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ABSTRACT

Linear error-block codes (LEBC) were introduced in [1]. They are a natural generalization of linear error
correcting codes. In this paper, we introduce a notion of cyclic LEBC. In order to allow application in
cryptography, especially in a McEliece-like cryptosystem [3], a method of decoding this kind of codes is
presented. There exist linear error-block codes with fast decoding algorithms.
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1. INTRODUCTION

A composition 7z of a positive integer » is given
byl’l =Im; + Lm, + ... + Lm,, where r, I b .., 1,
my, my, ..., m, are integers >/, and is denoted

1] 1% Iy
w=[m] [m)] .. [m,}]

If moreover m; > m, > ... > m, > I then « is

called a partition.

Let ¢ be a prime power and F, be the finite field
with ¢ elements. Let s, n;, n, ..., n, be the non
negative integers given by a partition x as

S:l]+ +l,-,

nyp=n;=..=n,;=m
Nppv1 = Nppi2 = oo = Nppipy = N
0
i+ Al—g+1 = Mgt 4 gt2 = oo = By = M,

LetV,=F, (I1<i<s)and V=V, @V, @.. @
v, = Fq" . Each vector in ¥ can be written uniquely
as v = (v,.,v), v EV; (1 <i<s). Forany u =
(uy,....ug) and v = (v,,...,vy) in V', the z-weight w,(u)
of u and the z-distance d,(u, v) of u and v are
defined by

wo(u) = #{i/1<i<s, u;#0 €V} and
di(u, v) =wy(u—v)=#{i/1<i<s, u; # v}

An F-linear subspace C of 7 is called an /n, £,
d], linear error-block code over F, of type x, where

39

k = dimpq(C) and d = d,(C) is the minimum z-
distance of C, which is defined as

d =min{d,(c, c’)/c, c’ EC,c#c’}
= min{wg(c)/0# c € C}.

A classical linear error correcting code is a linear
error-block code of type = = [1]".

A linear error-block code with a composition
type is equivalent to some linear error-block code
with a partition type.

Some algebraic aspects and fields of application
of linear error-block codes are given in [1], and in
its concluding section, a few open problems are
stated. Answering some of those problems, new
constructions and bounds are given in [2].

Application in cryptography is an interesting
extension of coding theory. In 1978, Robert J.
McEliece found [3] a reliable approach to apply
linear error correcting codes in a cryptographic
scheme. His idea still resists cryptanalysis until
today. This paper is devoted to generalize, to the
error-block case, properties of classical error
correcting codes that allow or improve their
application in cryptography. For instance, notions
of cyclic and quasi-cyclic linear error-block codes
are introduced. The advantage of these codes is that
they are presentable by less information than usual.
We also introduce a method for decoding linear
error-block codes inspired from the standard array
classical method. Though it is slow and not
practical to correct errors rising from transmission
throw a binary noisy channel, this method allows
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application in a McEliece-like cryptosystem.
Nevertheless, we take advantage of classical codes
with fast decoding algorithms to construct families
of linear error-block codes which also admit a fast
decoding algorithm.

This paper is organized as follows. In Section 2
we give definitions and results concerning cyclic
and quasi-cyclic LEBC. In Section 3 we introduce a
decoding method for LEBC which aims to allow an
application in cryptography. Construction of error-
block codes with fast decoding algorithms is
evoked in Section 4. Perspective of this work is
given in Section 5.

2. CYCLIC AND QUASI-CYCLIC LEBC

In literature, a cyclic code is a code that is
invariant by a cyclic shift. That means that if the
values of a codeword in each coordinate are shifted
to the next coordinate, they produce another
codeword of the same code. In the error-block case,
and except partitions of the form = =/m/’, the
coordinates are presented by blocks with different
sizes. Thus, the cyclicity of an error-block code is
first of all predicted by the form of its partition. It
must allow that by some cyclic shift, the sizes of
the coordinates still unchanged.

Definition 1 Let = be a composition of an integer
n of the form

iy ([ra)[ma) - - . [m))"
nj| [ni|[ng] . ..

"

niy|nal . ..

"

. ..Jn-_ [mal ... |?iJl

o

e
[ times

where j is the minimum integer verifying this form.
Note V; =!_,V; . Each vector a € V" can be
written uniquely as a=(a,a,...., a), &€V, (i =1,...,1).

An [n, k, d] code C of type = is z-cyclic if for
each a € C we have o,(a) € C where

Oq 1_;.-:1_;. — 1_5'?""2-'1_5
— ——
| times I times
a8, ..., al — (ay,ap,..., ay_q)

o, is a cyclic shift of ; blocks (and also of
> 7, nibits) to the right.

Definition 2 An /[n, k, d] code C of type = is #-
quasi-cyclic of order r if for each a € C we have
o, (a) €C.

Example 1z = (/2][1])*, C = {000000, 010110,
110010, 100100}. Cisa [6, 2, 2] m-cyclic code.
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The next remarks are straightforward
consequences of Definition 1 and Definition 2.

Remark 1 A z-cyclic error-block code is a z-
quasi-cyclic code of order r =1.

Remark 2 If C is a z-cyclic error-block code of
s = 1; blocks where j is as given in Definition 1 and
[ is a positive integer, then C is also z-quasi-cyclic
of order » for any » which divides /.

Remark 3 If = [1]" then the classical
definitions are found by setting n; =1 (i = 1,...,s),
j=landl/=s=n.

Therefore, all the results on classical quasi-cyclic
codes can be generalized to the error-block case.

Theorem 1 Each /n, k] z-quasi-cyclic error-block
code C is generated by a matrix of the form

Al AZ Al
Al Al Al -1
AZ AS Al

where 4; (i =1,...,1) are (ng) matrices over F,

with £’>kand / divides &

Proof The theorem is proved, like in the classical
case [4], by recursion. We start by a null (I x n)
matrix G,. We choose a random word ¢ =(cc;, ...,
¢,) of C. Then ¢ is split into / = s; equal parts:

(crca .. C;), (Cj+1,6’j+z, e Czj), (CS*jerCSﬁ/#Z;
¢,). We note

1! = o i)

1 V=141 Cli—1)+21 <=1 Gij )5

for 1 <i <, and we construct the matrix G, by
cyclic shifts of the matrices 4 ; :

k
| 4

The code generated by G, is either included in C
or contains it. In the second case we set G = G, and
the result is found, else we choose another
codeword ¢, that does not belong to the code
generated by G;. We split it again into j equal parts
and add them as rows to the matrices A',« to obtain
matrices 4,

L
="

1
!

[
u=s
[Lrpayy ey

o

L

A:
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Cli—11741s Sli=114+25 =+ Cij

A?

T
Clim11i+1 Ti—1)5+2r =1 Sij
We repeat the same process to construct matrices
G, G; and so on. Since the rank of the matrix
constructed in each iteration increases, it will stop
when the number of its rows £’ becomes > k. The

matrix then generates the code C.

Remark 4 The previous form of the generating
matrix implies that it is sufficient to know the
matrices 4;, A, ..., A;to derive the whole matrix G.

Remark 5 The matrix G generates the code C
but is not necessarily a generator matrix of C since
k’ may be greater than k.

Remark 6 A quasi-cyclic code C of type x is
equivalent to a code C’ of type =’ where 7’ is a
permutation of the form =z’ =/n;)] .. [n]"
Moreover, there exist a generating matrix of C’ for
which each [ consecutive column blocks of the
same size n; define a quasi-cyclic matrix of order n;

(i =1,....j).
3. DECODING ERROR-BLOCK CODES

Let C be an /n, k, d], code of type z. Assume that
a word x € V is received. Decoding x consists of
finding ¢ € C such that

d-(z,c) = min d-(z,a).

The error vector e = x — ¢ must be of minimum

z-weight. The block-support of a vector x € F," is
defined by

Suppe(z) = {ifl <i< 5 0+# 1; € 1}
If d =21 + 1 then the balls
B (e, ) ={veVidc,uv)<l}

for ¢ € C, are pairwise disjoint. Therefore they are

forming a partition of V. Hence, if a codeword c is

sent and x is received with / or fewer swapped

blocks, then ¢ is the unique codeword closest to x.
If d =21 > 2 then the sets

Bl(e, 1) = {v € B.(e,1)/#{Supp:(c —v) N {2,3, ..., shh=1-1})

for ¢ € C, are pairwise disjoint. Therefore they are
forming a partition of V. Note that

B! (e,l) = Byl — 1)U {v € V/d(e,v) =l and 1 # v }

where ¢; and v; denote the first block of ¢ and v
respectively. Hence, if a codeword ¢ is sent and x is
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received with / — 1 or fewer swapped blocks, then ¢
is the unique codeword closest to x. If x has exactly
[ swapped blocks, then ¢ is the unique codeword
closest to x verifying c; # x;.

Thus, decoding a received word x consists of
finding ¢ € C such that:

o dyx,c)< lifd=21+1,

od,(x,c)<Il— 1,00 dyx c)<landx#c; ifd=
2[>2.

A standard table can be constructed to decode a
linear error-block code up to / error blocks even if
the minimum z-distance is not known. Coset
leaders are words of minimum z-weight; if two
words have the same z-weight we choose the one
that have a non zero first block.

4. LINEAR ERROR-BLOCK CODES WITH
FAST DECODING ALGORITHM

Lemma 1 Let g be a prime power, [ > I be an
integer and (a;,a,,...,a) be a basis of the finite field
F,n. Each vector ¢ in F» is written ¢ = c,a; + 0,
+ ..+ cuo, Where ¢; € F, i =1, 2., m. It is
known that the mapping

: J.‘.H-rr-

c

[
L7

(c1,02,...6m)

is an isomorphism. Therefore, an /i, k, d],» classical
error correcting code (sub-space of &!_;F,m) is
identified to an /Im, km, d], linear error-block code
of type 7 =/m]' (sub-space of £:_, ™).

This lemma implies that every g-ary error-block
code with type /m/]’ can be decoded with the same
algorithm of some ¢™-ary classical error correcting
code of length /. Thus, classical codes with fast
decoding algorithm vyield error-block codes with
fast decoding algorithm with type /m].
Furthermore, we can combine these codes to
construct error-block codes of different types with a
fast decoding algorithm.

Example 2 (Catenation) Let s > I be a positive
integer, and for i =1, 2,...,s let C; be an [l,k,d}j m
classical error correcting code admitting a fast
decoding algorithm (GRS for example). Note .. =
max(k;) and G; the generator matrix of the code C..
Let C be the linear error-block code of generator
matrix

G=[G",G"..G"]

where G;’ is G; with k,,. — k rows of zeros
attached.
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The code C has length »n = >, | Lim,
dimension k = ke 2 :—q ™4, minimum distance

[njls. As codewords of C have the form ¢ =
(c1,¢a...,C5), it can be decoded block by block using
the decoding algorithms of the initial codes.

Example 3 (Cartesian product) We conserve
the notation of the previous example. Define the
error-block code C by

C =C,PCAP... PC
={(cic....cy) /c; €Cyi=1, 2,...,8}

This is a [Doiog M2 iy kiymini=ya  ods]

code of type = =/n,] " [ns]" ... [n]" that is decoded
by a similar technique.

5. CONCLUSION AND PERSPECTIVE

By this work, we aim to construct error-block
codes with cryptographical properties. Quasi-cyclic
codes are useful as they can be presented by just
some lines of the generator matrix instead of the
whole matrix. However we gave linear error-block
codes with fast decoding algorithms, more
properties are needed to claim to find codes to use
in cryptography. Namely, there must be a way to
hide their structure so that they look like random
codes. An idea is to look for a generalization of
Goppa codes. Their structure is hidden when they
are permuted, and they are the best classical codes
known to be used in the McEliece public key
cryptosystem.
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