. Jones. (1991, May 10). Networks (2nd ed.)
[Online]. Available: http://www.atm.com

[29] (Journal Online Sources style) K. Author.
(year, month). Title. Journal [Type of

medium]. Volume(issue), paging if given.
Available: http://www.(URL)

[30] R. J. Vidmar. (1992, August). On the use of
atmospheric plasmas as electromagnetic
reflectors. IEEE Trans. Plasma Sci. [Online].
21(3). pp. 876—880. Available:
http://www.halcyon.com/pub/journals/21ps03-
vidmar

