AREA-TIME OPTIMAL VLSI INTEGER MULTIPLIER WITH MINIMUM COMPUTATIONAL TIME AND WEBER PROBLEM

PROF. M.THIYAGARAJAN ${ }^{1}$, R.MANIKANDAN ${ }^{\mathbf{2}}$
${ }^{1}$ Professor School of Computing, SASTRA University, Thanjavur-613401, INDIA.
${ }^{2}$ Assistant Professor, School of Computing, SASTRA University, Thanjavur-613401, INDIA.
E-mail: ${ }^{1}$ srmanimt75@yahoo.com, ${ }^{2}$ manikandan75@core.sastra.edu

Abstract

The Ill-post problem on a VLSI Design namely area-time optimal VLSI Integer multiplier with minimum computation time can be regarded as a weber problem. The elementary results with extension leading to the classical problem on VLSI integer multiplier can be posed and settled in affirmative.

Keywords: VLSI, Multiplier, Extension, Computation Time

1. INTRODUCTION

The random locational equilibrium problem also known as Weber problem can be stated as follows. There are n locations (destination or sinks) in the two dimensional Euclidean space. It is required to find the location of a facility so that the sum of the weighted distance from the location of the facility to the destination is minimized.

The problem has been considered by Cooper [1963] when the location of the destinations is deterministic. Katz and Cooper [1974] have presented a scheme numerical solution. Cooper [1974] has considered the problem when the location of the destination is stochastic in nature and the pair of coordinators follows a bivariate distribution. In this case it is recommended to minimise the sum of weighted average of linear distances of the destinations from the location facility. Although Cooper [1974] has presented the general algebraic expression of the equations which would lead to the optimum solution of the problem the numerical solution could be very involved. Wesolowsky[1970] has recommended the use of rectangular distance instead of linear distance and derived the optimum solution when the coordinates of the destination follow certain
known forms of bivariate probability distribution.

Mustafi (1982) has given a simple solution of the problem when the coordinates of the destination follow a bivariate uniform distribution. We present our extension to bivariate normal distribution.

In VLSI theory we have AT^{2} optimal problem which aims at minimizing computation time in the integer multiplication. This problem can be considered as a location optimization distance problem. This is studied by Mehlhorn.K and Preparata.F.P in early 1985 as a computational complexity problem.

2. A BIVARIATE DISTRIBUTION AND OPTIMISING EQUATION

Suppose q with coordinates $\left(x_{0}, y_{0}\right)$ is the location of the new facility. Let P_{j} with coordinates $\left(x_{j}, y_{j}\right)$ have a bivariate uniform distribution given by

$$
f\left(x_{j}, y_{j}\right)=1 / a b+4 \alpha_{j} / a b\left(x_{j}-b / 2\right)
$$

... (1)
ISSN: 1992-8645
with $0<x_{j}<a, 0<y_{j}<b,-1<\alpha_{j} \leq 1$,
$\mathrm{j}=1,2, \ldots$ n. $j=1,2, \ldots n$.

The $j^{\text {th }}$ destination is randomly distributed in the rectangle bounded by two axes and the lines $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$. The quantity α_{j} is a parameter indicating the degree of dependence. If $\alpha_{j}=0$, x_{j} and y_{j} are independent.

The linear distance between p_{j} and q is given by
$d_{j}=\left[\left(x_{j}-x_{0}\right)^{2}+\left(y_{j}-y_{0}\right)^{2}\right]^{1 / 2}$
suppose $\mathrm{w}_{\mathrm{j}}>0 \quad(\mathrm{i}=1,2, \ldots \mathrm{n})$ is the weight assigned to the $\mathrm{j}^{\text {th }}$
destination. Then the coordinates ($\mathrm{x}_{0}, \mathrm{y}_{0}$) of the new facility should be chosen in such a manner that

$$
z=\sum_{j=1}^{n} w_{j} E\left(d_{j}\right) \text { is minimised. }
$$

The optimum values of x_{0} and y_{0} are solutions of the equations.
$\frac{\partial z}{\partial x_{0}}=\sum_{j=1}^{n} w_{j} \int_{0}^{a} \int_{0}^{b} \frac{\left(x_{0}-x_{j}\right)}{d_{j}} f_{j}\left(x_{j,} y_{j}\right) d x_{j} d y j=0$
$\frac{\partial \mathrm{z}}{\partial y_{0}}=\sum_{j=1}^{n} w_{j} \int_{0}^{a} \int_{0}^{b} \frac{\left(y_{0}-y_{j}\right)}{d_{j}} f_{j}\left(x_{j}, y_{j}\right) d x_{j} d y j=0$

It can be shown that for any bivariate density
$\frac{\partial^{2} z}{\partial x_{0}^{2}}>0 ; \frac{\partial^{2} z}{\partial y_{0}^{2}}>0$
$\frac{\partial^{2} z}{\partial x_{0}^{2}} \cdot \frac{\partial^{2} z}{\partial y_{0}^{2}}-\left(\frac{\partial^{2} z}{\partial x_{0} d y_{0}}\right)^{2}>0$
The condition given in (5) ensure that z is minimised if x_{0} and y_{0} are chosen as a solution of the equation given in (4)

3. THE OPTIMUM LOCATION OF FACILITY

Theorem. 1 (Mustafi 1982), If the probability density function of the destination $(j=1,2, \ldots . n)$ is a bivariate uniform distribution as given by (1) the optimum location of the new facility should be at $x_{0}=\frac{a}{2}, y_{0}=\frac{b}{2}$.
Proof:
Using the form of $f_{j}\left(x_{j}, y_{j}\right)$ as given in (1)
we obtain from

$$
\frac{\partial z}{\partial x_{0}}=\sum_{j=1}^{n} \int_{0}^{a} W_{j}^{b} \int_{0}^{b} \frac{\left(x_{0}-x_{j}\right)}{\left\{\left(x_{j}-x_{0}\right)^{2}+\left(y_{j}-y_{0}\right)^{2}\right\}} \frac{1}{2}\left[\frac{1}{a b}+\frac{4 \alpha_{j}}{a b}\left(x_{j}-\frac{a}{2}\right)\left(y_{j} \frac{b}{2}\right)\right] d x_{j} d y_{j}=T_{1}+T_{2} \ldots \ldots \ldots . . \text { (7) }
$$

$$
T_{1}=\frac{1}{a b} \int_{0}^{a} \int_{0}^{b} \frac{\left(x_{0}-x_{j}\right)}{\left[\left(x_{j}-x_{0}\right)^{2}+\left(y_{j}-y_{0}\right)^{2}\right]^{\frac{1}{2}}} d x_{j} d y_{j}
$$

$$
=\frac{1}{a b} \int_{0}^{b}\left(\int_{-x}^{a-x_{0}} \frac{u_{j}}{\left(u_{j}^{2}+\left(y_{j}-y_{0}\right)^{2}\right)^{\frac{1}{2}}} d u_{j}\right) d y_{j}
$$

$$
\text { At } x_{0}=\frac{a}{2}, y_{0}=\frac{b}{2}
$$

$$
\begin{equation*}
T_{1}=-\frac{1}{a b} \int_{0}^{b}\left\{\left[\frac{a^{2}}{4}+\left(y_{j}-\frac{b}{2}\right)^{2}\right]^{\frac{1}{2}}-\left[\frac{a^{2}}{4}+\left(y_{j}-\frac{b}{2}\right)^{2}\right]^{\frac{1}{2}}\right\} d y_{j}=0 \tag{8}
\end{equation*}
$$

$$
T_{2}=\frac{4 \alpha_{j}}{a b} \int_{0}^{a} \int_{0}^{b} \frac{\left(x_{j}-\frac{a}{2}\right)\left(y_{j}-\frac{b}{2}\right)\left(x_{0}-x_{j}\right) d x_{j} d y_{j}}{\left[\left(x_{j}-x_{0}\right)^{2}+\left(y_{j}-y_{0}\right)^{2}\right]^{\frac{1}{2}}}
$$

$$
\text { At } x_{0}=\frac{a}{2}, y_{0}=\frac{b}{2}
$$

$$
T_{2}=-\frac{4 \alpha_{j}}{a b} \int_{0}^{a} \int_{0}^{b} \frac{\left(x_{j}-\frac{a}{2}\right)\left(y_{j}-\frac{b}{2}\right)}{\left[\left(x_{j}-\frac{a}{2}\right)^{2}+\left(y_{j}-\frac{b}{2}\right)^{2}\right]^{\frac{1}{2}}} d x_{j} d y_{j}
$$

$=-\frac{4 \alpha_{j}}{a b} \int_{\frac{-b}{2}}^{\frac{b}{2}}\left\{\int_{\frac{-a}{2}}^{\frac{a}{2}} \frac{u_{j}^{2}}{\left(u_{j}^{2}+v_{j}^{2}\right)^{\frac{1}{2}}} d u_{j}\right\} v_{j} d v_{j}$
$=-\frac{8 \alpha_{j}}{a b} \int_{\frac{-b}{2}}^{\frac{b}{2}}\left\{\frac{a}{4} \sqrt{\frac{a^{2}}{4}+v_{j}^{2}}-\frac{v_{j}^{2}}{2} \log \left(\frac{a}{2}+\sqrt{\frac{a^{2}}{4}+v_{j}^{2}}\right)+\frac{v_{j}^{2}}{2} \log \sqrt{v_{j}^{2}}\right\} v_{j} d x$

4. AN EXTENSION OF THE PROBLEM

Mustafi (1982) has considered the solution of the problem when the coordinates of the destination follow a bivariate uniform distribution. Here we consider the solution of the problem when coordinates of the destination ${ }_{j} d x$ follow a bivariate normal distribution.

5. DISTRIBUTION AND
 THE OPTIMISING EQUATIONS

Since the integrand is an odd functioning, it vanishes. Hence
$T_{2}=0$. \qquad Suppose Q with coordinates $\left(x_{0}, y_{0}\right)$ is the location of the new facility. Let p_{j} with
In a similar way we can show $\frac{\partial_{z}}{d y_{0}}=0$. This completes the proof of the theorem. With the same notation of theorem 1, we states \& prove the following result. coordinates $\left(x_{j} y_{j}\right)$ be the location of the $j^{t h}$ destination $(j=1,2, \ldots . . n)$. It is assumed $\left(x_{j} y_{j}\right)$ has a bivariate normal distribution given
by

$$
f\left(x_{j} y_{j}\right)=\frac{1}{2 \Pi \sqrt{1-p^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left(x_{j}^{2}-2 \rho x_{j} y_{j}+y_{j}^{2}\right)\right)
$$

Theorem 2. The minimum value of z is given by
$-\infty<x_{j}<\infty$

given
by
Where
$W=\sum_{j=1}^{n} w_{j}$.
$d_{j}=\left[\left(x_{j}-x_{0}\right)^{2}+\left(y_{j}-y_{0}\right)^{2}\right]^{\frac{1}{2}}$
Suppose $w_{j}>0(j=1,2, \ldots . n)$ is the weight assigned to the $j^{\text {th }}$ destination. Then the coordinates $\left(x_{0}, y_{0}\right)$ of the new facility should be chosen in such a way that $z=\sum_{j=1}^{n} W_{j} E\left(d_{j}\right) \ldots \ldots .(13)$ is minimized. The linear distance is given by ${ }_{-102}$ optimum values of x_{0} and y_{0} are the solutions $=\left[\left[\frac{1}{6} \sqrt{a^{2}+b^{2}}+\frac{a^{2}}{12 a} \log \left(\frac{a}{2}+\frac{1}{2} \sqrt{a^{2}+b^{2}}\right)+\frac{a^{2}}{12 a} \log \left(\frac{a}{2}+\frac{1}{2} \sqrt{2 a^{2}}\right)-\frac{a^{2}}{12 a} \log \frac{a}{2}-\frac{a^{2}}{12 a} \log \frac{-}{2}{ }^{2}\right.\right.$ of the
of the equations $\frac{d y}{d x_{0}}=0=\frac{d z}{d y_{0}}$.
$=\frac{a}{6}(\sqrt{2}+\log (\sqrt{2}+1))$
$=.383 \mathrm{a}$
For any bivariate density function
$\frac{\partial^{2} z}{\partial x_{0}^{2}}>0, \frac{\partial^{2} z}{\partial y_{0}^{2}}>0$,
$\frac{\partial^{2} z}{\partial x_{0}^{2}} \frac{\partial^{2} z}{\partial y_{0}^{2}}-\left(\frac{\partial^{2} z}{\partial x_{0} \partial y_{0}}\right)^{2}>0$.
The condition given in (15) ensures Z is minimized if x_{0} and y_{0} are chosen as solution of the equation given in (14).

6. THE OPTIMUM LOCATION OF THE FACILITY

We state and prove our result for the bivariate normal case theorem 3. If the probabilities density function of the destination ($\mathrm{j}=1,2, . . \mathrm{n}$) is bivariate normal distribution given by (11) the optimum location of the new facility should be at $x_{0}=0, y_{0}=0$

Proof: using the form of $f\left(x_{j}, y_{j}\right)$ as given in (11)
We obtain from (14)

$$
\begin{align*}
& \frac{\partial \mathbf{Z}}{\partial x_{0}}=\sum_{j=1}^{n} \int_{-\infty}^{\infty} w_{j} \int_{-\infty}^{\infty} \frac{x_{0}-x_{j}}{\left[\left(x_{j}-x_{0}\right)^{2}+\left(y_{j}-y_{0}\right)^{1 / 2}\right.} \times \\
& \frac{1}{2 \pi \sqrt{1-p^{2}}} \exp \left\{-\frac{1}{2\left(1-p^{2}\right.}\left(x_{j}^{2}-2 p x_{j} y_{j}+y_{j}^{2}\right)\right\} d x_{j} \cdot d y_{j} \tag{16}
\end{align*}
$$

To evaluate the integral in (16), let us note $u_{1}^{2}-2 \rho u_{1} u_{2}+u_{2}^{2}=\left(1-\rho^{2}\right) u_{1}^{2}+\left(u_{2}-\rho u_{1}\right)^{2}$ we may write $f\left(x_{j}, y_{j}\right)=\phi\left(x_{j}\right) \frac{1}{\sqrt{1-\rho^{2}}} \phi\left(\frac{x_{j}-\rho y_{j}}{\sqrt{1-\rho^{2}}}\right)$ in which $\quad \phi(u)=\frac{1}{1-\rho^{2}} \exp \left(\frac{-u^{2}}{2}\right)$ we thus determine

$$
\begin{equation*}
\frac{d z}{d x_{0}}=-\sum w_{j} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{x_{j}}{\left(x_{j}^{2}+y_{j}^{2}\right)^{\frac{1}{2}}} \phi\left(x_{j}\right) \frac{1}{\sqrt{1-\rho^{2}}} \phi\left(\frac{x_{j}-\rho y_{j}}{\sqrt{1-\rho^{2}}}\right) d x_{j} d y_{j}=0 \tag{15}
\end{equation*}
$$

In a similar way

$$
\frac{\partial z}{\partial y_{0}}=0
$$

This complete the proof of the theorem.

With same notation of theorem 3, we state and prove the following result

Theorem 4. Minimum value of the expression for z is less than

$$
w\left(1-p^{2}\right)^{1 / 2} / \sqrt{\pi} \quad \text { where } w=\sum_{j=1}^{n} w_{j}
$$

Proof: The minimum value of z is

$$
\begin{aligned}
& \sum_{j=1}^{n} w_{j} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x_{j}^{2}+y_{j}^{2}\right)^{1 / 2} f\left(x_{j}, y_{j}\right) d x_{j} d y_{j} \\
& \leq w \times \mathrm{E}\left(\operatorname{Max}\left(x_{j}, y_{j}\right)\right) \\
& =w\left(1-p^{2)^{1 / 2}} / \sqrt{\pi}\right.
\end{aligned}
$$

from the known result of bivariate normal distribution [3]

7. ILLUSTRATION

The above random equilibrium problem can be utilised to find Area-Time optimal VLSI Integer multiplier with minimum computational time. According to VLSI theory, $[\log n, \sqrt{n}]$ is the range of computational time for which they may exist an AT^{2} optimal multiplier of n bits integer. We can settle this theoretical question by establishing a class of AT^{2} optimal
 At $x_{0}=0, y_{0}=0$

ISSN: 1992-8645

REFERENCES

[1]. Katz and Cooper.L, " An always convergent numerical scheme for a random locational equilibrium problem" SIAM Journal of numerical Analysis Page 683692
[2]. Wesolowsky, " The weber problem with rectangle distances and normally distributed distances " Journal of regional science, volume 17, Page 1853-60
[3]. Parzen.E [1972] "Modern probability theory and its applications" Wiley Eastern , New York
[4]. Thiyagarajan.M [1984],"Stochastic analysis of some problems in social and biological sciences. Ph.D Thesis University of Madras.India
[5]. Cooper.L [1963] "Location-allocation Problems operation and research " SIAM Journal of numerical Analysis Page 331343.

