
Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

73

PARALLEL MATRIX MULTIPLICATION IMPLEMENTATION

IN DISTRIBUTED ENVIRONMENT THROUGH RMI

1
NAKKEERAN.M and

2
Dr.RM.CHANDRASEKARAN.

1
M.E-Computer Science and Engineering (Final Year), Annamalai University, Chidambaram, India-608002.

2
Professor, Department of Comp. Science and Engg, Annamalai University, Chidambaram, India-608002.

E-mail: nareek_sm@yahoo.co.in, aurmc@sify.com.

ABSTRACT

This paper proposes to solve the parallel matrix multiplication implementation in a distributed environment

through RMI based on JAVA threads. The application distributes the products of rows and columns on

different machines. One server and two clients are run to find the product of matrix multiplication. The

server distributes the determine blocks of rows and columns on the registered clients. The clients return

their product blocks to a server, which calculate the final product of matrix multiplication. Applications of

this type will allow loaded servers to transfer part of the load to clients to exploit the computing power

available at client side. The time of matrix multiplication with size of 200 X 200 and 500 X 500 is reduced

by 61.34% and 36.67% respectively by using 2-clients in comparison to sequential program and this time

can be decreased more in the case of increasing the number of clients.

Keywords: Distributed Environment, RMI, Java Threads.

I. INTRODUCTION AND RELATED WORKS

Matrix multiplication (MatMul) is one of

the most fundamental operations in linear algebra

operation. MatMul serves as the primary

operational component in many different

algorithms, including the solutions for systems of

linear equations of the determinant a matrix, and

the transitive closure of a graph. Due to its

fundamental importance, much effort has been

devoted to studying and implementing MatMul

which has been included in several libraries. Many

MatMul algorithms have been developed for

parallel systems [1-4].

Traditional methods for distributed

application are decomposed the entire task, which

introduces various overheads. The most important

are the communication and load balancing

overheads. For example, partitioning MatMul into

sub-matrix blocks and decomposing the MatMul

operation are often technology dependent.

Applying special implementations for sub-matrix

 blocks may improve performance since the

workload of sub-matrix operations may vary. The

 information about the workload of a task for matrix

operation may not be available at compile time or

even at the time of initiating subroutines. It may be

available only after these routines have been

executed. Since this increases the complexity of

load balancing, it is often ignored.

Most parallel algorithms are optimized based

on the characteristics of the targeting platform. The

PC cluster computing platform has recently

emerged as a viable alternative for high-

performance and low-cost computing [2].

 Generally, the PCs in a cluster have a lot of

resources that can be used simultaneously. They

have relatively weak communication capabilities.

They lack high performance implementation

support for data communications compared to

supercomputers. They only support some

communication channels implemented by software

that capitalizes on Ethernet connections. MatMul

operations are embedded in many host programs.

 The main reason for using parallel

processing is to reduce the computation time

required for what would otherwise be very long-

running programs. Because poorly parallelized

code tends to offer little performance benefit, there

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

74

is great incentive to ensure that parallel programs

are highly optimized. Unfortunately, a lack of

sufficiently accurate and easy-to-use performance

prediction methods for parallel programs has

necessitated resort to a very time-consuming, which

modifies design cycle to achieve this [5].

The biggest price we had to pay for the use

of a PC cluster was the conversion of an existing

serial code to a parallel code based on the message-

passing philosophy. The main difficulty with the

message passing philosophy is that one needs to

ensure that a control node (or master node) is

distributing the workload evenly between all the

other nodes (the compute nodes). Because all the

nodes have to synchronize at each time step, each

PC should finish its calculations in about the same

amount of time. If the load is uneven (or if the load

balancing is poor), the PCs are going to

synchronize on the slowest node, leading to a

worst-case scenario. Another obstacle is the

possibility of communication patterns that can

deadlock [5]. A typical example is if PC A is

waiting to receive information from PC B, while B

is also waiting to receive information from A.

JAVA provides Remote Method

Invocation (RMI) to allow one JAVA Virtual

Machine (VM) to invoke methods running on

another VM. RMI applications are often comprised

of two separate programs, which are server and

client. A typical server application creates some

remote objects, makes references to them

accessible, and waits for clients to invoke methods

on these remote objects. A typical client application

gets a remote reference to one or more remote

objects in the server and then invokes methods on

them. RMI provides the mechanism by which the

server and the client communicate and pass

information back and forth. Such an application is

sometimes referred to as a distributed object

application [6-8].

The related work [1- 4] deals with moving

application from one machine to another in a set of

machines. In the previous distributed modes it is

not very easy for a programmer to write an

application a part of which can be executed on

remote side and result of computation can be

combined in original program to compute the final

result, i.e. there is no method level distributed

available. We have applied object mobility to LAN

architecture. This allows development of

applications that can be easily load balanced.

In this paper we study implementation for

matrix multiplication on distributed systems using

RMI based on JAVA threads, which distribute the

load between the server and the clients. This system

provides the user a level of control over the

distribution of the program

 The rest of this paper is organized as follow.

Section 2 introduces the techniques of matrix

multiplication. Section 3 presents the

implementation architecture. Section 4 shows the

experimental setup and results. Finally the

conclusion is provided in Section 5.

II. MATRIX MULTIPLICATION

TECHNIQUES

Consider the product of matrix multiplication

C = A*B where A, B, C are matrices of size n X n

as shown in Figure 1.





















−−

OMMM

L

L

L

 a a a

 a a a

 a a a

changes j columnsn a

matrix

3,33,23,1

2,32,22,1

1,31,21,1

ji,

nbym

A * B = C

((m x n) (n x p) (m x p)

Figure 1 Matrix Multiplication

 For notation purpose it has been referred has

m-by-n matrix as “(m*n)”. Similarly, the

multiplication of an m-by-n matrix with n-by-p

matrix is denoted as “(m x n) *(n x p)”. By Initial

assumption, (n x kn) * (kn x n) Matrix Multiply

would require, at minimum, k-times the duration of

an (n x n) * (n x n) Matrix Multiply. Based on

assumption, the notation is given as:

[A11] x [B11] = [A11* B11]

Whereas:

[A11A12... A1f] x [B11] = [A11*A11+ A12*A21+.....

 [B21] +A1f*Bf1]

 [.....]

 [Bf1]

there would ultimately be k-times the number of

A1x*Bx1 operations (as well as k-times the number

of addition operations, assuming that the resulting

matrix had its element values initialized to the

value of zero) involved in an (n x kn) * (kn x n)

m

rows

i

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

75

Matrix Multiply, versus an (n x n) * (n x n) Matrix

Multiply, based on the example given above.

 Next subsections present the various

methods that used to find the matrix multiplication.

2.1 Sequential Method

 The matrix operation derives a resultant

matrix by multiplying two input matrices a and b,

where matrix a is a matrix of N rows by P columns

and matrix b is of P rows by M columns. The

resultant matrix c is of N rows by M columns. The

serial realization of this operation is quite

straightforward as listed in the following:

for (k=0; k<M; k++)

 for (i=0; i<N; i++){

 c[i][k]=0.0;

 for(j=0;j<P;j++)

 c[i][k]+ =a[i][j]*b[j][k];

}

The above algorithm requires n
3
 multiplications

and n
3
 additions, leading to a sequential time

complexity of O (n
3
).

2.2 Master Slave Model

The matrix multiplication algorithm is

implemented in MPI using the straight forward

algorithm based on the master-slave paradigm [8].

Master Slave computing paradigm, which also

called replicated slave computing is consists of

broken many computational problems into smaller

pieces that can be computed by one or more

processes in parallel. The computations are fairly

simple, which usually compute-intensive, region of

code. The size of loop is quite long.

 Figure 2. shows a Master-Slave computing

paradigm, a Master process takes the work

performed in the computationally intensive loop

and divides it up into a number of tasks that it

deposits into a task bag. One or more processes,

known as slaves, grab these tasks, compute them

and place the results back into a result bag. The

Master process collects the results as they are

computed and combines them into something

meaningful such as a vector product.

Message Passing Interface is a widely used

standard for writing message-passing programs to

establish a practical, portable, efficient, and flexible

standard for message passing. The master creates a

set of random matrices. Each matrix multiplication

job consists of pair of matrices to be multiplied. For

each job the master sends one entire matrix to each

slave and distributes the rows of the matrix among

the slaves. In this way matrix multiplication jobs

are computed in a parallel fashion as follow;

1. The master process for each job, which sends

the first matrix from the pair of matrices

multiplication joined with a certain number of

rows of the other matrix depending on the

number of slaves.

Figure 2. Master Slave

2. Each Slave process receives one entire matrix

and a certain number of rows of the other matrix

based on the number of slaves. Thus it computes

the rows of the resulting matrix and sends it

back to the master.

3. The master process collects the rows of resulting

matrix from the slaves.

III. IMPLEMENTATION ARCHITECTURE

In this work the integration of sequential

development and master-slave models to calculate

MatMul by using RMI Java threads. In this

proposed model, the server determines the

distributed numbers of rows from the first matrix

and the columns of the second matrix depending on

the balance of workload on registered clients. For

example, when n = 20, which mean the size of 2-

matrix multiplication is 20 X 20. The Server splits

the job into 10 tasks (say) which mean each job

gets 2 numbers of rows. If the registered client’s

number is 2 then server distribute the 10 jobs in to 5

each to the distributed clients. Each client

multiplies 10 rows with its 10-columns and returns

its product to the server in one thread. In the case of

n = 21, the above scenario will be done and the

twenty first row will multiply with the columns of

second matrix on the last client. In the

heterogeneous matrix, which mean the number of

rows is not the same number of columns, the

multiplication will done because the load

Slave 1 Slave 2

Maste

r

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

76

distribution depend on the number of rows in the

first matrix with its columns of the second matrix.

One server and 2-clients are used to implement

MatMul as shown in Figure 3. RMI implementation

algorithm is shown as follow;

Figure 3 RMI Server - Client Architecture

 No Yes

Figure 4 Flow Diagram of MatMul Algorithm

Step 1 Client discovery;

 Client will register itself with the server to take a

task from it

Step 2 Generate Matrices;

Server generates two matrices randomly or

getting them as inputs

Step 3 Data distribution

Server will distribute number of rows from first

matrix and its corresponding columns of the second

matrix on clients that it has been registered using

Java threads.

Step 4 Sever waits for result;

Server will waits results from clients and append it

in result matrix.

Step 5 Results collecting;

Server will collect the results that sent by each

client and compute the time that taken by each

client and compute all time taken in this process

Step 6 Shutdown;

Finally, server will send shutdown to all clients.

Figure 4 shows the flow diagram of the above

algorithm. In this work following issues are

addressed:

1) Performance: As the number of clients increases

the time for computation will decreases.

2) Load Distribution: the work will be distributed

among the free clients. Rows and Columns of

MatMul are distributed uniformly on all

registered clients. In RMI the load of MatMul

was distributed by allowing each process

(Threads) to compute a certain number of rows

in the resulting matrix.

3) Scalability: Performance of this model increases

as the number of registered clients increases

 Start

Clients register at server by their

IPs

Matrices generate or enter on

server

Distributed rows & columns on

clients

 Client receive rows & columns

Calculate result by multiplication &

sum

 Send result to server

Data is

finished?

Server sends shut

down signal to all
 End

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

77

IV. EXPERIMENTAL SETUP AND RESULTS

The analytical performance model

describes the computational behaviour of matrix

multiplication implementations. Consider the

matrix multiplication product C = A*B where the

size of matrices A, B, and C are n X n.

Implementing the MatMul by using JDK 1.6 on

LAN of 3-PC (1- Server and 2 Clients) Intel Core 2

Duo Processor, 2.93 GHz with 2 GB RAM.

Table 1 show the tabulated result of this

measuring of Serial Vs Parallel program is a way to

assess how well and efficient this development

have been divided the big application into small

modules cooperating with each other in parallel.

The most easily recorded metric of performance is

the execution time by measuring the time consumed

in the execution of parallel program with its Client

Connectivity makes directly measures its

effectiveness. To find out how much better for our

proposed does on the parallel machine, which it

compared with running an application on only one

processor. The ratio of execution time is taken into

the account, which is called the speedup.

Speedup (S) = (Serial Execution Time) / (Parallel

Execution

Time)

 Speedup (S) = T (1)/T (N)

 Where T (N) represents the execution time taken

by the program running on N processors, and T (l)

represents the time taken by the best serial

implementation of the application measured on one

processor.

 Efficiency, E (%) = S / p

 Where S is the Speedup and p is the number of

processors.

Here, the no of processors involved is three which

accounts for 1 –Server and 2 Client. Table 1 shows

speedup is 1.84 and 1.10 for MatMul with the size

of 200 X 200 and 500 X 500 respectively (or)

reduced the Multiplication time by 61.34% and

36.67% respectively.

 V. CONCLUSION AND FUTURE WORK

In this paper the parallel matrix

multiplication is implemented and analyzed on

distributed systems. This mechanism will make it

easier to automatic migrate the computation load to

client. It has been shown that execution time

decreases by 61.34% and 36.67% for MatMul with

size of 200 X 200 and 500 X 500 respectively.

Future work will apply this implementation on any

practical application like weather prediction,

databases systems, data compression and others

with increasing the numbers of clients.

)

Journal of Theoretical and Applied Information Technology

© 2005 - 2011 JATIT & LLS. All rights reserved.

www.jatit.org

78

Table 1 shows the comparison result of Serial Vs Parallel program with number of client connected in Distributed

Environment.

Size of the

Matrix

(n*n)

Sequential

Program

Time (s)

Parallel Connectivity

Two number of Clients Connected

Time (s) Speedup (S) Efficiency E, (%)

200*200 26.36 14.28 1.84 61.34

500*500 124.35 112.89 1.10 36.67

REFERENCES:

[1] Tinerti, F., Quijano, A., Giusti, A., Luque, E.

"Heterogeneous networks of workstations and

the parallel matrix multiplication " Proceedings

of the Euro PVM/MPI 2001, Springer-Verlag,

erlin, pp. 296-303. 2001.

[2] T. Typou, Vasilis stefanids, P. Michailidis, and

K. Margaritis "Implementing Matrix

Multiplication on An Cluster of Workstation",

1st IC-SCCE, Athens, 8-10, Sep. ,2004.

[3] Ju-wook Jang, Seonil Choi and Viktor K.

Prasanna, Energy-Efficient Matrix

Multiplication on FPGAs, IEEE Transactions

on VLSI (TVLSI), Vol. 13, No. 11, pp. 1305-

1319, November 2005.

[4] Carrio and Geleertner "How to write Parallel

Programs, A Guide to the Perplexed" ACM

Computing Serveys, Vol. 21, No. 3, Sep. 1999.

[5] Coulouris, et al, Distributed Systems Concepts

and Design, 3rd Edition, Addision Wesely,

Person Education 2001.

[6] Maassen, J., Nieuwpoort, R. V., Veldema, R.,

Bal, H., and Kielmann, T., Wide-Area Parallel

Computing in Java, Proceedings of the ACM

Conference on Java Grande, San Francisco,

CA,(1999), pp. 8-14, 1999.

[7] Grama, A., Gupta, A., Karypis, G., and Kumar,

V., Introduction to Parallel Computing (Second

Edition), Pearson Education Limited, Harlow,

England, (2003), pp. 345-349, 2003.

 [8] Wilkinson, B., Allen, Parallel Programming:

Techniques and Applications Using

Networking.

